首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Src homology 2 (SH2) domains exist in many intracellular proteins and have well characterized roles in signal transduction. SH2 domains bind to phosphotyrosine (Tyr(P))-containing proteins. Although tyrosine phosphorylation is essential for protein-SH2 domain interactions, the binding specificity also derives from sequences C-terminal to the Tyr(P) residue. The high affinity and specificity of this interaction is critical for precluding aberrant cross-talk between signaling pathways. The p85alpha subunit of phosphoinositide 3-kinase (PI 3-kinase) contains two SH2 domains, and it has been proposed that in competition with Tyr(P) binding they may also mediate membrane attachment via interactions with phosphoinositide products of PI 3-kinase. We used nuclear magnetic resonance spectroscopy and biosensor experiments to investigate interactions between the p85alpha SH2 domains and phosphoinositides or inositol polyphosphates. We reported previously a similar approach when demonstrating that some pleckstrin homology domains show binding specificity for distinct phosphoinositides (Salim, K., Bottomley, M. J., Querfurth, E., Zvelebil, M. J., Gout, I., Scaife, R., Margolis, R. L., Gigg, R., Smith, C. I., Driscoll, P. C., Waterfield, M. D., and Panayotou, G. (1996) EMBO J. 15, 6241-6250). However, neither SH2 domain exhibited binding specificity for phosphoinositides in phospholipid bilayers. We show that the p85alpha SH2 domain Tyr(P) binding pockets indiscriminately accommodate phosphoinositides and inositol polyphosphates. Binding of the SH2 domains to Tyr(P) peptides was only poorly competed for by phosphoinositides or inositol polyphosphates. We conclude that these ligands do not bind p85alpha SH2 domains with high affinity or specificity. Moreover, we observed that although wortmannin blocks PI 3-kinase activity in vivo, it does not affect the ability of tyrosine-phosphorylated proteins to bind to p85alpha. Consequently phosphoinositide products of PI 3-kinase are unlikely to regulate signaling through p85alpha SH2 domains.  相似文献   

2.
The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors.  相似文献   

3.
The regulatory subunit of phosphatidylinositol 3-kinase, p85, contains a number of well defined domains involved in protein-protein interactions, including an SH3 domain and two SH2 domains. In order to investigate in detail the nature of the interactions of these domains with each other and with other binding partners, a series of deletion and point mutants was constructed, and their binding characteristics and apparent molecular masses under native conditions were analyzed. The SH3 domain and the first proline-rich motif bound each other, and variants of p85 containing the SH3 and BH domains and the first proline-rich motif were dimeric. Analysis of the apparent molecular mass of the deletion mutants indicated that each of these domains contributed residues to the dimerization interface, and competition experiments revealed that there were intermolecular SH3 domain-proline-rich motif interactions and BH-BH domain interactions mediating dimerization of p85alpha both in vitro and in vivo. Binding of SH2 domain ligands did not affect the dimeric state of p85alpha. Recently, roles for the p85 subunit have been postulated that do not involve the catalytic subunit, and if p85 exists on its own we propose that it would be dimeric.  相似文献   

4.
We have investigated the role of the SH3 and BH domains in the function of the p85α adapter/regulatory subunit of PI 3-kinase. In these studies epitope-tagged adapter subunit constructs containing wild-type p85α, p85α lacking the SH3 domain (ΔSH3-p85α), or p85α lacking the Rac-GAP/BCR homology (BH) domain (ΔBH-p85α) were coexpressed with either the p110α or p110β PI 3-kinase catalytic subunit in HEK293 cells. The deletion of either BH or SH3 domains had no effect on the intrinsic activity of the PI 3-kinase heterodimers. However, the ability of activated Rac to stimulate PI 3-kinase activity was only observed in heterodimers containing the p85α and ΔSH3-p85α, indicating that rac binding to the BH domain is responsible for rac-induced stimulation of class Ia PI 3-kinase. We also investigated the effect of SH3 and BH domain deletion on the ability of insulin to induce recruitment of these constructs into phosphotyrosine-containing signaling complexes. We find that p85α expressed alone is poorly recruited into such signaling complexes. However, when coexpressed with catalytic subunit, the p85α adapter subunit is recruited to an extent similar to that of endogenous p85α. Maximal insulin stimulation caused a similar level of recruitment of p85α, ΔSH3-p85α, and ΔBH-p85α to signaling complexes when these adapter subunits were coexpressed with catalytic subunit. However, there was a higher level of basal association of the ΔSH3-p85α and ΔBH-p85α with tyrosine-phosphorylated proteins, meaning that the insulin-induced fold increase in recruitment was lower for these forms of the adapter. These results indicate that the N-terminal domains of p85α play a critical role in the way the adapter subunit responds to growth factor stimulation.  相似文献   

