首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A new potentially antioxidant compound, spin-labelled lutein (SL-lut), was synthesized and incorporated into egg yolk phosphatidylcholine (EYPC) liposome membrane. The approximate location of nitroxide free radical groups of SL-lut was determined based on electron paramagnetic resonance (EPR) spectra. Then the ability of SL-lut to protect EYPC liposomes against lipid peroxidation (LPO) was compared to the antioxidant effects of lutein and a nitroxide spin label 3-carbamoyl-2,2,5,5-tetramethylpyrrolidin-1-yloxy (3-CP). Two free radical generation systems were used—a thermal decomposition of 2,2'-azobis (2,4 dimethyl-valeronitrile) (AMVN) and a modified Fenton reaction using ferric-8-hydroxyquinoline (Fe(HQ)3). Determination of the amount of thiobarbituric acid reactive species (TBARS) was used as a measure of LPO. SL-lut was the most powerful antioxidant, reducing LPO by about 6-times in AMVN-treated liposomes and 7-times in Fe(HQ)3-treated liposomes. Lutein alone gave only a moderate protection in both systems, while 3-CP was as efficient as SL-lut in the presence of AMVN, but not efficient whatsoever in the presence of Fe(HQ)3. The results suggest that a nitroxide part of SL-lut plays an important role in enhancing the antioxidant activity of lutein and makes SL-lut a powerful antioxidant efficient under different conditions.  相似文献   

2.
The titration of sonicated vesicles of egg phosphatidylcholine with ferricyanide in the presence of Ca2+ results in the formation of aggregates. The turbidity increase caused by these aggregates cannot be reversed by EDTA treatment. In addition, no rearrangement of the bilayer structure has been found in this process, either measuring leakage of vesicle content or exchange of lipids among the bilayers themselves. The aggregation is dependent on the Ca2+ content of the vesicles, the outer Ca2+ and Fe(CN)3-(6) concentration and the order of addition of Ca2+ and ferricyanide. The results can be explained by a specific adsorption of Fe(CN)3-(6) to bilayers of sonicated vesicles, in contrast to other multivalent anions. In contrast to the stability found with sonicated vesicles, the aggregation causes a leakage of the internal solution when multilamellar liposomes are titrated with Fe(CN)3-(6).  相似文献   

3.
Glucose metabolism of bifidobacteria in the presence of 2-amino-3-carboxy-1,4-naphthoquinone (ACNQ), a specific growth stimulator for bifidobacteria, and ferricyanide (Fe(CN)(6)(3-)) as an extracellular electron acceptor was examined using resting cells of Bifidobacterium longum and Bifidobacterium breve. NAD(P)H in the cells is oxidized by ACNQ with the aid of diaphorase activity, and reduced ACNQ donates the electron to Fe(CN)(6)(3-). Exogenous oxidation of NADH by the ACNQ/Fe(CN)(6)(3-) system suppresses the endogenous lactate dehydrogenase reaction competitively, which results in the remarkable generation of pyruvate and a decrease in lactate production. In addition, a decrease in acetate generation is also observed in the presence of ACNQ and Fe(CN)(6)(3-). This phenomenon could not be explained in terms of the fructose-6-phosphate phosphoketolase pathway, but suggests rather that glucose is partially metabolized via the hexose monophosphate pathway. This was verified by NADP(+)-induced reduction of Fe(CN)(6)(3-) in cell-free extracts in the presence of ACNQ. Effects of the ACNQ/Fe(CN)(6)(3-) system on anaerobically harvested cells were also examined. Stoichiometric analysis of the metabolites from the pyruvate-formate lyase pathway suggests that exogenous oxidation of NADH is an efficient method to produce ATP in this pathway.  相似文献   

