首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The urinary excretion of seven aldehydes, acetone, coproporphyrin III and 8-hydroxy-2'-deoxyguanosine (8-OH-dG) as non-invasive biomarkers of oxidative damage was measured in rats treated with diquat or N-nitrosodimethylamine (NDMA), two compounds causing hepatic damage by different mechanisms. Furthermore, the effect of co-administration of the aldehyde dehydrogenase inhibitor, calcium carbimide (CC) on the urinary excretion of the aldehydes was determined. Slight hepatotoxicity was found at the end of the experiment after treatment with NDMA (0.5, 4 and 8 mg/kg at t = 0, 48 and 96 h, respectively) or diquat (6.8 and 13.6 mg/kg at t = 0 and 48 h, respectively). In diquat treated rats slight nephrotoxicity was also found. Urinary excretion of aldehydes, acetone and coproporphyrin III remained largely unchanged in rats treated with NDMA. In the rats treated with diquat, the urinary excretion of several aldehydes was several-fold increased. An increase was also found in the urinary excretion of 8-OH-dG after the second dose of diquat. Treatment of rats with CC did not significantly influence the urinary excretion of aldehydes in control and NDMA rats. However, in rats treated with diquat, CC caused a potentiating effect on the excretion of acetaldehyde, hexanal and malondialdehyde (MDA), indicating that oxidation of aldehydes to carbonylic acids by aldehyde dehydrogenases (ALDHs) might be an important route of metabolism of aldehydes. In conclusion, increased urinary excretion of various aldehydes, acetone, coproporphyrin III and 8-OH-dG was observed after administration of diquat, probably reflecting oxidative damage induced by this compound. No such increases were found after NDMA administration, which is consistent with a different toxicity mechanism for NDMA. Therefore, excretion of aldehydes, acetone, coproporphyrin III and 8-OH-dG might be used as easily accessible urinary biomarkers of free radical damage.  相似文献   

2.
The major purpose of this study was to determine whether acute or chronic Pb exposure would increase urinary excretion of zinc in the rat. Four groups of unanesthetized rats were given 0, 0.03, 0.3, or 3 mg Pb (as acetate) kg intravenously, and urinary excretion of zinc, sodium, and potassium was monitored for 6 h. Only at the highest dose was urinary Zn excretion significantly elevated; there were no significant changes in sodium and potassium excretion at any dose. Two other groups of rats were studied for 9 weeks in metabolism cages before and during administration of either 500 ppm Pb (as acetate) or equimolar Na acetate in the drinking water. Two days after Pb treatment and continuing through day 35, Zn excretion was elevated in the Pb-exposed animals; beyond this day, zinc excretion became similar in the two groups. The difference in Zn excretion was not the result of lower water intake by the Pb-treated animals. At sacrifice (70 days after starting Pb exposure), Pb-exposed animals had lower Zn content of the plasma and testis, but there was no difference in kidney Zn. Plasma renin activity was significantly higher in Pb-exposed animals. We conclude that chronic Pb exposure in rats can result in some degree of decreased tissue zinc, which is, at least in part, secondary to increased urinary losses of zinc.  相似文献   

3.
Recent work indicates that both nitric oxide and cyclooxygenase products play an important role in the renal alterations of liver cirrhosis, although the interactions between them have not been completely established. The purpose of this study was to assess the effect of simultaneous blockade of nitric oxide synthase and cyclooxygenase in rats with chronic bile duct ligation and in control, sham-operated rats. Compared with control rats, chronic bile duct ligation rats, 23-25 days after surgery, showed a decreased mean arterial pressure, natriuresis, and kaliuresis, without differences in glomerular filtration rate, and an increased urinary nitrite excretion. Nitric oxide synthesis inhibition by administration of N(G)-nitro-L-arginine methyl ester induced, in control rats, an increase in mean arterial pressure, without significant changes in natriuresis or glomerular filtration rate. In chronic bile duct ligation rats, N(G)-nitro-L-arginine methyl ester induced an increase in mean arterial pressure, natriuresis, and kaliuresis, together with a reduction in urinary nitrite excretion and an increase in prostaglandin E2 excretion. Cyclooxygenase inhibition with indomethacin induced in both experimental groups a marked inhibition in urinary prostaglandin E2 excretion without significant changes in Na+ or K+ excretion, and a significant increase in urinary nitrite excretion in control rats. N(G)-Nitro-L-arginine methyl ester in addition to indomethacin prevented the indomethacin-induced increase in nitrite excretion and dramatically reduced sodium excretion in both experimental groups. Thus, the present study suggests that both nitric oxide and cyclooxygenase products interact in the control of urinary sodium excretion and that each system is activated in the absence of the other one.  相似文献   