5.
Purified bovine brain phosphatidylinositol 3-kinase (Pl3-kinase) is composed of 85 kd and 110 kd subunits. The 85 kd subunit (p85 alpha) lacks Pl3-kinase activity and acts as an adaptor, coupling the 110 kd subunit (p110) to activated protein tyrosine kinases. Here the characterization of the p110 subunit is presented. cDNA cloning reveals p110 to be a 1068 aa protein related to Vps34p, a S. cerevisiae protein involved in the sorting of proteins to the vacuole. p110 expressed in insect cells possesses Pl3-kinase activity and associates with p85 alpha into an active p85 alpha-p110 complex that binds the activated colony-stimulating factor 1 receptor. p110 expressed in COS-1 cells is catalytically active only when complexed with p85 alpha.  相似文献   

6.
Upon stimulation by its ligand, the platelet-derived growth factor (PDGF) receptor associates with the 85-kDa subunit of phosphatidylinositol (PI) 3-kinase. The 85-kDa protein (p85) contains two Src homology 2 (SH2) domains and one SH3 domain. To define the part of p85 that interacts with the PDGF receptor, a series of truncated p85 mutants was analyzed for association with immobilized PDGF receptor in vitro. We found that a fragment of p85 that contains a single Src homology domain, the C-terminal SH2 domain (SH2-C), was sufficient for directing the high-affinity interaction with the receptor. Half-maximal binding of SH2-C to the receptor was observed at an SH2-C concentration of 0.06 nM. SH2-C, like full-length p85, was able to distinguish between wild-type PDGF receptor and a mutant receptor lacking the PI 3-kinase binding site. An excess of SH2-C blocked binding of full-length p85 and PI 3-kinase to the receptor but did not interfere with the binding of two other SH2-containing proteins, phospholipase C-gamma and GTPase-activating protein. These results demonstrate that a region of p85 containing a single SH2 domain accounts both for the high affinity and specificity of binding of PI 3-kinase to the PDGF receptor.  相似文献   

7.
We have identified two novel alternatively spliced forms of the p85alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase by expression screening of a human skeletal muscle library with phosphorylated baculovirus- produced human insulin receptor substrate 1. One form is identical to p85alpha throughout the region which encodes both Src homology 2 (SH2) domains and the inter-SH2 domain/p110 binding region but diverges in sequence from p85alpha on the 5' side of nucleotide 953, where the entire break point cluster gene and SH3 regions are replaced by a unique 34-amino-acid N terminus. This form has an estimated molecular mass of approximately 53 kDa and has been termed p85/AS53. The second form is identical to p85 and p85/AS53 except for a 24-nucleotide insert between the SH2 domains that results in a replacement of aspartic acid 605 with nine amino acids, adding two potential serine phosphorylation sites in the vicinity of the known serine autophosphorylation site (Ser-608). Northern (RNA) analyses reveal a wide tissue distribution of p85alpha, whereas p85/AS53 is dominant in skeletal muscle and brain, and the insert isoforms are restricted to cardiac muscle and skeletal muscle. Western blot (immunoblot) analyses using an anti-p85 polyclonal antibody and a specific anti-p85/AS53 antibody confirmed the tissue distribution of p85/AS53 protein and indicate a approximately 7-fold higher expression of p85/AS53 protein than of p85 in skeletal muscle. Both p85 and p85/AS53 bind to p110 in coprecipitation experiments, but p85alpha itself appears to have preferential binding to insulin receptor substrate 1 following insulin stimulation. These data indicate that the gene for the p85alpha regulatory subunit of PI 3-kinase can undergo tissue-specific alternative splicing. Two novel splice variants of the regulatory subunit of PI 3-kinase are present in skeletal muscle, cardiac muscle, and brain; these variants may have important functional differences in activity and may play a role in tissue-specific signals such as insulin-stimulated glucose transport or control of neurotransmitter secretion or action.  相似文献   