4.
A new potentially antioxidant compound, spin-labelled lutein (SL-lut), was synthesized and incorporated into egg yolk phosphatidylcholine (EYPC) liposome membrane. The approximate location of nitroxide free radical groups of SL-lut was determined based on electron paramagnetic resonance (EPR) spectra. Then the ability of SL-lut to protect EYPC liposomes against lipid peroxidation (LPO) was compared to the antioxidant effects of lutein and a nitroxide spin label 3-carbamoyl-2,2,5,5-tetramethylpyrrolidin-1-yloxy (3-CP). Two free radical generation systems were used—a thermal decomposition of 2,2′-azobis (2,4 dimethyl-valeronitrile) (AMVN) and a modified Fenton reaction using ferric-8-hydroxyquinoline (Fe(HQ)3). Determination of the amount of thiobarbituric acid reactive species (TBARS) was used as a measure of LPO. SL-lut was the most powerful antioxidant, reducing LPO by about 6-times in AMVN-treated liposomes and 7-times in Fe(HQ)3-treated liposomes. Lutein alone gave only a moderate protection in both systems, while 3-CP was as efficient as SL-lut in the presence of AMVN, but not efficient whatsoever in the presence of Fe(HQ)3. The results suggest that a nitroxide part of SL-lut plays an important role in enhancing the antioxidant activity of lutein and makes SL-lut a powerful antioxidant efficient under different conditions.  相似文献   

5.
Six transition metal ion complexes have been examined for their effects on the cell survival as well as their effectiveness in inducing the broadening of the electron spin resonance (ESR) spectra of nitroxide spin probes. These paramagnetic species are Ni(EDTA), Ni(DTPA), potassium tris(oxalato) chromate (chromium oxalate), K3Fe(CN)6, Cu(DTPA), and NiCl2. At 100 mM concentration, the typical concentration used in cell studies to broaden the extracellular nitroxide ESR signal, only Ni(EDTA) and Ni(DTPA) are found to be non-toxic to Chinese hamster ovary cells. The relative cytotoxicities of the six metal ion complexes are Cu(DTPA) greater than K3Fe(CN)6 greater than NiCl2 greater than chromium oxalate greater than Ni(DTPA) greater than Ni(EDTA). Thus, potassium ferricyanide and NiCl2, two most commonly used paramagnetic broadening agents, are relatively toxic to the cell. In contrast, among the six paramagnetic species tested here, chromium oxalate appears to be the most effective agent at non-toxic concentrations in inducing the broadening of the ESR spectra of both cationic and neutral nitroxide spin probes. By considering both their cytotoxicity and their effectiveness in causing line broadening of the nitroxide ESR spectra, chromium oxalate is a good paramagnetic broadening agent for spin probe studies of intact mammalian cells.  相似文献   

6.
A recently described direct reading assay for beta-oxidation and for succinate oxidation in intact mitochondria using [Fe(CN)6]3- as final electron acceptor [Osmundsen & Bremer (1977) Biochem. J. 164. 621--633] has been improved by using instead tetracyano-2,2-bipyridineiron(III) [Fe(CN)4(bpy)]-, which gives a 2.6 times greater absorbance change on reduction. Some physical and kinetic properties of [Fe(CN)4(bpy)]- are described. The use of exogenous cytochrome c(III) as electron acceptor was also tested; this gives the largest absorbance change, although the absolute rate of reaction is only approx. one-third of that using [Fe(CN)6]3- or [Fe(CN)4(bpy)]-.  相似文献   

7.
The mechanism of activation thioamide-pyridine anti-tuberculosis prodrugs is poorly described in the literature. It has recently been shown that ethionamide, an important component of second-line therapy for the treatment of multi-drug-resistant tuberculosis, is activated through an enzymatic electron transfer (ET) reaction. In an attempt to shed light on the activation of thioamide drugs, we have mimicked a redox process involving the thionicotinamide (thio) ligand, investigating its reactivity through coordination to the redox reversible [Fe(III/II)(CN)(5)(H(2)O)](2-/3-) metal center. The reaction of the Fe(III) complex with thionicotinamide leads to the ligand conversion to the 3-cyanopyridine species coordinated to a Fe(II) metal center. The rate constant, k(et)=10 s(-1), was determined for this intra-molecular ET reaction. A kinetic study for the cross-reaction of thionicotinamide and [Fe(CN)(6)](3-) was also carried out. The oxidation of thionicotinamide by [Fe(CN)(6)](3-) leads to formation of mainly 3-cyanopyridine and [Fe(CN)(6)](4-) with a k(et)=(5.38+/-0.03) M(-1)s(-1) at 25 degrees C, pH 12.0. The rate of this reaction is strongly dependent on pH due to an acid-base equilibrium related to the deprotonation of the R-SH functional group of the imidothiol form of thionicotinamide. The kinetic results reinforced the assignment of an intra-molecular mechanism for the ET reaction of [Fe(III)(CN)(5)(H(2)O)](2-) and the thioamide ligand. These results can be valuable for the design of new thiocarbonyl-containing drugs against resistant strains of Mycobacterium tuberculosis by a self-activating mechanism.  相似文献   

