首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Summary We examined variation in diet choice by marten (Martes americana) among seasons and between sexes and ages from 1980–1985. During this period prey populations crashed simultaneously, except for ruffed grouse (Bonasa umbellus) which was common at the beginning and end of the study, and masked shrews (Sorex cinereus) which were abundant in 1983. Marten were catholic in selection of prey and made use of most available mammalian prey, ruffed grouse, passerine birds, berries, and insects. Diet niche was widest during the latter three years when prey was scare, particularly in late winter. Diet niche breadth was negatively correlated with abundance of all common prey species. Proportion of small prey species in the diet was correlated with absolute abundance of those species, but proportion of some large prey was related to their relative abundance. Diet choice varied among years and among seasons. Berries and insects were common in summer diets while large prey, particularly varying hare (Lepus americanus), were more frequent in winter diet than in summer diet. We found little evidence that any small mammal species was a preferred prey. Sexual size dimorphism between the sexes did not affect prey choice, nor did age. Reduced foraging effort in winter resulted in a wider diet niche only when prey was scarce. The only prediction of optimal foraging models fully supported by our data was a wider diet niche with reduced prey abundance. However, among the three most profitable prey species choice was dependent on the absolute abundance of the most profitable type (varying hare). We suggest that marten primarily forage for large prey but employ a strategy which results in encounters with small prey as well. These small prey are eaten as they provide energy at minimal cost, between captures of large prey.  相似文献   

2.
1. Ontogenetic shifts in prey choice and predator behaviour can affect food‐web structure. Therefore, it is important to establish if the diet and feeding activity differ between life‐stages of the same species. This hypothesis was tested for second, third, fourth and fifth larval instars of Rhyacophila dorsalis by comparing their diel activity and feeding patterns. Second to fifth instars collected from two streams were used either for gut analyses or for observations of their activity and feeding patterns in three stream tanks. Food was provided in excess; being organisms living in bryophytes on top of a large stone in each tank, augmented by different‐sized larvae of Ephemeroptera, Simuliidae and Chironomidae. As few first instars for gut analyses were found in the field, the diet of first instars reared in the laboratory was also studied. 2. Larvae for gut analyses were taken 1 h before dusk or dawn (n = 50 larvae per instar for each day or night sample). First and second instars fed on the smaller food items with no significant day‐night differences in diet. Gut contents indicated a progressive trend from feeding chiefly at night in third instars to almost exclusively at night in fifth instars. Fourth and fifth instars fed on the larger food items, whilst the diet of the third instar larvae overlapped with that of both the earlier and later instars. 3. Diel activity patterns of single larvae differed between instars but not within each instar (n = 20 larvae per instar). Second instars were active throughout the 24 h, with peaks at dusk, around midnight, dawn and around midday. A similar pattern was shown by third instars but the peak of activity at midday was less than the other three peaks. Prey were captured only during these peaks for both instars. Fourth and fifth instars were most active, and fed only, at night. They used an ambush strategy to capture more active prey at dusk and dawn (e.g. Baetis, Gammarus), and a searching strategy to capture more sedentary prey during the night (e.g. chironomids, simuliids). These experiments provided support for the hypothesis under test. If competition and/or interference occur between instars, then it could be reduced between earlier and later instars because of differences in their diet and diel pattern of feeding activity.  相似文献   

3.
Previous studies have shown that leopard frogs, Rana pipiens, use tongue prehension to capture small prey and jaw prehension to capture large prey. After hypoglossal nerve transection, the frogs fail to open their mouths when attempting to feed on small prey, but open their mouths and capture large prey. Here, we investigate how visual information about the prey and proprioceptive information from the tongue interact to influence the motor program choice. Using pieces of earthworm of various sizes, we found that Rana exhibits two different behavior patterns based on prey size. The frogs captured the 1.5-cm prey using tongue prehension, whereas 2.0-cm and larger prey were captured using jaw prehension. After hypoglossal transection, the frogs never opened their mouths when they tried to feed on 1.5-cm prey. When feeding on 3.0-cm and larger prey after transection, they always opened their mouths and captured the prey using jaw prehension. When offered 2.0-cm prey, they alternated randomly between opening and not opening the mouth. Therefore, deafferentation changed the pattern of motor program choice at the behavioral border. This implies that afferents from the tongue interact with visual input to influence motor program choice.  相似文献   