8.
In this study, we examined the molecular mechanism of erythropoietin-initiated signal transduction of erythroid differentiation through Src and phosphatidylinositol 3-kinase (PI3-kinase). Antisense oligonucleotides against src but not lyn inhibited the formation of erythropoietin-dependent colonies derived from human bone marrow cells and erythropoietin-induced differentiation of K562 human erythroleukaemia cells. Antisense p85alpha oligonucleotide or LY294002, a selective inhibitor of PI3-kinase, independently inhibited the formation of erythropoietin-dependent colonies. In K562 cells, Src associated with PI3-kinase in response to erythropoietin. Antisense src RNA expression in K562 cells inhibited the erythropoietin-induced activation of PI3-kinase and its association with erythropoietin receptor. PP1, a selective inhibitor of the Src family, reduced erythropoietin-induced tyrosine phosphorylation of erythropoietin receptor and its association with PI3-kinase in F-36P human erythroleukaemia cells. The coexpression experiments and in vitro kinase assay further demonstrated that Src directly tyrosine-phosphorylated erythropoietin receptor, and associated with PI3-kinase. In vitro binding experiments proved that glutathione S-transferase-p85alpha N- or C-terminal SH2 domains independently bound to erythropoietin receptor, which was tyrosine-phosphorylated by Src. Taken together, Src transduces the erythropoietin-induced erythroid differentiation signals by regulating PI3-kinase activity.  相似文献   

9.
After engagement of the B cell receptor for antigen, the Syk protein-tyrosine kinase becomes phosphorylated on multiple tyrosines, some of which serve as docking sites for downstream effectors with SH2 or other phosphotyrosine binding domains. The most frequently identified binding partner for catalytically active Syk identified in a yeast two-hybrid screen was the p85 regulatory subunit of phosphoinositide 3-kinase. The C-terminal SH2 domain of p85 was sufficient for mediating an interaction with tyrosine-phosphorylated Syk. Interestingly, this domain interacted with Syk at phosphotyrosine 317, a site phosphorylated in trans by the Src family kinase, Lyn, and identified previously as a binding site for c-Cbl. This site interacted preferentially with the p85 C-terminal SH2 domain compared with the c-Cbl tyrosine kinase binding domain. Molecular modeling studies showed a good fit between the p85 SH2 domain and a peptide containing phosphotyrosine 317. Tyr-317 was found to be essential for Syk to support phagocytosis mediated by FcgammaRIIA receptors expressed in a heterologous system. These studies establish a new type of p85 binding site that can exist on proteins that serve as substrates for Src family kinases and provide a molecular explanation for observations on direct interactions between Syk and phosphoinositide 3-kinase.  相似文献   

