首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The C-terminal, polypeptide binding domain of the 70-kDa molecular chaperone DnaK is composed of a unique lidlike subdomain that appears to hinder steric access to the peptide binding site. We have expressed, purified, and characterized a lidless form of DnaK to test the influence of the lid on the ATPase activity, on interdomain communication, and on the kinetics of peptide binding. The principal findings are that loss of the lid creates an activated form of DnaK which is not equivalent to ATP-bound DnaK. For example, at 25 degrees C the NR peptide (NRLLLTG) dissociates from the ADP and ATP states of DnaK with observed off-rate constants of 0.001 and 4.8 s(-1), respectively. In contrast, for DnaK that lacks most of the helical lid, residues 518-638, the NR peptide dissociates with observed off-rate constants of 0.1 and 188 s(-1). These results show that the loss of the lid does not interfere with interdomain communication, that the beta-sandwich peptide binding domain can exist in two discrete conformations, and that the lid functions to increase the lifetime of a DnaK.peptide complex. We discuss several mechanisms to explain how the lid affects the lifetime of a DnaK.peptide complex.  相似文献   

2.
In Escherichia coli, DnaK is essential for the replication of bacteriophage lambda DNA; this in vivo activity provides the basis of a screen for mutations affecting DnaK function. Mn PCR was used to introduce mutations into residues 405-468 of the C-terminal polypeptide-binding domain of DnaK. These mutant proteins were screened for the ability to propagate bacteriophage lambda in the background of a dnaK deficient cell line, BB1553. This initial screen identified several proteins which were mutant at multiple positions. The multiple mutants were further dissected into single mutants which remained negative for lambda propagation. Four of these single-site mutants were purified and assayed for biochemical functionality. Two single-site mutations, F426S and S427P, are localized in the peptide binding site and display weakened peptide binding affinity. This indicates that the crystallographically determined peptide binding site is also critical for in vivo lambda replication. Two other mutations, K414I and N451K, are located at the edge of the beta-sandwich domain near alpha-helix A. The K414I mutant binds peptide moderately well, yet displays defects in allosteric functions, including peptide-stimulated ATPase activity, ATP-induced changes in tryptophan fluorescence, ATP-induced peptide release, and elevated ATPase activity. The K414 position is close in tertiary structure to the linker region to the ATPase domain and reflects a specific area of the peptide-binding domain which is necessary for interdomain coupling. The mutant N451K displays defects in both peptide binding and allosteric interaction.  相似文献   

3.
Members of the Hsp70 (heat-shock protein of 70 kDa) family of molecular chaperones bind to exposed hydrophobic stretches on substrate proteins in order to dissociate molecular complexes and prevent aggregation in the cell. Substrate affinity for the C-terminal domain of the Hsp70 is regulated by ATP binding to the N-terminal domain utilizing an allosteric mechanism. Our multi-dimensional NMR studies of a substrate-binding domain fragment (amino acids 387-552) from an Escherichia coli Hsp70, DnaK(387-552), have uncovered a pH-dependent conformational change, which we propose to be relevant for the full-length protein also. At pH 7, the C-terminus of DnaK(387-552) mimics substrate by binding to its own substrate-binding site, as has been observed previously for truncated Hsp70 constructs. At pH 5, the C-terminus is released from the binding site, such that DnaK is in the substrate-free state 10-20% of the time. We propose that the mechanism for the release of the tail is a loss of affinity for substrate at low pH. The pH-dependent fluorescence changes at a tryptophan residue near the substrate-binding pocket in full-length DnaK lead us to extend these conclusions to the full-length DnaK as well. In the context of the DnaK substrate-binding domain fragment, the release of the C-terminus from the substrate-binding site provides our first glimpse of the empty conformation of an Hsp70 substrate-binding domain containing a portion of the helical subdomain.  相似文献   