4.
This study assessed the cannibalistic behaviour of juvenile barramundi Lates calcarifer and examined the relationship between prey size selection and energy gain of cannibals. Prey handling time and capture success by cannibals were used to estimate the ratio of energy gain to energy cost in prey selection. Cannibals selected smaller prey despite its capability of ingesting larger prey individuals. In behavioural analysis, prey handling time significantly increased with prey size, but it was not significantly affected by cannibal size. Conversely, capture success significantly decreased with the increase of both prey and cannibal sizes. The profitability indices showed that the smaller prey provides the most energy return for cannibals of all size classes. These results indicate that L. calcarifer cannibals select smaller prey for more profitable return. The behavioural analysis, however, indicates that L. calcarifer cannibals attack prey of all size at a similar rate but ingest smaller prey more often, suggesting that prey size selection is passively orientated rather than at the predator's choice. The increase of prey escape ability and morphological constraint contribute to the reduction of intracohort cannibalism as fish grow larger. This study contributes to the understanding of intracohort cannibalism and development of strategies to reduce fish cannibalistic mortalities.  相似文献   

5.
1. Three predatory chironomid species constituted numerically 8.8% (± 95% CL 2.2) of the macro- and meiobenthic community at the sediment surface and in the hyporheic zone of Oberer Seebach, a gravel stream in Lower Austria. Larvae of Thienemannimyia geijskesi (Goetghebuer) and Nilotanypus dubius (Meigen) occurred in higher densities in sediment depths between 10 and 40 cm, whereas Conchapelopia pallidula (Meigen) achieved higher densities at the sediment surface. The three species completed one generation in a year. 2. A total of ninety-seven prey species and instars were identified by gut analyses, of which forty-one benthic rotifer species constituted 69.5% of individuals and twenty-three chironomid species and their instars, 22.9%. The three tanypod species showed shifts from mainly rotifer species in early instars to chironomids and diverse other meio- and macrofaunal taxa in later instars. Rather than shifting towards larger prey sizes, growing predators expanded their upper size thresholds and continued to include smaller prey species in their diet. The extent to which tanypod instars fed on similar prey size classes declined with increasing larval size. Predation by tanypods amounted to 2.2% (± 95% CL 0.1) of the combined prey densities and prey consumption averaged 1.32 (bootstrap 95% CL 1.26–1.39) individuals per predator individual. 3. Preferences for microhabitat flow differed between predator species and in the prey assemblage. Prey densities and densities of T. geijskesi and C. pallidula were highest in pool areas, whereas N. dubius achieved high densities in riffle sites. 4. Tanypod larvae fed non-selectively among prey types. To test the significance of observed size(instar)-specific spatial and dietary overlap values amongst tanypod species, simulations were generated from random models for pairs of intra- and interspecific associations of individuals and groups of prey and predator species. Groups and individuals of tanypod instars fed near randomly on groups of prey types and a high proportion (P > 0.60) of prey individuals are quasi-randomly chosen by tanypods in those patches. Tanypod instar-pairs did not show a sustained trophic resource partitioning in time, thus reducing the degree of competitive interactions for food in this predator guild. Spatially segregated and non-segregated tanypod instars formed random aggregations independent of each other at different flow microhabitats. 5. Species-rich prey assemblages such as benthic rotifers and larval chironomids increased the probability of non-selective feeding upon a wide spectrum of prey species by tanypods. Prey choice was governed by prey availability and tanypod individuals fed on many species at rather even proportions independent of each other.  相似文献   

6.
We studied the hunting behaviour of Myrmicaria opaciventris (Hymenoptera: Formicidae) in order to evaluate if it can be used as a biological control agent against the termites that damage sugarcane plantations. Hunting workers foraged in groups and recruited nestmates at short-range when they encountered large termite soldiers or groups of small termite workers. Differences in prey capture concerned the: (1) means of detection (from a distance or by contact); (2) termite body part seized (small termites seized by the body; large termites by an appendage); (3) percentages of prey abandoned; and (4) use of venom. The sting of the workers is spatulated implying a topical application of the venom on the prey. Large termites were stretched by several workers whose adherence to the substrate is facilitated by well-developed arolia and claws on the legs while others spread venom on the body and carved it up. An adaptation to termite capture was noted with a distribution of tasks between the workers which subdued prey, and those which transported it. In the former case, the workers easily eliminated termite soldiers, successively attacked several termite workers and even captured new individuals while holding the first ones captured between their mandibles before retrieving them all at once. The remaining individuals were retrieved by the transporting workers. Given this particularly effective predatory strategy, we concluded that, under certain conditions, M. opaciventris can be used as a biological control agent against termites.  相似文献   