10.
We have used a transient expression system and mutant platelet-derived growth factor (PDGF) receptors to study the binding specificities of the Src homology 2 (SH2) regions of the Ras GTPase-activator protein (GAP) and the p85 alpha subunit of phosphatidylinositol 3-kinase (PI3 kinase). A number of fusion proteins, each tagged with an epitope allowing recognition by a monoclonal antibody, were expressed at levels comparable to those of endogenous GAP. Fusion proteins containing the central SH2-SH3-SH2 region of GAP or the C-terminal region of p85 alpha, which includes two SH2 domains, bound to PDGF receptors in response to PDGF stimulation. Both fusion proteins showed the same requirements for tyrosine phosphorylation sites in the PDGF receptor as the full-length proteins from which they were derived, i.e., binding of the GAP fusion protein was reduced by mutation of Tyr-771, and binding of the p85 fusion protein was reduced by mutation of Tyr-740, Tyr-751, or both residues. Fusion proteins containing single SH2 domains from either GAP or p85 alpha did not bind detectably to PDGF receptors in this system, suggesting that two SH2 domains in a single polypeptide cooperate to raise the affinity of binding. The sequence specificities of individual SH2 domains were deduced from the binding properties of fusion proteins containing one SH2 domain from GAP and another from p85. The results suggest that the C-terminal GAP SH2 domain specifies binding to Tyr-771, the C-terminal p85 alpha SH2 domain binds to either Tyr-740 or Tyr-751, and each protein's N-terminal SH2 domain binds to unidentified phosphorylation sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Phosphoinositide (PI) 3-kinase is a key mediator of insulin-dependent metabolic actions, including stimulation of glucose transport and glycogen synthesis. The gene for the p85alpha regulatory subunit yields three splicing variants, p85alpha, AS53/p55alpha, and p50alpha. All three have (i) a C-terminal structure consisting of two Src homology 2 domains flanking the p110 catalytic subunit-binding domain and (ii) a unique N-terminal region of 304, 34, and 6 amino acids, respectively. To determine if these regulatory subunits differ in their effects on enzyme activity and signal transduction from insulin receptor substrate (IRS) proteins under physiological conditions, we expressed each regulatory subunit in fully differentiated L6 myotubes using adenovirus-mediated gene transfer with or without coexpression of the p110alpha catalytic subunit. PI 3-kinase activity associated with p50alpha was greater than that associated with p85alpha or AS53. Increasing the level of p85alpha or AS53, but not p50alpha, inhibited both phosphotyrosine-associated and p110-associated PI 3-kinase activities. Expression of a p85alpha mutant lacking the p110-binding site (Deltap85) also inhibited phosphotyrosine-associated PI 3-kinase activity but not p110-associated activity. Insulin stimulation of two kinases downstream from PI-3 kinase, Akt and p70 S6 kinase (p70(S6K)), was decreased in cells expressing p85alpha or AS53 but not in cells expressing p50alpha. Similar inhibition of PI 3-kinase, Akt, and p70(S6K) was observed, even when p110alpha was coexpressed with p85alpha or AS53. Expression of p110alpha alone dramatically increased glucose transport but decreased glycogen synthase activity. This effect was reduced when p110alpha was coexpressed with any of the three regulatory subunits. Thus, the three different isoforms of regulatory subunit can relay the signal from IRS proteins to the p110 catalytic subunit with different efficiencies. They also negatively modulate the PI 3-kinase catalytic activity but to different extents, dependent on the unique N-terminal structure of each isoform. These data also suggest the existence of a mechanism by which regulatory subunits modulate the PI 3-kinase-mediated signals, independent of the kinase activity, possibly through subcellular localization of the catalytic subunit or interaction with additional signaling molecules.  相似文献   

12.
Phosphatidylinositol (PI) 3-kinase is a heterodimer consisting of an 85-kDa subunit (p85) and 110-kDa subunit (p110). The 85-kDa noncatalytic subunit, which contains two Src homology 2 (SH2) domains, one SH3 domain, and a domain homologous to the carboxy terminus of the breakpoint cluster region gene product, is known to mediate the association of the PI 3-kinase complex with activated growth factor receptors. We previously demonstrated that the C-terminal SH2 domain of p85 is responsible for the interaction of PI 3-kinase with phosphorylated platelet-derived growth factor receptor. To define the region in p85 that directs the complex formation with the PI 3-kinase catalytic subunit, a series of truncated p85 mutants was analyzed for association with p110 in vivo. We found that a fragment of p85 containing the region between the two SH2 domains was sufficient to promote the interaction with p110 in vivo. The complex between the fragment of p85 and p110 had PI 3-kinase activity that was comparable in magnitude to the activity of p110 associated with full-length p85. The binding with p110 was abolished when this domain in p85 was disrupted. These results identify a novel structural and functional element that is responsible for localizing the catalytic subunit of PI 3-kinase.  相似文献   

