首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Base sequence studies of 300 nucleotide renatured repeated human DNA clones   总被引:117,自引:0,他引:117  
A band of 300 nucleotide long duplex DNA is released by treating renatured repeated human DNA with the single strand-specific endonuclease S1. Since many of the interspersed repeated sequences in human DNA are 300 nucleotides long, this band should be enriched in such repeats. We have determined the nucleotide sequences of 15 clones constructed from these 300 nucleotide S1-resistant repeats. Ten of these cloned sequences are members of the Alu family of interspersed repeats. These ten sequences share a recognizable consensus sequence from which individual clones have an average divergence of 12.8%. The 300 nucleotide Alu family consensus sequence has a dimeric structure and was evidently formed from a head to tail duplication of an ancestral monomeric sequence. Three of the remaining clones are variations on a simple pentanucleotide sequence previously reported for human satellite III DNA. Two of the 15 clones have distinct and complex sequences and may represent other families of interspersed repeated sequences.  相似文献   

2.
Evolution of alu family repeats since the divergence of human and chimpanzee   总被引:14,自引:0,他引:14  
Summary The DNA sequences of three members of the Alu family of repeated sequences located 5 to the chimpanzee 2 gene have been determined. The base sequences of the three corresponding human Alu family repeats have been previously determined, permitting the comparison of identical Alu family members in human and chimpanzee. Here we compare the sequences of seven pairs of chimpanzee and human Alu repeats. In each case, with the exception of minor sequence differences, the identical Alu repeat is located at identical sites in the human and chimpanzee genomes. The Alu repeats diverge at the rate expected for nonselected sequences. Sequence conversion has not replaced any of these 14 Alu family members since the divergence between chimpanzee and human.  相似文献   

3.
The human albumin-alpha-fetoprotein genomic domain contains 13 repetitive DNA elements randomly distributed throughout the symmetrical structures of these genes. These repeated sequences are located at different sites within the two genes. The human albumin gene contains five Alu elements within four of its 14 intervening sequences. Two of these repeats are located in intron 2, and the remaining three are located in introns 7, 8, and 11. The human alpha-fetoprotein gene contains three of these Alu elements, one in intron 4 and the remaining two in the 3'-untranslated region. In addition, the human alpha-fetoprotein gene contains a Kpn repeat and two classes of novel repeats that are absent from the human albumin gene. Six of the Alu elements within the two genes are bound by short direct repeats that harbor five base substitutions in 120 possible positions (60 bp times 2 termini). The absence of Alu repeats from analogous positions in rodents indicates that these repeats invaded the albumin-alpha-fetoprotein domain less than 85 Myr ago (the time of mammalian radiation). Furthermore, considering the conservation of terminal repeats flanking the Alu sequences of the albumin-alpha-fetoprotein domain (0.042 changes per site), we submit that the average time of Alu insertion into this gene family could have been as recently as 15-30 Myr ago.  相似文献   

4.
A family of repeated DNA sequences of about 1200 bp in length and bordered by well-conserved, 18 bp inverted repeats (VfB family) was found in the nuclear genome of Vicia faba. The structure, chromosomal organization, redundancy modulation and evolution of these sequences were investigated. They are enriched in A+T base pairs (about 40% G+C) and lack any obvious internally repeated motif. A 64%–73% nucleotide sequence identity was found when pairwise comparisons between VfB sequences were carried out (average 69%). Direct repeats were not found to flank the inverted repeats that border these DNA sequences. The results obtained by hybridizing VfB repeats to Southern blots of V. faba genomic DNA digested with EcoRI indicated that these DNA elements are interspersed in the genome. The appearance of bands in these Southern blots and comparison of the structure of the sequences that flank different VfB elements showed that these repeats might be part of other, longer repeated DNA sequences. A high degree of dispersion throughout the genome was confirmed by cytological hybridization, which showed VfB sequences to be scattered along the length of all chromosomes and to be absent or rare only at heterochromatic chromosomal regions. These sequences contribute to intraspecific alterations of genomic size. Indeed, dot-blot hybridizations proved that their redundancy, which is positively correlated with the overall amount of nuclear DNA in each accession, varies between V. faba land races (27×103–230×103 copies per 1C DNA). Southern blot hybridization of VfB repeats to restriction endonuclease-digested genomic DNAs of V. faba, V. narbonensis, V. sativa, Phaseolus coccineus, Populus deltoides, and Triticum durum revealed nucleotide sequence homology of these DNA elements, whatever the stringency conditions, only to the DNAs of Vicia species, and to a reduced extent to the DNAs of V. narbonensis and V. sativa compared with that of V. faba. It is concluded that VfB repeats might be descended from mobile DNA elements and contribute to change genomic size and organization during evolution. Received: 10 September 1998; in revised form: 12 May 1999 / Accepted: 19 May 1999  相似文献   