8.
In this investigation of the radical formation and the reaction of radicals in gamma-irradiated DNA, we report the isolation of putative neutral radicals by the scavenging of holes by Fe(CN)6(4-) and of electrons by Fe(CN)6(3-). Experiments are performed under conditions that emphasize direct and quasi-direct effects (collectively called direct-type effects.) Samples containing Fe(CN)6(4-) show effective scavenging of holes and the ESR spectra obtained arise principally from DNA anion radicals and neutral radicals. On the other hand, for samples containing Fe(CN)6(3-), electron scavenging is highly efficient, and the resulting spectra arise principally from guanine cation radicals and neutral radicals. When both Fe(CN)6(4-) and Fe(CN)6(3-) are present, a near complete scavenging of cation radicals and anion radicals is observed at 77 K, and the ESR spectra that result originate predominantly with neutral radicals which are assigned predominantly to radicals on the sugar phosphate backbone. A notable finding is the presence of spectral components that indicate the formation, through the rupture of the C3'-O bond, of a neutral deoxyribose radical; a concurrent strand break must accompany formation of this radical. This radical was previously reported in argon-ion-irradiated DNA and now, for the first time, is reported in DNA irradiated with low-LET radiation.  相似文献   

9.
It can be expected that extracellular electron transfer to regenerate NAD+ changes the glucose metabolism of the homofermentative lactic acid bacteria. In this work, the glucose metabolism of Lactobacillusplantarum and Lactococcus lactis was examined in resting cells with 2-amino-3-carboxy-1,4-naphthoquinone (ACNQ) as the electron transfer mediator and ferricyanide (Fe(CN)6(3-)) as the extracellular electron acceptor. NADH in the cells was oxidized by ACNQ with the aid of diaphorase, and the reduced ACNQ was reoxidized with Fe(CN)6(3-). The extracellular electron transfer system promoted the generation of pyruvate, acetate, and acetoin from glucose, and restricted lactate production. Diaphorase activity increased when cultivation was aerobic, and this increased the concentrations of pyruvate, acetate, and acetoin relative to the concentration of lactate to increase in the presence of ACNQ and Fe(CN)6(3-)  相似文献   

10.
Use of rigorous equilibration kinetics to evaluate rate constants for the Fe(CN)6 4- reduction of horse-heart cytochrome c in the oxidized form, cyt c (III), has shown that limiting kinetics do not apply with concentrations of Fe(CN)6 4- (the reactant in excess) in the range 2-10 x 10(-4) M, I = 0.10 M (NaCl). The reaction conforms to a first-order rate law in each reactant, and at 25 degrees C, pH 7.2 (Tris), it is concluded that K for association prior to electron transfer is less than 200 M-1. From previous studies at 25 degrees C, ph 7.0 (10(-1) M phosphate), I = 0.242 M (NaCl), a value K = 2.4 x 10(3) M-1 has been reported. Had such a value applied, some or all of the redox inactive complexes Mo(CN)8 4-, Co(CN)6 3-, Cr(CN)6 3-, Zr(C2O4)4 4- present in amounts 5-20 x 10(-4) M would have been expected to associate at the same site and partially block the redox process. No effect on rats was observed. With the reductants Fe(CN)5(4-NH2-py)3- and Fe(CN)5(imid)3-, reactions proceeded to greater than 90% completion and rate laws were again first order in each reactant. Rate constants (M-1 sec-1) at 25 degrees C, pH 7.2 (Tris), I = 0.10 M (NaCl), are Fe(CN)6 4- (3.5 x 10(4)), Fe(CN)5(4-NH2py)3- (6.7 x 10(5), and Fe(CN)5(imid)3- (4.2 x 10(5). Related reactions in which cyt c(II) is oxidized are also first order in each reactant, Fe(CN)6 3- (9.1 x 10(6)), Fe(CN)5(NCS)3- (1.3 x 10(6)), Fe(CN)5(4-NH2py)2- (3.8 x 10(6) at pH 9.4), and Fe(CN)5(NH3)2- (2.75 x 10(6) at ph 8). Redox inactive Co(CN)6 3- (1.0 x 10(-3) M) has no effect on the reaction of Fe(CN)6 3- which suggests that a recent interpretation for the Fe(CN)6 3- oxidation of cyt c(II), I = 0.07 M, may also require reappraisal.  相似文献   