13.
Ruk/CIN85/SETA/CD2BP3 and CD2AP/CMS/METS-1 comprise a new family of proteins involved in such fundamental processes as clustering of receptors and rearrangement of the cytoskeleton in regions of specialised cell-cell contacts, ligand-activated internalisation and targeting to lysosome degradation pathway of receptor tyrosine kinases, and apoptotic cell death. As typical adapter proteins they execute these functions by interacting with other signalling molecules via multiple protein-protein interaction interfaces: SH3 domains, Pro-rich region and coiled-coil domain. It has been previously demonstrated that Ruk is able to interact with the p85alpha regulatory subunit of PI 3-kinase and that the SH3 domain of p85alpha is required for this interaction. However, later observations hinted at a more complex mechanism than simple one-way SH3-Pro-rich interaction. Because interaction with p85alpha was suggested to be important for pro-apoptotic activity of the long isoform of Ruk, Ruk(l)/CIN85, we carried out detailed studies of the mechanism of this interaction and demonstrated that multiple domains are involved; SH3 domains of Ruk are required and sufficient for efficient interaction with full-length p85alpha but the SH3 domain of p85alpha is vital for their "activation" by ousting them from intramolecular interaction with the Pro-rich region of Ruk. Our data also suggest that homodimerisation via C-terminal coiled-coil domain affects both intra- and intermolecular interactions of Ruk proteins.  相似文献   

14.
SH2 (src-homology 2) domains define a newly recognized binding motif that mediates the physical association of target phosphotyrosyl proteins with downstream effector enzymes. An example of such phosphoprotein-effector coupling is provided by the association of phosphatidylinositol 3-kinase (PI 3-kinase) with specific phosphorylation sites within the PDGF receptor, the c-Src/polyoma virus middle T antigen complex and the insulin receptor substrate IRS-1. Notably, phosphoprotein association with the SH2 domains of p85 also stimulates an increase in catalytic activity of the PI 3-kinase p110 subunit, which can be mimicked by phosphopeptides corresponding to targeted phosphoprotein phosphorylation sites. To investigate how phosphoprotein binding to the p85 SH2 domain stimulates p110 catalytic activation, we have examined the differential effects of phosphotyrosine and PDGF receptor-, IRS-1- and c-Src-derived phosphopeptides on the conformation of an isolated SH2 domain of PI 3-kinase. Although phosphotyrosine and both activating and non-activating phosphopeptides bind to the SH2 domain, activating phosphopeptides bind with higher affinity and induce a qualitatively distinct conformational change as monitored by CD and NMR spectroscopy. Amide proton exchange and protease protection assays further show that high affinity, specific phosphopeptide binding induces non-local dynamic SH2 domain stabilization. Based on these findings we propose that specific phosphoprotein binding to the p85 subunit induces a change in SH2 domain structure which is transmitted to the p110 subunit and regulates enzymatic activity by an allosteric mechanism.  相似文献   

15.
Influenza A virus NS1 protein stimulates host-cell phosphoinositide 3-kinase (PI3K) signaling by binding to the p85beta regulatory subunit of PI3K. Here, in an attempt to establish a mechanism for this activation, we report further on the functional interaction between NS1 and p85beta. Complex formation was found to be independent of NS1 RNA binding activity and is mediated by the C-terminal effector domain of NS1. Intriguingly, the primary direct binding site for NS1 on p85beta is the inter-SH2 domain, a coiled-coil structure that acts as a scaffold for the p110 catalytic subunit of PI3K. In vitro kinase activity assays, together with protein binding competition studies, reveal that NS1 does not displace p110 from the inter-SH2 domain, and indicate that NS1 can form an active heterotrimeric complex with PI3K. In addition, it was established that residues at the C terminus of the inter-SH2 domain are essential for mediating the interaction between p85beta and NS1. Equivalent residues in p85alpha have previously been implicated in the basal inhibition of p110. However, such p85alpha residues were unable to substitute for those in p85beta with regards NS1 binding. Overall, these data suggest a model by which NS1 activates PI3K catalytic activity by masking a normal regulatory element specific to the p85beta inter-SH2 domain.  相似文献   