7.
1. Ontogenetic shifts in predator behaviour can affect the assessment of food‐web structure and the development of predator–prey models. Previous studies have shown that the diel activity pattern and functional response differed between larval instars of the carnivorous caddis, Rhyacophila dorsalis. The present study examines switching by larvae of R. dorsalis presented with different proportions of two prey types; either small (length 2–4 mm) and large (5–8 mm) Chironomus larvae for second, third, fourth and fifth instars of R. dorsalis; or Baetis rhodani (9–12 mm) and large Chironomus larvae for fourth and fifth instars. Experiments were performed in stream tanks with one Rhyacophila larva per tank and 200 prey arranged in nine different combinations of the two prey types (20 : 180, 40 : 160, 60 : 140, 80 : 120, 100 : 100, 120 : 80, 140 : 60, 160 : 40 and 180 : 20). Prey were replaced as they were eaten. A model predicted the functional response in the absence of switching and provided a null hypothesis against which any tendency to switch could be tested. 2. There was no prey switching in the second and third instars, with both instars always showing a preference for small over large Chironomus larvae. Prey switching occurred in the fourth and fifth instars. As the relative abundance of one prey type increased in relation to the alternative, the proportion eaten of the former prey changed from less to more than expected from its availability, the relationship being described by an S‐shaped curve. In the experiments with small and large Chironomus, the two instars switched to large larvae when their percentage of the total available prey exceeded 29% and 37% for fourth and fifth instars, respectively. In the experiments with Baetis and large Chironomus, both instars switched to Baetis larvae when their percentage of the total available prey exceeded 36%. 3. Non‐switching in second and third instars was related to their feeding strategies, both instars preferring smaller prey items. When the fourth and fifth instars foraged actively at night, they preferred larger over small Chironomus larvae, but when they behaved as ambush predators at dusk, they captured the more active Baetis larvae in preference to the more sedentary large Chironomus larvae and only switched to the latter when they were >64% of the available prey.  相似文献   

8.
W. G. Hudson 《BioControl》1987,32(4):399-406
Prey selection bySirthenea carinata (F.) [Hemiptera: Reduviidae] was investigated using both field captured and laboratory-reared nymphs and adults. Small nymphs (instars 1–3) showed no preference for mole crickets [Orthoptera: Gryllotalpidae: Scapteriscus] as prey overGryllus spp. orAnurogryllus muticus (De Geer) [Orthoptera: Gryllidae]. Larger nymphs (4th and 5th instars) and adults showed a significant preference for mole crickets in the same sort of choice experiments, choosing mole crickets 84% of the time. Laboratory hatchedSirthenea nymphs matured faster on a mixed diet ofGryllus spp.,A. muticus, andScapteriscus spp. Than did siblings fed a diet ofGryllus spp. alone, but no differences were found in size or duration of individual stadia between the diet groups.   相似文献   

9.
1. Larvae of Macromia illinoiensis Walsh are often colonised by the zebra mussel, Dreissena polymorpha Pallas, a recent invader to North America. To determine how mussel attachment affects an individual's foraging behaviour, we quantified capture of Hexagenia limbata Hexes mayfly prey and the distance moved by newly‐molted final instars before and after an individual's colonisation with zebra mussels. 2. In night trials, larvae sprawled above the sand, and caught more mayflies than individuals in daytime trials, but the estimated distance travelled did not differ. When resting under a layer of sand with only its eyes exposed during the day, an individual could capture a mayfly prey using a sit‐and‐wait ambush strategy. When sprawled above the sand, some larvae caught prey that rested on their legs. 3. When mussel‐free, individuals captured more prey than they did when carrying zebra mussels, although mussel attachment per se did not affect the estimated distance that a larva moved. 4. During day trials, but not night ones, the increasing mussel load of colonised individuals decreased prey capture and the distance moved in an apparent step‐wise function. Although the number of mussels carried did not differ, night foragers carried a heavier load. Independent of time of the day, the distance an individual travelled when mussel‐free was predictive of the number of prey it caught when colonised, suggesting that the greater general activity of some individuals helped mitigate negative effects that mussel attachment had on prey capture. 5. Our results add to a growing number of negative effects of zebra mussel colonisation on sprawling and hiding dragonfly larvae. Although the impact of these costs on dragonfly populations remains to be determined, a decrease in this guild of predators whose life cycle spans aquatic and terrestrial habitats might have cascading effects across ecosystems.  相似文献   