11.
Quantitative kinetic models have been developed for the reaction between peroxynitrite and membrane lipids in vesicles and for transmembrane oxidation of reactants located within their inner aqueous cores. The models were used to analyze TBARS formation and oxidation of entrapped Fe(CN)(6)(4)(-) ion in egg lecithin liposomes and several artificial vesicles. The analyses indicate that permeation of the bilayers by ONOOH and NO(2)(*), a radical formed by homolysis of the ONOOH bond, is unusually rapid but that permeation by ONOO(-) and CO(3)(*)(-), a radical formed when CO(2) is present, is negligible. Bicarbonate protects the vesicles against both membrane and Fe(CN)(6)(4)(-) oxidation by rapid competitive CO(2)-catalyzed isomerization of ONOOH to NO(3)(-); this effect is partially reversed by addition of nitrite ion, which reacts with CO(3)(*)(-) to generate additional NO(2)(*). Under medium conditions mimicking the physiological milieu, a significant fraction of the oxidants escape to inflict damage upon the vesicular assemblies. Rate constants for several elementary reaction steps, including transmembrane diffusion rates for ONOOH and NO(2)(*), were estimated from the bicarbonate dependence of the oxidative reactions.  相似文献   

12.
李美茹  刘鸿先  王以柔   《广西植物》1997,(4):375-378
本试验以水稻幼苗为材料,研究冷胁迫和钙浸种、低温锻炼、低温锻炼结合钙浸种预处理分别对幼苗根质膜Fe(CN)3-6还原活性的影响。实验结果表明:冷胁迫降低了质膜Fe(CN)3-6还原活性;钙浸种、低温锻炼、低温锻炼结合钙浸种预处理均提高了质膜Fe(CN)3-6还源活性,尤其是削减了冷胁迫降低质膜Fe(CN)3-6还原活性的作用。根质膜Fe(CN)3-6还原活性与水稻幼苗抗冷力密切相关。  相似文献   

13.
The kinetics of oxidation of eight different singly substituted 4-carboxy-2,6-dinitrophenyl (CDNP) horse ferrocytochromes c, modified at lysine 7, 13, 25, 27, 60, 72, 86, or 87, and of one trinitrophenyl horse ferrocytochrome c, modified at lysine 13, by the 3- and 3+ inorganic complexes hexacyanoferrate(III) (Fe(CN)6(3-) ) and tris(1,10-phenanthroline)cobalt(III) (Co(phen)3(3+) ) have been characterized. The influence of the modified residues on the bimolecular rate constants for these reactions define the protein molecular surface involved. The site of electron exchange for both oxidants appears to be the solvent accessible edge of the heme prosthetic group or a closely related structure on the "front" surface of the molecule. The reaction with Fe(CN)6(3-) is most strongly influenced by modification of lysine 72, a residue to the left of the exposed heme edge. (CDNP lysine 72 cytochrome c yields a 3.6-fold decrease in the bimolecular rate constant, as compared to that for the native protein.) However, it is the region around lysine 27, to the right of the heme edge, that is most influential in the reaction with Co(phen)3(3+). (CDNP-lysine 27 cytochrome c exhibits a 7.3-fold increase in the rate constant, as compared to that for the native protein.) The kinetics of reaction of the CDNP-lysine 13, 60, 72, and 87 modified cytochromes c with Fe(CN)5(4-aminopyridine)2- as oxidant and Fe(CN)5(4-aminopyridine)3- and Fe(CN)5-(imidazole)3- as reductants have also been determined and further illustrate the influence of electrostatics on the kinetics of such protein-small molecule electron exchanges.  相似文献   