5.
A ubiquitous family of repeated DNA sequences in the human genome   总被引:88,自引:0,他引:88  
Renatured DNA from human and many other eukaryotes is known to contain 300-nucleotide duplex regions formed from renatured repeated sequences. These short repeated DNA sequences are widely believed to be interspersed with single copy DNA sequences. In this work we show that at least half of these 300-nucleotide duplexes share a cleavage site for the restriction enzyme AluI. This site is located 170 nucleotides from one end. This Alu family of repeated sequences makes up at least 3% of the genome and is present in several hundred thousand copies.Inverted repeated sequences are also known to contain a short 300-nucleotide duplex region. We find that at least half of the 300-nucleotide duplex regions in inverted repeated sequences also have an AluI restriction site located 170 nucleotides from one end.By driven renaturation techniques, the Alu family is shown to be distributed over a minimum range of 30% to 60% of the genome. (The breadth of this range reflects the presence of inverted repeated sequences which, in part, include the Alu family.) These findings imply that the interspersion pattern of repeated and single copy sequences in human DNA is largely dominated by one family of repeated sequences.  相似文献   

6.
Computer analyses of the 3'-flanking DNA sequence of the human elastase I gene revealed a significant degree of similarity with seven human gene sequences in the GenBank and EMBL databases. Genomic Southern analysis indicates that the shared nucleotide sequences are a primate-specific family of short interspersed elements. These elements are members of MER1 sequences (medium reiteration frequency sequences). The consensus sequence of MER1 repeats spans 543 nucleotides and contains several inverted repeats. Since the copy number of MER1 elements seems to be much smaller than that of Alu and L1 repeats, MER1 elements may provide useful landmarks marks for human genome mapping.  相似文献   

7.
We have examined the organization of the repeated and single copy DNA sequences in the genomes of two insects, the honeybee (Apis mellifera) and the housefly (Musca domestica). Analysis of the reassociation kinetics of honeybee DNA fragments 330 and 2,200 nucleotides long shows that approximately 90% of both size fragments is composed entirely of non-repeated sequences. Thus honeybee DNA contains few or no repeated sequences interspersed with nonrepeated sequences at a distance of less than a few thousand nucleotides. On the other hand, the reassociation kinetics of housefly DNA fragments 250 and 2,000 nucleotides long indicates that less than 15% of the longer fragments are composed entirely of single copy sequences. A large fraction of the housefly DNA therefore contains repeated sequences spaced less than a few thousand nucleotides apart. Reassociated repetitive DNA from the housefly was treated with S1 nuclease and sized on agarose A-50. The S1 resistant sequences have a bimodal distribution of lengths. Thirty-three percent is greater than 1,500 nucleotide pairs, and 67% has an average size about 300 nucleotide pairs. The genome of the housefly appears to have at least 70% of its DNA arranged as short repeats interspersed with single copy sequences in a pattern qualitatively similar to that of most eukaryotic genomes.  相似文献   

8.
Repetitive DNA sequences in the human corticotropin-beta-lipotropin precursor gene region have been studied by blot hybridization analysis and DNA sequencing. Six repetitive sequences are present in this gene region; five of them are Alu family members with an approximate length of 300 base pairs, and the other consists of a portion of an Alu family sequence. Two of these Alu family members are located in the 5'-flanking region of the gene, and the remaining four within the intervening sequences. These Alu family sequences constitute inverted repeats in the intervening sequences as well as in the 5'-flanking region of the gene.  相似文献   