4.
Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) has been reported to serve as a sensitive biomarker of oxidative stress. We examined the effect of chronic blockade of nitric oxide (NO) on urinary excretion of 8-OHdG in rats. Two types of NO synthase inhibitor were used: N(G)-nitro-L-arginine methyl ester (L-NAME) as a non-selective inhibitor and aminoguanidine (AG) as a selective inhibitor of the inducible isoform. Oral administration of L-NAME (20, 50 and 80 mg/dl of drinking water), but not AG (400 mg/dl), for 4 weeks induced systemic hypertension and a significant reduction in urinary excretion of NO2-/NO3-. Rats treated with L-NAME also showed a significant increase in urinary 8-OHdG excretion compared with the control animals. The effects of L-NAME (50 mg/dl) on blood pressure and urinary excretion of NO2/NO3- and 8-OHdG were restored by a large dose of L-arginine (2.0 g/dl). Chronic AG administration did not significantly alter urinary 8-OHdG excretion. On combining all the data, there was a significant negative correlation between urinary NO2-/NO,- and 8-OHdG. These observations suggest the importance of constitutive NO synthase activity in the maintenance of oxidant buffering capacity in rats. Oral administration of L-NAME may serve as a model of hypertension due to chronic NO deficiency with increased oxidative stress.  相似文献   

5.
Anesthetized beagle dogs received increasing doses of continuous infusions of a 26-amino-acid synthetic atrial natriuretic factor (ANF). Urinary sodium excretion rose in a dose-dependent manner to a maximum level similar to that seen after hydrochlorothiazide administration. Mean arterial blood pressure decreased, but only modestly, and not in a dose-dependent fashion. Dogs chronically retaining NaCl secondary to constriction of the thoracic inferior vena cava showed only modestly enhanced natriuresis when infused with similar levels of ANF. When ANF was infused directly into the renal artery of anesthetized beagles, a dose-dependent natriuresis and calciuresis were observed with maximal fractional sodium excretion averaging approximately 8%. Although glomerular filtration tended to increase, the average dose-related changes were not significant. Cyclic GMP excretion was increased during intra-renal-arterial infusion of ANF. Excretion of cyclic GMP by both the infused and noninfused kidneys was equal, which suggests that urinary cyclic GMP was not nephrogenous but derived from the elevated circulating levels. These and other data from rats dissociate changes in urinary cyclic GMP excretion and sodium excretion.  相似文献   

6.
In order to obtain further information on the changes in liver lipids, either a basal or a lysine-sexcess diet was refed to previously starved rats or fed to previously non-starved rats. Liver lipid accumulation was observed in previously starved rats refed the lysine-excess diet for 7 days, but not in rats without previous starvation. The liver lipid did not accumulate with another 8 days’ feeding (15 days9 refeeding). The addition of methionine alone or in combination with threonine to the lysine-excess diet had no effect on the liver lipid level. The decrease in serum triacylglycerol in rats refed the lysine-excess diet was preceded by lipid accumulation in the liver. Urinary potassium during the initial two days increased with refeeding and feeding. Marked excretion of orotate was observed for 2 days from the initiation of refeeding of the lysine-excess diet and it then decreased. Thus, such a marked increase in the urinary excretion of orotate might be associated with the stimulation of orotate biosynthesis and with lipid accumulation in the liver.  相似文献   