4.
Sehorn MG  Slepenkov SV  Witt SN 《Biochemistry》2002,41(26):8499-8507
In this study, the effect of pH on the conformation and the reactivity of the Escherichia coli Hsp70 molecular chaperone DnaK was investigated using spectroscopic and chemical assays. DnaK exhibits negligible binding of the hydrophobic dye 1-anilino-naphthalene-8-sulfonate (ANS) between pH 7 to 5.0, whereas appreciable binding occurs between pH 4.5 to 4.0. The binding of ANS to a protein is diagnostic of the presence of accessible ordered hydrophobic surfaces. Such hydrophobic surfaces are often displayed by partially folded protein intermediates such as molten globules. Nucleotide inhibits 70% of the ANS binding at pH 4.5 but none of the ANS binding at pH 4.0. Proteolysis of nucleotide-free DnaK at pH 4.5 with cathepsin D yields detectable fragments (masses > 20 kDa) of the C-terminal peptide-binding domain but none of the N-terminal ATPase domain, thus the ATPase domain is preferentially targeted for proteolysis. In contrast, proteolysis of nucleotide-free DnaK at pH 4.0 with cathepsin D cuts near the linker region, yielding both functional domains. Our interpretation of these data is that incubation of DnaK at pH 4.5 produces a partially unfolded form of the ATPase domain, in which secondary structure is mainly intact, but tertiary structure is reduced. Incubation of the protein at pH 4.0 produces an intermediate in which both functional domains have collapsed and possibly separated. Nucleotide inhibits the conformational change that occurs at pH 4.5 but not at 4.0.  相似文献   

5.
In this study, we have used surface plasmon resonance (SPR) and isothermal microtitration calorimetry (ITC) to study the mechanism of complex formation between the Hsp70 molecular chaperone, DnaK, and its cochaperone, GrpE, which is a nucleotide exchange factor. Experiments were geared toward understanding the influence of DnaK's three domains, the ATPase (residues 1-388), substrate-binding (residues 393-507), and lid (residues 508-638) domains, on complex formation with GrpE. We show that the equilibrium dissociation constants for the interaction of GrpE with wtDnaK, lidless DnaK(2-517), the ATPase domain (2-388), and the substrate-binding fragment (393-507) are 64 (+/-16) nM, 4.0 (+/-1.5) nM, 35 (+/-10) nM, and 67 (+/-11) microM, respectively, and that the on-rate constant for the different reactions varies by over 4 orders of magnitude. SPR experiments revealed that GrpE-DnaK(393-507) complex formation is inhibited by added peptide and abolished when the 33-residue flexible "tail" of GrpE is deleted. Such results strongly suggest that the 33-residue flexible N-terminal tail of GrpE binds in the substrate-binding pocket of DnaK. This unique mode of binding between GrpE's tail and DnaK contributes to, but does not fully explain, the decrease in K(d) from 64 to 4 nM upon deletion of DnaK's lid. The possibility that deletion of DnaK's lid creates a more symmetrically shaped molecule, with enhanced affinity to GrpE, is also discussed. Our results reveal a complex set of molecular interactions between DnaK and its cochaperone GrpE. We discuss the impact of each domain on complex formation and dissociation.  相似文献   

6.
In the DnaK (Hsp70) molecular chaperone system of Escherichia coli, the substrate polypeptide is fed into the chaperone cycle by association with the fast-binding, ATP-liganded form of the DnaK. The substrate binding properties of DnaK are controlled by its two cochaperones DnaJ (Hsp40) and GrpE. DnaJ stimulates the hydrolysis of DnaK-bound ATP, and GrpE accelerates ADP/ATP exchange. DnaJ has been described as targeting the substrate to DnaK, a concept that has remained rather obscure. Based on binding experiments with peptides and polypeptides we propose here a novel mechanism for the targeting action of DnaJ: ATP.DnaK and DnaJ with its substrate-binding domain bind to different segments of one and the same polypeptide chain forming (ATP.DnaK)m.substrate.DnaJn complexes; in these ternary complexes efficient cis-interaction of the J-domain of DnaJ with DnaK is favored by their propinquity and triggers the hydrolysis of DnaK-bound ATP, converting DnaK to its ADP-liganded high affinity state and thus locking it onto the substrate polypeptide.  相似文献   