16.
Class IA phosphatidylinositol 3-kinase (PI 3-kinase), which is composed of a 110 kDa catalytic subunit and a regulatory subunit, plays a key role in most insulin dependent cellular responses. To date, five mammalian regulatory subunit isoforms have been identified, including two 85 kDa proteins (p85α and p85β), two 55 kDa proteins (p55γ and p55α), and one 50 kDa protein (p50α). In the present study, we overexpressed these recombinant proteins, tagged with green fluorescent proteins (GFP), in CHO-IR cells and investigated intracellular localizations in both the presence and the absence of insulin stimulation. Interestingly, in response to insulin, only p85α and p85β redistributed to isolated foci in the cells, while both were present throughout the cytoplasm in quiescent cells. In contrast, p55s accumulated in the perinuclear region irrespective of insulin stimulation, while p50α behaved similarly to control GFP. Immunofluorescent antibodies against endogenous IRS-1 revealed IRS-1 to be co-localized in the p85 foci in response to insulin. As both insulin receptors and p110α catalytic subunits were absent from these foci on immunofluorescence study, only p85 and IRS-1 were suggested to form a sequestration complex in response to insulin. To determine the domain responsible for IRS-1 complex formation, we prepared and overexpressed the SH3 domain deletion mutant of p85α in CHO-IR cells. This mutant failed to form foci, suggesting the SH3 domain of regulatory subunits to be responsible for formation of the p85-IRS-1 sequestration complex. In conclusion, our study revealed the SH3 domain of PI 3-kinase to play a critical role in intracellular localizations, including formation of foci with IRS-1 in response to insulin.  相似文献   

17.
Src homology 2 (SH2) domains mediate phosphotyrosine (pY)-dependent protein:protein interactions involved in signal transduction pathways. We have found that the SH2 domains of the 85-kDa alpha subunit (p85) of phosphatidylinositol 3-kinase (PI3 kinase) bind directly to the serine/threonine kinase A-Raf. In this report we show that the p85 SH2:A-Raf interaction is phosphorylation-independent. The affinity of the p85 C-SH2 domain for A-Raf and phosphopeptide pY751 was similar, raising the possibility that a p85:A-Raf complex may play a role in the coordinated regulation of the PI3 kinase and Raf-MAP kinase pathways. We further show that the p85 C-SH2 domain contains two distinct binding sites for A-Raf; one overlapping the phosphotyrosine-dependent binding site and the other a separate phosphorylation-independent site. This is the first evidence for a second binding site on an SH2 domain, distinct from the phosphotyrosine-binding pocket.  相似文献   

18.
Phosphatidylinositol 3-kinase (PI 3-kinase) has a regulatory 85 kDa adaptor subunit whose SH2 domains bind phosphotyrosine in specific recognition motifs, and a catalytic 110 kDa subunit. Mutagenesis of the p110 subunit, within a sequence motif common to both protein and lipid kinases, demonstrates a novel intrinsic protein kinase activity which phosphorylates the p85 subunit on serine at a stoichiometry of approximately 1 mol of phosphate per mol of p85. This protein-serine kinase activity is detectable only upon high affinity binding of the p110 subunit with its unique substrate, the p85 subunit. Tryptic phosphopeptide mapping revealed that the same major peptide was phosphorylated in p85 alpha both in vivo in cultured cells and in the purified recombinant enzyme. N-terminal sequence and mass analyses were used to identify Ser608 as the major phosphorylation site on p85 alpha. Phosphorylation of the p85 subunit at this serine causes an 80% decrease in PI 3-kinase activity, which can subsequently be reversed upon treatment with protein phosphatase 2A. These results have implications for the role of inter-subunit serine phosphorylation in the regulation of the PI 3-kinase in vivo.  相似文献   