7.
The urinary excretion of total N-tau-methylhistidine by the growing rat was measured to evaluate the effects of dietary protein and energy restriction on muscle protein turnover in vivo. 2. Young male rats (about 100 g initial wt.) were fed on one of three diets. Group I (controls) received an adequate 18% lactalbumin diet for 28 days, on which they sustained maximum growth. Group II (protein-depleted) was fed for 14 days on 0.5 lactalbumin diet, which caused loss of weight; this was followed by repletion for 14 days with the control diet. Group III (protein-energy restricted) received a 1% lactalbumin diet at one-half the food intake of group II for 14 days, and this was also followed by 14 days of repletion with the control diet. 3. The controls showed a progressive rise in the daily urinary output of N-tau-methylhistidine, which was proportionally slightly less rapid than the body-weight increase. 4. The protein-depleted group II showed a marked and progressive decrease in N-tau-methylhistidine excretion, which was proportionally greater than the fall in body weight; during repletion, N-tau-methylhistidine output rose in parallel with body-weight increase, but it did not reach the value attained by the control group. 5. Group III, restricted in both dietary protein and energy, showed an initial small increase in daily N-tau-methylhistidine output, which contrasted with the sharp loss of body weight during this period. After 11 days on this restricted diet, group III then underwent a decrease in N-tau-methylhistidine output, which persisted into the first 4 days of the repletion period, after which output of the methylated amino acid became the same as for group II. 6. Creatinine output, used as an additional metabolic measure of muscle metabolism, showed a fairly constant relationship to body weight in groups I and II during depletion and repletion. However, rats with protein-energy deficiency (group III) underwent a marked increase in output of creatinine per unit of body weight, which also persisited into the repletion period before it fell to more normal values relative to body weight. 7. Analysis of the N-tau-methylhistidine content of actin isolated from a group of protein-depleted rats revealed a small (5%) but significance (P less than 0.02) decrease relative to well-nourished controls. 8. Hence, the rate of muscle protein degradation, as indicated by changes in urinary N-tau-methylhistidine output, appears to respond sensitively and in opposite directions to insufficiency of protein of energy in the diet.  相似文献   

8.
Glucagon administered subcutaneously to rats for 10 days had no significant effect on liver phenylalanine hydroxylase activity, but induced liver dihydropteridine reductase more than twofold. In rats administered a phenylalanine load orally, glucagon treatment stimulated oxidation and depressed urinary phenylalanine excretion. These responses could not be related to an effect of glucagon on hepatic tyrosine-alpha-oxoglutarate aminotransferase activity. Even in rats with phenylalanine hydroxylase activity depressed to 50% of control values by p-chlorophenylalanine administration, glucagon treatment increased the phenylalanine-oxidation rate substantially. Although hepatic phenylalanine-pyruvate aminotransferase was increased tenfold in glucagon-treated rats, glucagon treatment did not increase urinary excretion of phenylalanine transamination products by rats given a phenylalanine load. Glucagon treatment did not affect phenylalanine uptake by the gut or liver, or the liver content of phenylalanine hydroxylase cofactor. It is suggested that dihydropteridine reductase is the rate-limiting enzyme in phenylalanine degradation in the rat, and that glucagon may regulate the rate of oxidative phenylalanine metabolism in vivo by promoting indirectly the maintenance of the phenylalanine hydroxylase cofactor in its active, reduced state.  相似文献   

9.
The day to day variation and the effects of oestrogen on the urinary excretion of thyroxine (T-4) were studied in euthyroid women and men. Serial urinary T-4 values over a period of 28 consecutive days were found to lie within relatively narrow limits except for a transient increase during menstruation in women. During oestrogen therapy urinary T-4 was unchanged, but an appreciable rise was seen after stopping oral ovulation inhibitors in women. A similar effect was seen in men after three days'' treatment with 20 μg/day of ethinyloestradiol. The increased urinary T-4 excretion on oestrogen withdrawal reached a maximum in one to three days. This response contrasted with that produced by phenytoin, a drug known to bind to thyroxine binding globulin, and which resulted in increased urinary T-4 excretion during the period that it was being administered.  相似文献   

10.

Background and Objectives

Sodium thiosulfate (STS) reduced calcium stone formation in both humans and genetic hypercalciuric stone forming (GHS) rats. We sought to measure urine chemistry changes resulting from STS administration in people.