7.
Kasper P  Christen P  Gehring H 《Proteins》2000,40(2):185-192
We describe a methodology to calculate the relative free energies of protein-peptide complex formation. The interaction energy was decomposed into nonpolar, electrostatic and entropic contributions. A free energy-surface area relationship served to calculate the nonpolar free energy term. The electrostatic free energy was calculated with the finite difference Poisson-Boltzmann method and the entropic contribution was estimated from the loss in the conformational entropy of the peptide side chains. We applied this methodology to a series of DnaK*peptide complexes. On the basis of the single known crystal structure of the peptide-binding domain of DnaK with a bound heptapeptide, we modeled ten other DnaK*heptapeptide complexes with experimentally measured K(d) values from 0.06 microM to 11 microM, using molecular dynamics to refine the structures of the complexes. Molecular dynamic trajectories, after equilibration, were used for calculating the energies with greater accuracy. The calculated relative binding free energies were compared with the experimentally determined free energies. Linear scaling of the calculated terms was applied to fit them to the experimental values. The calculated binding free energies were between -7.1 kcal/mol and - 9.4 kcal/mol with a correlation coefficient of 0.86. The calculated nonpolar contributions are mainly due to the central hydrophobic binding pocket of DnaK for three amino acid residues. Negative electrostatic fields generated by the protein increase the binding affinity for basic residues flanking the hydrophobic core of the peptide ligand. Analysis of the individual energy contributions indicated that the nonpolar contributions are predominant compared to the other energy terms even for peptides with low affinity and that inclusion of the change in conformational entropy of the peptide side chains does not improve the discriminative power of the calculation. The method seems to be useful for predicting relative binding energies of peptide ligands of DnaK and might be applicable to other protein-peptide systems, particularly if only the structure of one protein-ligand complex is available.  相似文献   

8.
9.
Lee M  Maher MJ  Christopherson RI  Guss JM 《Biochemistry》2007,46(37):10538-10550
Dihydroorotase (DHOase) catalyzes the reversible cyclization of N-carbamyl-l-aspartate (CA-asp) to l-dihydroorotate (DHO) in the de novo biosynthesis of pyrimidine nucleotides. Two different conformations of the surface loop (residues 105-115) were found in the dimeric Escherichia coli DHOase crystallized in the presence of DHO (PDB code 1XGE). The loop asymmetry reflected that of the active site contents of the two subunits: the product, DHO, was bound in the active site of one subunit and the substrate, CA-asp, in the active site of the other. In the substrate- (CA-asp-) bound subunit, the surface loop reaches in toward the active site and makes hydrogen bonds with the bound CA-asp via two threonine residues (Thr109 and Thr110), whereas the loop forms part of the surface of the protein in the product- (DHO-) bound subunit. To investigate the relationship between the structural states of this loop and the catalytic mechanism of the enzyme, a series of mutant DHOases including deletion of the flexible loop were generated and characterized kinetically and structurally. Disruption of the hydrogen bonds between the surface loop and the substrate results in significant loss of catalytic activity. Furthermore, structures of these mutants with low catalytic activity have no interpretable electron density for parts of the flexible loop. The structure of the mutant (Delta107-116), in which the flexible loop is deleted, shows only small differences in positions of other substrate binding residues and in the binuclear zinc center compared with the native structure, yet the enzyme has negligible activity. The kinetic and structural analyses suggest that Thr109 and Thr110 in the flexible loop provide productive binding of substrate and stabilize the transition-state intermediate, thereby increasing catalytic activity.  相似文献   

10.
11.
In the intracellular bacterium Brucella suis, the molecular chaperone DnaK was induced under heat-shock conditions and at low pH. Insertional inactivation of dnaK and dnaJ within the dnaK/J locus led to the conclusion that DnaK, but not DnaJ, was required for growth at 37°C in vitro. Viability of the dnaK null mutant was also greatly affected at low pH. Under conditions allowing intracellular multiplication, the infection of U937-derived phagocytes resulted in long-lasting DnaK induction in the wild-type bacteria. In infection experiments performed with both mutants at the reduced temperature of 30°C, the dnaK mutant of B. suis survived but failed to multiply within U937 cells, whereas the wild-type strain and the dnaJ mutant multiplied normally. Complementation of the dnaK mutant with the cloned dnaK gene restored growth at 37°C, increased resistance to acid pH, and increased intracellular multiplication. This is the first report of the effects of dnaK inactivation in a pathogenic species, and of the temperature-independent contribution of DnaK to intracellular multiplication of the pathogen B. suis.  相似文献   