10.
M. S. Awan 《BioControl》1990,35(2):203-210
Three species of hemipteran predators preyed differently upon 1st instarHeliothis punctiger Wallengren larvae.Cermatulus nasalis consumed more larvae thanOechalia schellenbergii which consumed more larvae thanTropiconabis nigrolineatus. All the species consumed significantly less 1st instar larvae on plants than what they consumed in Petri-dishes. Fifth instar predators showed significant differences in terms of prey consumption due to sex independent of searching conditions. Only 4th and 5th instars ofT. nigrolineatus attacked and captured 2nd instars ofH. punctiger larvae. The other 2 species however readily attacked and consumed 2nd instarH. punctiger larvae. Their prey consumption was similar in Petri-dishes and on plants. Only 5th instars ofT. nigrolineatus could subdue and capture 3rd instarH. punctiger larvae. Second instar pentatomids captured just one 3rd instar larva but older instars killed and ate more. Fourth instarH. punctiger larvae were immune to attacks by allT. nigrolineatus and younger pentatomids due to their defense ploys but 5th instar pentatomids could subdue and capture them. None of the predators captured 5th instarH. punctiger larvae except few 5th instar females ofC. naslis andO. schellenbergii.   相似文献   

11.
A recirculatory flume tank simulating a simplified stream environment was used to study the feeding behaviour of juvenile Atlantic salmon (Salmo salar L.), 5.1 to 9.4 cm in fork length (from tip of snout to fork of tail), on artificial particulate prey passively drifting in the water current. Changes in feeding behaviour at two different times of the year and when fish were presented with prey of different sizes are described and quantified. Responsiveness to food was greatly reduced in autumn as compared to summer. The maximum distances at which prey elicited a response decreased in autumn to 40% of the summer value, and the maximum distances which fish traversed in order to capture prey decreased by 80% over the same period. During the peak growing season, the response to a range of prey sizes from 0.013 to 0.102 × fish fork length was directly related to prey size and could be accounted for on the basis of visual theory alone. Capture distances were closely related to fixation distances. Maximum capture distance increased to a peak value for prey of between 0.025 and 0.069 × fork length, while larger prey were never captured and the smallest prey rarely evoked a response. Prey size selectivity also operated after capture, through rejection versus retention of the prey.  相似文献   

12.
The communal orb-weaving spider, Philoponella republicana,was observed in the subtropical moist forest of Southeast Peru. These spiders live in colonies of conspecifics whose individual orbs are connected by silk. The wrapping of a prey prior to feeding is a large component of the prey capture process because P. republicanahas no venom with which to kill an insect. Wrapping time was the only aspect of prey capture that was strongly correlated with the size of the insect captured. Occasionally we observed several individuals working together to wrap a prey item. These joint efforts were more frequent on prey larger than the capturing spider. Although group captures accounted for only 5.5% of captures, they represented 14.7% of the biomass obtained. A comparison of the relationship between wrapping time and prey size for solitary and group efforts suggested that, by working together, the spiders reduced their total handling time. In most cases only one spider fed on the captured prey.  相似文献   

13.
Abstract

The diet of the ground weta Zealandosandrus gracilis Salmon was investigated by examining the crop contents of 68 individuals collected throughout the year from the Cass area, Canterbury. Specimens representing all instars of both sexes, as well as adults, were obtained. Z. gracilis is carnivorous, preying on immature and adult invertebrates (mostly insects) of the forest litter. Similar prey was taken by early instars of both sexes; late instars captured a wider range of prey, including larger and more active species. Late-instar and adult females preyed more on adult insects such as mycetophilid flies than did males, which took more insect larvae.  相似文献   