Design, Setting, Participants & Measurements

STS was given to healthy and hypercalciuric stone forming adults. Five normal non-stone forming adults (mean age 33 years), and 5 people with idiopathic hypercalciuria and calcium kidney stones (mean age 66 years) participated. Two baseline 24-hour urine collections were performed on days 2 and 3 of 3 days of self-selected diets. Subjects then drank STS 10 mmol twice a day for 7 days and did urine collections while repeating the self-selected diet. Results were compared by non-parametric Wilcoxon signed rank test. The primary outcome was the resulting change in urine chemistry.

Results

STS administration did not cause a significant change in urinary calcium excretion in either group. In both groups, 24 hour urinary ammonium (P = 0.005) and sulfate excretion (P = 0.007) increased, and urinary pH fell (P = 0.005); citrate excretion fell (P<0.05) in hypercalciuric participants but not in non-stone formers. Among stone formers with hypercalciuria, 3 of 5 patients had measurement of serum HCO3 concentration after the STS period: it did not change. The net effect was an increase in supersaturation of uric acid, and no change in supersaturation of calcium oxalate or calcium phosphate.

Conclusions

The basis for studies demonstrating that STS prevented stones in rats and people was not reflected by the changes in urine chemistry reported here. Although serum HCO3 did not change, urine tests suggested an acid load in both non-stone forming and hypercalciuric stone-forming participants. The long term safety of STS needs to be determined before the drug can be tested in humans for long-term prevention of stone recurrence.  相似文献   

11.
We have determined the urinary 8-hydroxydeoxyguanosine (8-OHdG) levels of eight professional cyclists during a 4-day and a 3-week stage races. Monitoring of heart rates was used to establish zones corresponding to different intensities of exercise. The urinary 8-OHdG excretion, expressed by body weight, increased significantly in the first day or the first week of each race, respectively, and did not show further increases thereafter. Maximum 8-OHdG levels were reached in parallel to longer times spent at high intensities of exercise. Urinary excretion of creatinine increased with exercise, and changes in 8-OHdG levels were not detected when corrected by creatinine excretion. Serum glutathione concentrations did not change significantly at any point during exercise. We conclude that road cycling courses with an oxidative damage to DNA, which is sustained as long as the exercise is repeated. Both adaptation of antioxidant defenses and a decreased capacity to maintain a high intensity of effort may contribute to explain the absence of progressive increases in 8-OHdG excretion. The results of this study also confirm that the correction procedure using the amount of creatinine excreted should not be used when studying effects of exercise on urinary 8-OHdG.  相似文献   

12.
We have determined the urinary 8-hydroxydeoxyguanosine (8-OHdG) levels of eight professional cyclists during a 4-day and a 3-week stage races. Monitoring of heart rates was used to establish zones corresponding to different intensities of exercise. The urinary 8-OHdG excretion, expressed by body weight, increased significantly in the first day or the first week of each race, respectively, and did not show further increases thereafter. Maximum 8-OHdG levels were reached in parallel to longer times spent at high intensities of exercise. Urinary excretion of creatinine increased with exercise, and changes in 8-OHdG levels were not detected when corrected by creatinine excretion. Serum glutathione concentrations did not change significantly at any point during exercise. We conclude that road cycling courses with an oxidative damage to DNA, which is sustained as long as the exercise is repeated. Both adaptation of antioxidant defenses and a decreased capacity to maintain a high intensity of effort may contribute to explain the absence of progressive increases in 8-OHdG excretion. The results of this study also confirm that the correction procedure using the amount of creatinine excreted should not be used when studying effects of exercise on urinary 8-OHdG.  相似文献   