12.
We present here the first detailed kinetic analysis of the dissociation reaction of amyloid protofibrils by utilizing pressure as an accelerator of the reaction. The experiment is carried out on an excessively diluted typical protofibril solution formed from an intrinsically denatured disulfide-deficient variant of hen lysozyme with Trp fluorescence as the reporter in the pressure range 3-400 MPa. From the analysis of the time-dependent fluorescence decay and the length distribution of the protofibrils measured on atomic force microscopy, we conclude that the protofibril grows or decays by attachment or detachment of a monomer at one end of the protofibril with a monomer dissociation rate independent of the length of the fibril. Furthermore, we find that the dissociation reaction is strongly dependent on pressure, characterized with a negative activation volume DeltaV(odouble dagger) = -50.5 +/- 1.60 ml mol(-1) at 0.1 MPa and with a negative activation compressibility Deltakappa(double dagger) = -0.013 +/- 0.001 ml mol(-1) bar(-1) or -0.9 x 10(-6) ml g(-1) bar(-1). These results indicate that the protofibril is a highly compressible high-volume state, but that it becomes less compressible and less voluminous in the transition state, most probably due to partial hydration of the existing voids. The system eventually reaches the lowest-volume state with full hydration of the monomer in the dissociated state.  相似文献   

13.
Streptozotocin (STZ) is a 2-deoxy-d-glucopyranose derivative of a class of drugs known as alkylnitrosoureas, and is an established diabetogenic agent whose cytotoxic affects on pancreatic beta-cells has been partially explained by the presence of its N-methyl-N-nitrosourea side chain, which has the ability to release nitric oxide as well as donate methyl groups to nucleotides in DNA. It has also been observed that STZ administration results in a rise in the level of O-GlcNAcylated proteins within beta-cells. Not coincidentally, STZ has also been shown to directly inhibit the O-GlcNAcase activity of the enzyme NCOAT in vitro, which is the only enzyme that possesses the ability to remove O-GlcNAc modifications on proteins in the nucleus and cytosol. Since O-GlcNAc modification plays a role on a number of proteins in a vast amount of cellular processes, this shift in whole-cell protein O-GlcNAcylation state affords another source of cell death. We set about to find the exact mechanism by which STZ inhibits O-GlcNAcase activity. Inhibition is achievable because the GlcNAc analog STZ targets the active site of the enzyme whereby it is catalyzed. During this process, the enzyme converts STZ to a compound that closely resembles the natural ligand transition state, but is distinctly more stable energetically. As a result, this analog is catalyzed to completion at a much slower rate, thereby out-competing GlcNAc substrate for the active site, and inhibiting the enzyme.  相似文献   

14.
All secreted proteins in Escherichia coli must be maintained in an export-competent state before translocation across the inner membrane. In the case of the Sec pathway, this function is carried out by the dedicated SecB chaperone and the general chaperones DnaK-DnaJ-GrpE and GroEL-GroES, whose job collectively is to render substrate proteins partially or entirely unfolded before engagement of the translocon. To determine whether these or other general molecular chaperones are similarly involved in the translocation of folded proteins through the twin-arginine translocation (Tat) system, we screened a collection of E. coli mutant strains for their ability to transport a green fluorescent protein (GFP) reporter through the Tat pathway. We found that the molecular chaperone DnaK was essential for cytoplasmic stability of GFP bearing an N-terminal Tat signal peptide, as well as for numerous other recombinantly expressed endogenous and heterologous Tat substrates. Interestingly, the stability conferred by DnaK did not require a fully functional Tat signal as substrates bearing translocation defective twin lysine substitutions in the consensus Tat motif were equally unstable in the absence of DnaK. These findings were corroborated by crosslinking experiments that revealed an in vivo association between DnaK and a truncated version of the Tat substrate trimethylamine N-oxide reductase (TorA502) bearing an RR or a KK signal peptide. Since TorA502 lacks nine molybdo-cofactor ligands essential for cofactor attachment, the involvement of DnaK is apparently independent of cofactor acquisition. Finally, we show that the stabilizing effects of DnaK can be exploited to increase the expression and translocation of Tat substrates under conditions where the substrate production level exceeds the capacity of the Tat translocase. This latter observation is expected to have important consequences for the use of the Tat system in biotechnology applications where high levels of periplasmic expression are desirable.  相似文献   