14.
We investigated seasonal variation in the diet of hatchery-reared juvenile Amur sturgeon Acipenser schrenckii in the Tongjiang reach of the Songhua River, Northeast China. The results indicated that Amur sturgeon fed mainly on Chironomidae and Ephemeroptera and secondarily on unspecified bony fish, Odonata, and Trichoptera. Diet changed throughout the year, with autumn 2017 and spring 2018 dominated by Ephemeroptera larvae, while summer 2018 prey comprised primarily Chironomidae larvae. Unspecified bony fish were observed at greater frequency in autumn 2017. Amur sturgeon captured in summer contained a greater quantity of Trichoptera larvae compared to those from autumn and spring sampling. Results were consistent with previous reports of Amur sturgeon diet in other areas of its native distribution and suggested that they may be opportunistic feeders throughout the year, although larval Chironomidae and Ephemeroptera appear to be important prey. These results represent the first reported diet composition data for juvenile Amur sturgeon in the lower Songhua River. Results of the study form part of a comprehensive investigation of feeding habits of juvenile Amur sturgeon that provides basic data for study of the biological characteristics of the species.  相似文献   

15.
Prey preference in stoneflies: a comparative analysis of prey vulnerability   总被引:2,自引:0,他引:2  
Summary Laboratory feeding trials were conducted with the predaceous stonefly Hesperoperla pacifica and a number of mayfly and dipteran prey species to investigate the effects of predator size, and prey size and morphology, on the predator's success. Observations under dim red light permitted estimation of encounter rate (E/min), attack propensity (A/E), capture success (C/A) and handling time (HT). For prey of a particular species and size, HT decreased log-linearly with increasing predator size. Across all prey categories, HT increased log-linearly with increasing values of the ratio prey dry wt/predator dry wt, and differences among species appeared to be small. Overall, capture success was low, but C/A was higher for dipterans than for mayflies, especially with large H. pacifica. Predator size affected C/A when prey fell within a certain size range, but was not a detectable influence with very small or very large prey. Values of A/E of near 10% typified many predatorprey combinations; however, ephemerellid mayflies suffered markedly fewer attacks, and values of A/E up to 30% were obtained with some species-size combinations. We estimated benefit to the predator first as prey wt ingested per unit time (dry wt/HT), and second by mutliplying the former term by capture success. Values increased with increasing size of the predator, and inclusion of the C/A term indicated that predators would obtain greater reward from small relative to large prey, and from dipterans relative to mayflies. Howerver, there was little evidence that attacks were biased toward more profitable prey. We compare the relative contributions of E/min, A/E and C/A to prey choice, and discuss their applicability to predation events in nature.  相似文献   

16.
Oviposition decisions (i.e., host selection and sex allocation) of female parasitoids are expected to correspond with host quality, as their offspring fitness is dependent on the amount and quality of resources provided by a single host. The host size model assumes that host quality is a linear function of host size, with larger hosts believed to contain a greater quantity of resources, and thus be more profitable than smaller hosts. We tested this assertion in the laboratory on a solitary larval–pupal parasitoid Diadegma mollipla (Holmgren) (Hymenoptera: Ichneumonidae) developing on three instars (second–fourth) of one of its hosts, the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). In a no‐choice test, parasitism levels and sex ratio (i.e., proportion of female progeny) were significantly high in hosts attacked in the second instar followed by third then fourth instars. However, the few parasitoids that completed a generation from the fourth instars did so significantly faster than conspecifics that started development in the other two instars. In direct observations, however, the parasitoids (i) randomly attacked the various host instars, (ii) spent a similar period examining the various host instars with their ovipositors, (iii) subdued all three host instars with about the same effort, and (iv) no statistical differences were observed in the attack rates on the three host instars. In a choice test, the females parasitized significantly more third instars followed by second then fourth instars. However, total parasitism in this experiment was 43% lower compared to parasitism of only second instars in the no‐choice test. No significant differences were detected in progeny sex ratios. In both choice and no‐choice tests, significantly more fourth instars died during the course of the experiments than second instars, while third instars were intermediate. The higher parasitism of third than second instars in the choice test indicates that the females perceived larger hosts as higher quality than smaller hosts, despite their lower suitability for larval development.  相似文献   