13.
This study was undertaken to examine changes in Zn and Cu homeostasis in the liver and kidney of rats caused by cadmium (Cd) or lipopolysaccharide (LPS) administration. Twenty-five male, 7- to 8-week-old Wistar rats were divided into five groups: saline only treatment, saline treatment and food deprivation, exposure to a single dose of Cd, exposure to LPS alone, and exposure to Cd + LPS. Changes in plasma nitrate concentrations and hepatic and renal Zn and Cu contents were measured together with urinary excretion rates for the metals and nitrate on 3 consecutive days: 24 h before treatment and 24 and 48 h after treatments. Cd exposure alone for 48 h caused a nearly 2-fold increase in plasma nitrate levels with no changes in urinary nitrate excretion whereas LPS treatment caused plasma nitrate levels to increase by 10-fold and urinary nitrate excretion to increase by 4-fold. Administration of LPS 24 h after Cd exposure caused a 10-fold increase in plasma nitrate concentrations and a 100-fold increase in urinary nitrate excretion compared to the rates prior to LPS administration. These results indicate a synergistic interaction between Cd and LPS toxicity. Cd exposure also caused a marked increase in hepatic Zn levels, but LPS did not cause any changes in hepatic Zn or Cu content. In sharp contrast, both Zn and Cu contents were decreased in the kidneys by 16 and 36% in animals exposed to Cd or LPS. A correlation analysis of measured variables reveals that renal Cu contents were inversely associated with plasma nitrate concentrations while urinary Cu excretion on day 3 showed a strong positive correlation with both urinary nitrate and Cd excretions on the same day. A linear regression analysis shows 20% of the variation in urinary Cu excretion was associated with urinary Cd excretion on the same day. It is concluded that reductions in renal Cu contents caused by Cd or LPS administration may be a result of Cd and NO displacement of Cu previously bound to metallothionein.  相似文献   

14.
Dawson R  Liu S  Jung B  Messina S  Eppler B 《Amino acids》2000,19(3-4):643-665
Summary. Taurine is present in high concentrations in mammalian tissues and has been implicated in cardiovascular control mechanisms. The aim of the present study was to evaluate the ability of taurine to attenuate salt-induced elevations in blood pressure and markers of damage to the kidney and cardiovascular system in stroke prone spontaneously hypertensive rats (SPSHR). Male SPSHR (6 weeks old) were placed on high salt diets that contained 1% (w/w) NaCl added to their normal chow for 84 days and then were switched to 3% added NaCl for the remaining 63 days of the study. SPSHR was given 1.5% taurine in the drinking water (n = 8), a taurine free diet (n = 8) or normal chow (n = 8). A final control group (n = 6) was not given high salt diets. High salt diets caused an acceleration in the development of hypertension in all groups. Taurine supplementation reduced ventricular hypertrophy and decreased urinary excretion of protein and creatinine. The taurine free diet did not alter serum or urinary excretion of taurine, but did result in elevated urinary nitrogen excretion, increased serum cholesterol levels, and impaired performance in a spatial learning task. Alterations in dietary taurine intake did not alter urinary or serum electrolytes (Na+, K+), but taurine supplementation did attenuate a rise in serum calcium seen with the high salt diets. Urinary excretion (μg/24 h) of epinephrine and dopamine was significantly reduced in SPSHR given 1% NaCl in the diet, but this effect was not seen in SPSHR on taurine free or supplemented diets. Taurine supplementation showed cardioprotective and renoprotective effects in SPSHR given high salt diets. Received April 12, 1999/Accepted September 13, 1999  相似文献   

15.
鲍佳音  包海鹰  杨树东  王辉 《菌物学报》2019,38(7):1173-1184
本文通过对佐剂性关节炎大鼠原发性和继发性足肿胀度的测量、全身关节炎指数评分、体重及体态变化、免疫脏器指数、炎性踝关节切片的形态以及血清中肿瘤坏死因子α、白细胞介素1β、白细胞介素6、前列腺素E2、一氧化氮和一氧化氮合成酶等指标来考察蜜环菌Armillaria mellea的5个不同提取物对佐剂性关节炎大鼠的影响及作用机理。结果表明,蜜环菌甲醇提取物对原发性和继发性足肿胀有明显的抑制;甲醇组能明显抑制佐剂性关节炎大鼠脾脏和胸腺萎缩,并能抑制血清中肿瘤坏死因子α、白细胞介素1β、白细胞介素6和前列腺素E2的分泌,抑制大鼠踝关节炎细胞的形成。因此蜜环菌提取物中甲醇提取物对佐剂性关节炎大鼠治疗效果最显著。  相似文献   