19.
Phosphoinositide 3-kinase (PI 3-kinase) is a key signaling enzyme implicated in a variety of receptor-stimulated cell responses. Stimulation of receptors possessing (or coupling to) protein-tyrosine kinase activates heterodimeric PI 3-kinases, which consist of an 85-kDa regulatory subunit (p85) containing Src-homology 2 (SH2) domains and a 110-kDa catalytic subunit (p110 alpha or p110 beta). Thus, this form of PI 3-kinases could be activated in vitro by a phosphotyrosyl peptide containing a YMXM motif that binds to the SH2 domains of p85. Receptors coupling to alpha beta gamma-trimeric G proteins also stimulate the lipid kinase activity of a novel p110 gamma isoform, which is not associated with p85, and thereby is not activated by tyrosine kinase receptors. The activation of p110 gamma PI 3-kinase appears to be mediated through the beta gamma subunits of the G protein (G beta gamma). In addition, rat liver heterodimeric PI 3-kinases containing the p110 beta catalytic subunit are synergistically activated by the phosphotyrosyl peptide plus G beta gamma. Such enzymatic properties were also observed with a recombinant p110 beta/p85 alpha expressed in COS-7 cells. In contrast, another heterodimeric PI 3-kinase consisting of p110 alpha and p85 in the same rat liver, together with a recombinant p110 alpha/p85 alpha, was not activated by G beta gamma, though their activities were stimulated by the phosphotyrosyl peptide. Synergistic activation of PI 3-kinase by the stimulation of the two major receptor types was indeed observed in intact cells, such as chemotactic peptide (N-formyl-Met-Leu-Phe) plus insulin (or Fc gamma II) receptors in differentiated THP-1 and CHO cells and adenosine (A1) plus insulin receptors in rat adipocytes. Thus, PI 3-kinase isoforms consisting of p110 beta catalytic and SH2-containing (p85 or its related) regulatory subunits appeared to function as a 'cross-talk' enzyme between the two signal transduction pathways mediated through tyrosine kinase and G protein-coupled receptors.  相似文献   

20.
Insulin-like growth factor-I (IGF-I) stimulates the production of 3-inositides and markedly increases the phosphatidylinositol 3-kinase activity that is immunoprecipitated by anti-phosphotyrosine antibodies, a portion of which is also associated with the IGF-I receptor. In this study, recombinant p85, the regulatory subunit of phosphatidylinositol 3-kinase, and fusion proteins containing various subdomains were used to investigate the association of p85 with the IGF-I receptor and to demonstrate that p85 is a direct in vitro substrate of the IGF-I receptor kinase. Solubilized IGF-I receptor was immobilized on antireceptor antibody-agarose beads. Following in vitro receptor phosphorylation and incubation with cell lysate, immobilized receptor became associated with phosphatidylinositol 3-kinase activity and with protein bands with molecular masses of 85 and 110 kDa, which correspond to the known molecular masses of the subunits of phosphatidylinositol 3-kinase. These associations were inhibited by the addition of recombinant intact p85 or SH2-containing fusion proteins, but not by fusion proteins containing its SH3 domain or breakpoint cluster homology region. A fusion protein containing the SH2 domains of Ras GTPase-activating protein also inhibited the association of phosphatidylinositol 3-kinase activity with immobilized IGF-I receptor, although less effectively than p85, whereas a similar construct containing the SH2 domain of pp60src was without effect. When immobilized phosphorylated IGF-I receptor was incubated with intact p85 or the SH2-containing fusion proteins, it became associated with and phosphorylated these proteins. These results demonstrate that at least in vitro, a tight association occurs between phosphorylated IGF-I receptor and phosphatidylinositol 3-kinase, that the region of phosphatidylinositol 3-kinase that contains its SH2 domains is directly involved in this association, and that this region is a direct substrate for IGF-I receptor tyrosine kinase. Furthermore, these results suggest that Ras GTPase-activating protein can also interact with the IGF-I receptor and that different SH2 domain-containing proteins interact with the IGF-I receptor with widely differing affinities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号