17.
Summary Life-history traits of 101 clones from two populations of Daphnia magna were measured under controlled environmental conditions in the laboratory. Some individuals had four juvenile instars, others had five. This depended on their length at birth and on the population they came from. Females in the group with five juvenile instars were smaller at birth but larger and older at maturity than those with four juvenile instars. Within groups of females with equal numbers of preadult instars (instar groups) age and size at maturity increased with size at birth. This relationship differed significantly among instar groups for both age and size at maturity. Significant differences in age and size at maturity between two populations became non-significant when size at birth was used as a covariable in AN-COVA. Within populations, size at birth depended on the clone and on the parity of the clutch. First-clutch offspring were considerably smaller than those from later clutches. The results suggest that variability in life-history traits is common within and between clones, but that most of this variation can be accounted for by size at birth and the number of pre-adult instars.  相似文献   

18.
The eleotrid fish Eleotris sandwicensis inhabits lower reaches of streams in the Hawaiian Archipelago, where it feeds on juveniles of native amphidromous gobiid fishes migrating upstream from the ocean. Using high‐speed video and geometric modelling, we evaluated the feeding kinematics and performance of E. sandwicensis on free swimming prey, including two species with juveniles of different characteristic sizes, and compared successful and unsuccessful strikes. With fast jaw movements and a highly expansive buccal cavity, E. sandwicensis achieves high suction performance that enables the capture of elusive prey. Our analyses indicated that the species with larger juveniles (Sicyopterus stimpsoni) could be captured from a distance of up to 18.6% of the predator's body length (BL), but capture of the smaller species (Awaous guamensis) required a closer distance (12.2% BL). Predator–prey distance appears to be the predominant factor determining strike outcome during feeding on juvenile A. guamensis. However, during feeding on juvenile S. stimpsoni, E. sandwicensis shows modulations of strike behaviour that correlate with capture success. Moreover, the ability of E. sandwicensis to capture larger prey fish from longer distances suggests a potential biomechanical basis underlying observations that predation by eleotrids imposes significant selection against large body size in juvenile gobies. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 359–374.  相似文献   

19.
Diet selection among several prey types present in a dense aggregation, permitting a predator to become satiated without changing patches, may be important for predators that can eat many small prey items in a single bout. Choice in this scenario differs from that in optimal foraging models for sequential diet choice model and simultaneous choice models when travel time between patches is needed. Furthermore, satiation and depletion effects may be important in dense prey aggregations. We predicted that in dense prey aggregations, predators should eat the most profitable prey first, switching to smaller prey as larger ones become depleted and predators become satiated, and that prey below some minimum profitability should be rejected. When large numbers of prey of varying sizes were presented simultaneously, broad‐headed skinks (Eumeces laticeps) preferentially consumed large crickets, ate some medium‐sized crickets late in ingestion sequences, but ate no small crickets. Prey depletion, with selection of the currently most profitable prey type, appears to account for much of observed prey switching, and satiation may contribute. When four crickets of each of four sizes were presented, lizards ate largest first, then medium‐sized. Some then ate small crickets, but none ate very small crickets. These observations and exclusion of small crickets from the diet by many lizards when larger ones were unavailable support the predictions. In tests with three sizes of juvenile mice presented singly, the smallest were attacked at shortest latency and eaten, medium‐sized mice were attacked at greater latency but could not be subdued, and large mice were not attacked. These data suggest that as prey become too large to subdue and eat readily, profitability declines until they are excluded from the diet. Unsuccessful attacks on medium‐sized mice suggest that lizards had to learn their own capabilities with respect to a novel prey type.  相似文献   

20.
Summary Transparency reduces the chances of detection of large planktonic animals by visual predators. An important constraint on the transparency of planktonic animals may be ingested food which could be seen through the body, thereby increasing the vulnerability of transparent zooplankton to visual predators. To test this hypothesis, we presented fed and un-fed Chaoborus larvae to juvenile coho salmon (Oncorhynchus kisutch). Overall, the presence of prey in the gut of Chaoborus increased their probability of capture by 68%. Predation risks due to the visibility of ingested food increased in proportion to meal size: larvae with nearly full gut were captured about three times faster on the average than larvae which had little food in their gut. Although Chaoborus larvae may be able to reduce this increased predation risk by migrating downward to low light levels, this behavior would reduce feeding opportunities by removing the larvae from surface waters where prey density is generally high. In this way, visual predators may limit the growth and the maximum size that can be achieved by transparent animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号