16.
The effect of in vivo lipid peroxidation on the excretion of immunoreactive prostaglandin E2 (PGE2) in the urine of rats was studied. Weanling, male Sprague-Dawley rats were fed a vitamin E-deficient diet containing 10% tocopherol-stripped corn oil (CO) or 5% cod liver oil (CLO) with or without 40 mg dl-alpha-tocopheryl acetate/kg. To induce a high, sustained level of lipid peroxidation, some rats were injected intraperitoneally with 100 mg of iron as iron dextran after 10 days of feeding. Iron overload stimulated in vivo lipid peroxidation in rats, as measured by the increase in expired ethane and pentane. Dietary vitamin E reversed this effect. Rats fed the CLO diet excreted 9.5-fold more urinary thiobarbituric acid-reactive substances (TBARS) than did rats fed the CO diet. Iron overload increased the excretion of TBARS in the urine of rats fed the CO diet, but not in urine of rats fed the CLO diet. Dietary vitamin E decreased TBARS in the urine of rats fed either the CO or the CLO diet. Iron overload decreased by 40% the urinary excretion of PGE2 by rats fed the CO diet, and dietary vitamin E did not reverse this effect. Iron overload had no statistically significant effect on urinary excretion of PGE2 by rats fed the CLO diet. A high level of lipid peroxidation occurred in iron-treated rats, as evidenced by an increase in alkane production and in TBARS in urine in this study, and by an increase in alkane production by slices of kidney from iron-treated rats in a previous study [V. C. Gavino, C. J. Dillard, and A. L. Tappel (1984) Arch. Biochem. Biophys. 233, 741-747]. Since PGE2 excretion in urine was not correlated with these effects, lipid peroxidation appears not to be a major factor in renal PGE2 flux.  相似文献   

17.
We examined the effect of adjuvant arthritis on the content of immunoreactive calcitonin gene-related peptide (iCGRP) in the dorsal root ganglia at L4-L6 levels and the spinal cord at a lumbar level in rats. Arthritis was induced by inoculating adjuvant into both hind-paws twice at a 10 day interval. In the arthritic rats 15 days after the first inoculation (day 15), the content of iCGRP was significantly increased in the dorsal root ganglia, with no change in the dorsal and ventral horns. The content in the dorsal root ganglia was still high on day 26 and had decreased by day 40. An intrathecal injection of colchicine (0.2 mg, 18 hr before killing) enhanced the increase of iCGRP in the dorsal root ganglia and decreased it in the dorsal horn of arthritic rats, although in noninoculated rats such treatment produced no significant changes in the content of iCGRP in both regions. The arthritis-induced increase in the content of iCGRP in the dorsal root ganglia was significantly reduced after treatment with the antiinflammatory analgesic, diclofenac sodium, in a dose of 3 mg/kg/day, PO for 10 days. Swelling and hyperalgesia in the hind-paw were depressed after such treatment. These results suggest that adjuvant arthritis with long-lasting inflammation with pain facilitates the turnover, especially biosynthesis, of CGRP in primary afferent neurons.  相似文献   

18.
Many constituents present in the human diet may inhibit endogenous formation of N-nitroso compounds (NOC). Studies with human volunteers showed inhibiting effects of intake of ascorbic acid and green tea consumption on nitrosation using the N-nitrosoproline test. The aim of the present study was to evaluate the effects of ascorbic acid and green tea on urinary excretion of carcinogenic N-nitrosodimethylamine (NDMA) and N-nitrosopiperidine (NPIP) in humans. Twenty-five healthy female volunteers consumed a fish meal rich in amines as nitrosatable precursors in combination with intake of nitrate-containing drinking water at the Acceptable Daily Intake level during 7 consecutive days. During 1 week before and after nitrate intake a diet low in nitrate was consumed. Using the same protocol, the effect of two different doses of ascorbic acid (250 mg and 1 g/day) and two different doses of green tea (2 g and 4 g/day) on formation of NDMA and NPIP was studied. Mean nitrate excretion in urine significantly increased from control (76+/-24) to 167+/-25 mg/24 h. Intake of nitrate and fish resulted in a significant increase in mean urinary excretion of NDMA compared with the control weeks: 871+/-430 and 640+/-277 ng/24 h during days 1-3 and 4-7, respectively, compared with 385+/-196 ng/24 h (p<0.0002). Excretion of NPIP in urine was not related to nitrate intake and composition of the diet. Intake of 250 mg and 1 g of ascorbic acid per day resulted in a significant decrease in urinary NDMA excretion during days 4-7 (p=0.0001), but not during days 1-3. Also, consumption of four cups of green tea per day (2 g) significantly decreased excretion of NDMA during days 4-7 (p=0.0035), but not during days 1-3. Surprisingly, consumption of eight cups of green tea per day (4 g) significantly increased NDMA excretion during days 4-7 (p=0.0001), again not during days 1-3. This increase is probably a result of catalytic effects of tea polyphenols on nitrosation, or of another, yet unknown, mechanism. These results suggest that intake of ascorbic acid and moderate consumption of green tea can reduce endogenous NDMA formation.  相似文献   