9.
Chromosome-specific subfamilies within human alphoid repetitive DNA   总被引:21,自引:0,他引:21  
Nucleotide sequence data of about 20 X 10(3) base-pairs of the human tandemly repeated alphoid DNA are presented. The DNA sequences were determined from 45 clones containing EcoRI fragments of alphoid DNA isolated from total genomic DNA. Thirty of the clones contained a complete 340 base-pair dimer unit of the repeat. The remaining clones contained alphoid DNA with fragment lengths of 311, 296, 232, 170 and 108 base-pairs. The sequences obtained were compared with an average alphoid DNA sequence determined by Wu & Manuelidis (1980). The divergences ranged from 0.6 to 24.6% nucleotide changes for the first monomer and from 0 to 17.8% for the second monomer of the repeat. On the basis of identical nucleotide changes at corresponding positions, the individual repeat units could be shown to belong to one of several distinct subfamilies. The number of nucleotide changes defining a subfamily generally constitutes the majority of nucleotide changes found in a member of that subfamily. From an evaluation of the proportion of the total amount of alphoid DNA, which is represented by the clones studied, it is estimated that the number of subfamilies of this repeat may be equal to or exceed the number of chromosomes. The expected presence of only one or a few distinct subfamilies on individual chromosomes is supported by the study, also presented, of the nucleotide sequence of 17 cloned fragments of alphoid repetitive DNA from chromosome 7. These chromosome-specific repeats all contain the characteristic pattern of 36 common nucleotide changes that defines one of the subfamilies described. A unique restriction endonuclease (NlaIII) cleavage site present in this subfamily may be useful as a genetic marker of this chromosome. A family member of the interspersed Alu repetitive DNA was also isolated and sequenced. This Alu repeat has been inserted into the human alphoid repetitive DNA, in the same way as the insertion of an Alu repeat into the African green monkey alphoid DNA.  相似文献   

10.
We have investigated the organisation, nucleotide sequence, and chromosomal distribution of a tandemly repeated, satellite DNA from Allium cepa (Liliaceae). The satellite, which constitutes about 4% of the A. cepa genome, may be resolved from main-band DNA in antibiotic-CsCl density gradients, and has a repeat length of about 375 base pairs (bp). A cloned member of the repeat family hybridises exclusively to chromosome telomeres and has a non-random distribution in interphase nuclei. We present the nucleotide sequences of three repeats, which differ at a large number of positions. In addition to arrays made up of 375-bp repeats, homologous sequences are found in units with a greater repeat length. This divergence between repeats reflects the heterogeneity of the satellite determined using other criteria. Possible constraints on the interchromosomal exchange of repeated sequences are discussed.  相似文献   

11.
A cloned EcoRI fragment containing human 18 S rRNA gene sequences was used to screen a gene library to obtain a set of 8 overlapping cloned DNA segments extending into the non-transcribed spacer region of the human ribosomal RNA gene cluster. 19.4 kb of the approx. 43-kb rDNA repeat was obtained in cloned form and mapped with restriction endonucleases. None of the clones obtained extended into 28 S rRNA sequences. A 7-kb region of non-transcribed spacer DNA shared in common between five independent clones was subjected to comparative restriction digests. It was estimated that sequences among the five different spacer isolated varied by not more than 1.0%, if all the observed differences are assumed due to point mutation. HaeII-restriction fragments from within this same 7-kb region contain sequences carried not only within the tandem repeats of the gene cluster but interspersed elsewhere in the genome. Some of these sequences correspond to the Alu family of highly repeated interspersed sequences.  相似文献   

12.
Summary The genomic organization and chromosomal localization of a cloned 0.79-kb highly repeated DNA fragment, H-115, isolated from Aedes albopictus has been examined. The cloned fragment is a part of a larger unit of 1.86 kb that is tandemly repeated in the Ae. albopictus genome. The H-115 family of sequences are located at the intercalary position on chromosome 1 in Ae. albopictus. Similar patterns of in situ and Southern blot hybridization results are obtained in Ae. aegypti, Ae. seatoi, Ae. flavopictus, Ae. polynesiensis, Ae. Alcasidi, and Ae. katherinensis. The H-115 sequences are widely conserved in Culicidae and are found in Haemagogus equinus, Tripteroides bambusa, and Anopheles quadrimaculatus by hybridization under high stringency conditions. The H-115 sequences are also tandemly repeated in Hg. equinus with a monomer unit of 1.86 kb and in Tp. bambusa with a slightly diverged monomer unit of 1.90kb. In Anopheles quadrimaculatus, the H-115 sequences are dispersed throughout the genome. Partial sequence analysis shows that the H-115 insert is 62% AT and contains two perfect inverted repeats and numerous perfect direct repeats. The occurrence of inverted repeats with potential to form intrastrand palindromic structure suggests that the H-115 family of sequences may be involved in chromatin condensation.  相似文献   