15.
ATP-dependent drug transport by human P-glycoprotein (Pgp, ABCB1) involves a coordinated communication between its drug-binding site (substrate site) and the nucleotide binding/hydrolysis domain (ATP sites). It has been demonstrated that the two ATP sites of Pgp play distinct roles within a single catalytic turnover; whereas ATP binding or/and hydrolysis by one drives substrate translocation and dissociation, the hydrolytic activity of the other resets the transporter for the subsequent cycle (Sauna, Z. E., and Ambudkar, S. V. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 2515-2520; Sauna, Z. E., and Ambudkar, S. V. (2001) J. Biol. Chem. 276, 11653-11661). Trapping of ADP (or 8-azido-ADP) and vanadate (ADP.Vi or 8-azido-ADP.Vi) at the catalytic site, following nucleotide hydrolysis, markedly reduces the affinity of Pgp for its transport substrate [125I]iodoarylazidoprazosin ([125I]IAAP), resulting in dissociation of the latter. Regeneration of the [125I]IAAP site requires an additional round of nucleotide hydrolysis. In this study, we demonstrate that certain thioxanthene-based allosteric modulators, such as cis-(Z)-flupentixol and its closely related analogs, induce regeneration of [125I]IAAP binding to vanadate-trapped (or fluoroaluminate-trapped) Pgp without any further nucleotide hydrolysis. Regeneration was facilitated by dissociation of the trapped nucleotide and vanadate. Once regenerated, the substrate site remains accessible to [125I]IAAP even after removal of the modulator from the medium, suggesting a modulator-induced relaxation of a constrained transition state conformation. Consistent with this, limited trypsin digestion of vanadate-trapped Pgp shows protection by cis-(Z)-flupentixol of two Pgp fragments (approximately 60 kDa) recognizable by a polyclonal antiserum specific for the NH2-terminal half. No regeneration was observed in the Pgp mutant F983A that is impaired in modulation by flupentixols, indicating involvement of the allosteric modulator site in the phenomenon. In summary, the data demonstrate that in the nucleotide-trapped low affinity state of Pgp, the allosteric site remains accessible and responsive to modulation by flupentixol (and its closely related analogs), which can reset the high affinity state for [125I]IAAP binding without any further nucleotide hydrolysis.  相似文献   

16.
17.
Lee S  Sowa ME  Watanabe YH  Sigler PB  Chiu W  Yoshida M  Tsai FT 《Cell》2003,115(2):229-240
Molecular chaperones assist protein folding by facilitating their "forward" folding and preventing aggregation. However, once aggregates have formed, these chaperones cannot facilitate protein disaggregation. Bacterial ClpB and its eukaryotic homolog Hsp104 are essential proteins of the heat-shock response, which have the remarkable capacity to rescue stress-damaged proteins from an aggregated state. We have determined the structure of Thermus thermophilus ClpB (TClpB) using a combination of X-ray crystallography and cryo-electron microscopy (cryo-EM). Our single-particle reconstruction shows that TClpB forms a two-tiered hexameric ring. The ClpB/Hsp104-linker consists of an 85 A long and mobile coiled coil that is located on the outside of the hexamer. Our mutagenesis and biochemical data show that both the relative position and motion of this coiled coil are critical for chaperone function. Taken together, we propose a mechanism by which an ATP-driven conformational change is coupled to a large coiled-coil motion, which is indispensable for protein disaggregation.  相似文献   