19.
Iwata T  Uchida S  Hori M  Sakai K  Towatari T  Kido H 《Life sciences》1999,65(17):1725-1732
The kidney is the major target of parathyroid hormone (PTH), and PTH influences the urinary excretion of calcium, phosphate and hydrogen ions. It was previously reported that the urinary, excretion of N-acetyl-beta-D-glucosaminidase (NAG), a lysosomal enzyme, transiently increases after human PTH (hPTH) (1-34) infusion in normal subjects and idiopathic hypoparathyroidism patients, but not in pseudohypoparathyroidism type I patients. Here we report that intravenous infusion of hPTH(1-34) to rats transiently increased the urinary excretion of various lysosomal enzymes, such as beta-glucuronidase and acid phosphatase as well as NAG. However, it did not affect the urinary excretion of tubular brush border membrane enzymes, i.e. alkaline phosphatase, leucine aminopeptidase and gamma-glutamyl transpeptidase. Human PTH(1-34) dose-dependently increased the urinary excretion of NAG in rats with a peak at 30 min, which returned to a baseline within 60 min. The increase in the urinary NAG excretion caused by hPTH(1-34) positively correlated with the increase in the urinary cAMP excretion (r = 0.844, p < 0.01), and infusion of dibutyryl cAMP at a dose of 20 mg/kg similarly increased the urinary excretion of NAG. These results suggested that the increase in the urinary excretion of lysosomal enzymes caused by hPTH(1-34) may be a functional response to hPTH(1-34) occurring in the renal tubules via PTH signaling pathway.  相似文献   

20.
Previously we observed strong and consistent associations between vitamin B6 status and several indicators of inflammation in patients with rheumatoid arthritis. Clinical indicators, including the disability score, the length of morning stiffness, and the degree of pain, and biochemical markers, including the erythrocyte sedimentation rate and C-reactive protein levels, were found to be inversely correlated with circulating vitamin B6 levels. Such strong associations imply that impaired vitamin B6 status in these patients results from inflammation. In the present study we examined whether inflammation directly alters vitamin B6 tissue contents and its excretion in vivo. A cross-sectional case-controlled human clinical trial was performed in parallel with experiments in an animal model of inflammation. Plasma and erythrocyte and pyridoxal 5'-phosphate concentrations, urinary 4-pyridoxic acid excretion, and the activity coefficient of erythrocyte aspartate aminotransferase were compared between patients and healthy subjects. Adjuvant arthritis was induced in rats for investigating hepatic and muscle contents as well as the urinary excretion of vitamin B6 during acute and chronic inflammation. Patients with rheumatoid arthritis had low plasma pyridoxal 5'-phosphate compared with healthy control subjects, but normal erythrocyte pyridoxal 5'-phosphate and urinary 4-pyridoxic acid excretion. Adjuvant arthritis in rats did not affect 4-pyridoxic acid excretion or muscle storage of pyridoxal 5'-phosphate, but it resulted in significantly lower pyridoxal 5'-phosphate levels in circulation and in liver during inflammation. Inflammation induced a tissue-specific depletion of vitamin B6. The low plasma pyridoxal 5'-phosphate levels seen in inflammation are unlikely to be due to insufficient intake or excessive vitamin B6 excretion. Possible causes of decreased levels of vitamin B6 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号