13.
The Alu elements are conserved ~300 nucleotide long repeat sequences that belong to the SINE family of retrotransposons found abundantly in primate genomes. Although the vast majority of Alu elements appear to be genetically inert, it has been tempting to consider the great majority of them as â€?junk DNA. However, a growing line of evidence suggests that transcribed Alu RNAs are in fact functionally involved in a number of diverse biological processes. Pairs of inverted Alu repeats in RNA can form duplex structures that lead to A-to-I editing by the ADAR enzymes. In this review we discuss the possible biological effects of Alu editing, with particular focus on the regulation of gene expression by inverted Alu repeats in the 3a€?-UTR regions of mRNAs.  相似文献   

14.
Deletions in the region located between the STS markers D13S1168 and D13S25 on chromosome 13 are the most frequent genomic changes in patients with B-cell chronic lymphocytic leukemia (B-CLL). After sequencing of this region, two novel candidate genes were identified: C13orf1(chromosome 13 open reading frame 1) and PLCC (putative large CLL candidate). Analysis of the repeat distribution revealed two subregions differing in composition of repetitious DNA and gene organization. The interval D13S1168–D13S319 contains 131 Alu repeats accounting for 24.8% of its length, whereas the interval GCT16C05–D13S25, which is no more than 180 kb away from the former one is extremely poor in Alu repeats (4.1% of the total length). Both intervals contain almost the same amount of the LINE-type repeats L1 and L2 (20.3 and 21.24%, respectively). In the chromosomal region studied, 29 Alu repeats were found to belong to the evolutionary young subfamily Y, which is still capable of amplifying. A considerable proportion of repeats of this type with similar nucleotide sequences may contribute to the recombinational activity of the chromosomal region 13q14.3, which is responsible for its rearrangements in some tumors in humans.  相似文献   

15.
The dominant family of interspersed repetitive DNA sequences in the human genome has been termed the Alu family. We have found that more than 75% of the lambda phage in a recombinant library representing an African green monkey genome hybridize with a human Alu sequence under stringent conditions. A group of clones selected from the monkey library with probes other than the Alu sequence were analyzed for the presence and distribution of Alu family sequences. The analyses confirm the abundance of Alu sequences and demonstrate that more than one repeat unit is present in some phages. In the clones studied, the Alu units are separated by an average of 8 kilobase pairs of unrelated sequences. The nucleotide sequence of one monkey Alu sequence is reported and shown to resemble the human Alu sequences closely. Hence, the sequence, dispersion pattern, and copy number of the Alu family members are very similar in the African green monkey and human genomes. Among the clones investigated were two that contain segments of the satellite DNA term alpha-component joined to non alpha-component DNA. The experiments indicate that in the monkey genome Alu sequences can occur close to regions of alpha-component DNA.  相似文献   

16.
Canrep is a heterogeneous, tandemly repeated, 176 bp nucleotide sequence that contains a single Hind III site and is present in high copy numbers in the genomes of many Brassica species. Complete clusters of repeats of this DNA were cloned from the nuclear DNA of Brassica juncea. Restriction-fragment dimers and higher multimers of the 176 bp sequence have arisen by mutations within the Hind III recognition sequence. Adjacent repeats from within the same cluster usually have different nucleotide sequences with features indicating that diversity is generated by a mechanism that causes site-specific base substitutions. While most of the units of canrep DNA are clustered in long arrays of tandem repeats, some are dispersed throughout the genome as isolated copies or in small clusters. Regardless of the size of the arrays, each cluster begins and ends with a variable-length, truncated repeat and is flanked by inverted copies of the sequence 5-ATCTCAT3-,which is not part of the basic sequence of the canrep family of DNAs. Furthermore, some clusters are located close to nucleotide sequences related to those of known plant transposons. Thus, canrep elements may be dispersed by transposition. There are two distinct subfamilies of canrep sequences in B. juncea, and one of these is closely related to one of the two subfamilies of this type of DNA from B. napus, indicating that it originated from B. campestris, the common diploid ancestor of both amphidiploid species. Neither the repetitive DNA nor nucleotide sequences flanking canrep clusters are transcribed in seedlings, suggesting that even small arrays of repeats are located in heterochromatic regions and might be involved in chromatin condensation and/or chromosome segregation.  相似文献   