18.
The first discovery of an Hsp70 chaperone gene was the isolation of an Escherichia coli mutant, dnaK756, which rendered the cells resistant to lytic infection with bacteriophage lambda. The DnaK756 mutant protein has since been used to establish many of the cellular roles and biochemical properties of DnaK. DnaK756 has three glycine-to-aspartate substitutions at residues 32, 455, and 468, which were reported to result in defects in intrinsic and GrpE-stimulated ATPase activities, substrate binding, stability of the substrate-binding domain, interdomain communication, and, consequently, defects in chaperone activity. To dissect the effects of the different amino acid substitutions in DnaK756, we analyzed two DnaK variants carrying only the amino-terminal (residue 32) or the two carboxyl-terminal (residues 455 and 468) substitutions. The amino-terminal substitution interfered with the GrpE-stimulated ATPase activity. The carboxyl-terminal mutations (i) affected stability and function of the substrate-binding domain, (ii) caused a 10-fold elevated ATP hydrolysis rate, but (iii) did not severely affect domain coupling. Surprisingly, DnaK chaperone activity was more severely compromised by the amino-terminal than by the carboxyl-terminal amino acid substitutions both in vivo and in vitro. In the in vitro refolding of denatured firefly luciferase, the defect of the DnaK variant carrying the amino-terminal substitution results from its inability to release, upon GrpE-mediated nucleotide exchange, bound luciferase in a folding competent state. Our results indicate that the DnaK-DnaJ-GrpE chaperone system can tolerate suboptimal substrate binding, whereas the tight kinetic control of substrate dissociation by GrpE is essential.  相似文献   

19.
Molecular recognition and site-directed mutagenesis are used in combination to identify kinetically, transition state interactions between glucoamylase (GA) and the substrate maltose. Earlier studies of mutant Glu180----Gln GA had indicated a role in substrate binding for Glu180 (Sierks, M.R., Ford, C., Reilly, P.J. and Svensson, B. (1990) Protein Engng, 3, 193-198). Here, changes in activation energies calculated from measured kcat/Km values for a series of deoxygenated maltose analogues indicate hydrogen bonding between the mutant enzyme and the 3-OH group of the reducing end sugar ring. Using the same substrate analogues and determining activation energies with wild-type GA an additional hydrogen bond with the 2-OH group of maltose is attributed to an interaction with the carboxylate Glu180. This novel combination of molecular recognition and site-directed mutagenesis enables an enzyme substrate transition state contact to be identified and characterized even without access to the three dimensional structure of the enzyme. Given the distant structural relationships between glucoamylases and several starch hydrolases (Svensson,B. (1988) FEBS Lett., 230, 72-76), such identified contacts may ultimately guide tailoring of the activity of these related enzymes.  相似文献   

20.
Escherichia coli dnaK-ts mutants are defective in the late stages of ribosome biogenesis at high temperature. Here, we show that the 21S, 32S and 45S ribosomal particles that accumulate in the dnaK756-ts mutant at 44 degrees C contain unprocessed forms of their 16S and 23S rRNAs (partially processed in the case of 45S particles). Their 5S rRNA stoichiometry and ribosomal protein composition are typical of the genuine ribosomal precursors found in a wild-type (dnaK+) strain. Despite the lack of a functional DnaK, a very slow maturation of these 21S, 32S and 45S particles to structurally and functionally normal 30S and 50S ribosomal subunits still occurs at high temperature. This conversion is accompanied by the processing of p16S and p23S rRNAs to their mature forms. We conclude that: (i) 21S, 32S and 45S particles are not dead-end particles, but true precursors to active ribosomes (21S particles are converted to 30S subunits, and 32S and 45S to 50S subunits); (ii) DnaK is not absolutely necessary for ribosome biogenesis, but accelerates the late steps of this process considerably at high temperature; and (iii) 23S rRNA processing depends on the stage reached in the stepwise assembly of the 50S subunit, not directly on DnaK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号