17.
The 5-methylcytosine content of highly repeated sequences in human DNA.   总被引:10,自引:10,他引:10       下载免费PDF全文
Previously, we found much tissue- or cell-specificity in the levels of 5-methylcytosine (m5C) in the total human genome as well as in DNA fractions resolved by reassociation kinetics. We now report that there were even greater differences in the m5C content of the highly repeated, tandem EcoRI family of DNA sequences from different human organs or cell populations. The ratio of m5C levels in this DNA fraction from brain, placenta, and sperm was 2.0:1.2:1.0. At a HhaI site in this repeat family, sperm DNA was 5-10 fold less methylated than somatic DNAs. In contrast, the highly repeated Alu family, which is approximately 5% of the genome, had almost the same high m5C content in brain and placenta despite marked tissue-specific differences in m5C levels of the single copy sequences with which these repeats are interspersed. These data show that very different degrees of change in methylation levels of various highly repeated DNA sequences accompany differentiation.  相似文献   

18.
Genomic organization of human 5 S rDNA and sequence of one tandem repeat   总被引:9,自引:0,他引:9  
R D Little  D C Braaten 《Genomics》1989,4(3):376-383
An organization of human 5 S rDNA repeats is inferred from Southern analyses of restriction digests of genomic DNA fractionated by pulsed-field and conventional gel electrophoreses. A single unit of 2.2 kb is repeated approximately 90 times within a 200-kb fragment (defined by enzymes that do not cleave within individual units, i.e., EcoR1, BglII, HindIII, and PvuII); a comparable number of 5 S sequences are scattered elsewhere in the genome. A lambda clone containing six complete 5 S repeats was obtained from a human placental DNA library. One repeat contains 2231 bp and includes poly(dG-dT).(dC-dA), tracts of polypyrimidine, and an Alu sequence in the spacer region. Also, 5-S-hybridizing clones, containing DNA inserts with an average size of 250 kb, have been obtained as yeast artificial chromosomes. Thus far, four clones have been partially characterized and shown to be 5 S sequences from loci separate from the tandem repeat units.  相似文献   

19.
The phi-screen, a method of phylogenetic screening, can be employed to detect repetitive sequence families that differentially hybridize between closely related species. Such differences may involve sequence divergence or variations in copy number, including total presence versus absence of a family of repeated DNA. We present the results of a phi-screen comparing the human genome to that of the prosimian, Galago crassicaudatus. Three human repetitive families that are divergent or not present in galago have been detected. One of these families is described in detail; it is similar among the anthropoids but is present in a lower copy number and/or divergent form in prosimians. The family is clearly related to the transposon-like human element (THE) described by Paulson et al. (1985). THEs have long terminal repeats reminiscent of retroviruses but are unique in that they have no sequence similarity to known mammalian retroviruses. The sequence of a solo long terminal repeat, found unassociated with THE internal sequence, is presented. This family member, THE p2, is bordered by a 5-bp target-site repeat and is interrupted by the insertion of an Alu element. A solo THE element sequenced by Wiginton et al. (1986) contains an insertion of Alu at precisely the same position as does THE p2.   相似文献   

20.
HSAG-1 is a cloned member of a heterogeneous middle repetitive family of genetic elements which is capable of eliciting a leukemia-related surface antigen detected with a monoclonal antibody after DNA transformation of mouse cells. HSAG-1 was originally isolated from a Chinese hamster-human leukemia hybrid cell gene library both by sib-selection for antigen producing activity and by hybridization with labelled human genomic human DNA. We show here that the human labelled site is at the right hand end of the insert, while the antigen-eliciting portion is included in a 1450 bp fragment at the left hand end of the insert. We also present the complete nucleotide sequence of the 3369 bp insert. The sequence contains 12 elements which bear a significant resemblance to accepted consensus sequences for Alu repetitive elements. The right hand end contains adjacent elements with close sequence similarity to portions of the human and hamster type I and type II Alu consensus sequences. All of the other Alu-related elements have diverged relative to the Alu consensus sequences by additions, long deletions and substitutions. The left hand portion of the insert which has the antigen-producing activity contains four of these diverged elements representing a relatively high proportion (26%) of the nucleotide sequence. The sequence is thus consistent with our previous observations of a repetitive family with biological function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号