14.
The presence of Fe(CN)6(-4) provides sequential, one-electron reduction pathways for OSO4. An equilibrium is established containing OSO4, Fe(CN)6(-4), Fe(CN)6(-3), OSO2(OH)4(-4), and labile cyano-bridged OS-Fe species containing Os in nominal oxidation states of VIII, VII, and VI. These osmium complexes are chelated by appropriately placed donor atoms in the macromolecular tissue matrix, and chelation facilitates the reduction of osmium in situ to lower oxidation states (predominantly IV) that are relatively nonlabile. The greater reactivity and concentration of the Os(VII and VI) intermediates in this system leads to more Os deposition than OsO4 alone; the chelation is responsible for the immobilization of Os and the observed staining pattern in electron micrographs. Chemical data from model systems and electron micrographs of tissue are presented in support of this mechanism.  相似文献   

15.
Ferricyanide ions were immobilized on a platinum electrode surface by means of an electrochemically grown polypyrrole film. The entrapped Fe(CN)6(3-)/Fe(CN)6(4-) redox system displayed a high heterogeneous electron transfer rate. The resulting modified electrode was efficient for the ferricyanide-mediated NADH oxidation catalyzed by a diaphorase. The bioelectrochemical interface was applied to the design of a reagentless amperometric D-lactate biosensor. A weakly polarized two polypyrrole-containing Fe(CN)6(3-) modified electrode system was involved without any reference. An enzymatic solution containing D-lactate dehydrogenase, diaphorase and NAD-dextran was further confined on the sensing electrode using a semi-permeable membrane. The sensitivity and the response time of the reagentless biosensor were similar to those of the analogous sensor working with soluble mediator and cofactor, i.e. 25 microA mM(-1) cm(-2) and 120 s, respectively. The other analytical performances were less satisfactorily: the detection limit was 5 x 10 mmol L(-1) and the linearity range was comprised between 0.1 and 0.5 mmol L(-1).  相似文献   

16.
We have studied the removal of the type-2 copper from tree laccase (Rhus vernicifera) by treatment with EDTA at pH 5.2 in the presence of a redox buffer containing ferri- and ferrocyanide. The efficiency with which the copper is removed depends on the Fe(CN) 6(4-)/Fe(CN) 6(3-) ratio. We have varied this ratio from approx. 2:1 to about 50:1 and the best results were obtained with the highest ratio, i.e., the most cathodic solution potential. Nevertheless, the presence of Fe(CN) 6(3-) is required for the procedure to be effective. Although we cannot exclude the possibility that a mixed-valence form of laccase is the reactive species, we believe the results are better explained by a model which assumes that the removal of the type-2 copper depends upon an ordered sequence of oxidation-reduction reactions. Specifically, we propose that the copper is released as the monovalent ion from previously reduced laccase and then reoxidized in solution and sequestered with EDTA. The reoxidation step drives the reaction because recombination with the protein is inhibited when copper is in the divalent form. In testing this model, we have also shown that the type-2 copper can be removed under strictly reducing conditions when 4,4'-dicarboxy-2,2'-biquinoline (BCA) is present to complex the copper(I) ion. Although the BCA method is effective, the reaction takes longer, perhaps because of the limited solubility of BCA at the pH values of interest. Finally, we have found that the best results are obtained with either method when a cyanometalate ion such as Fe(CN) 6(3-) or Co(CN) 6(3-) is present in the medium. The exact role of this factor has yet to be established, but there is no indication that free cyanide has a role in the process. The most likely interpretation is that some type of binding interaction with the protein facilitates copper release.  相似文献   

17.
The reaction of c-cytochromes with iron hexacyanides is similar in mechanism to the interaction of cytochromes with their physiological oxidants and reductants in that the formation of complexes precedes electron transfer. Analysis of the kinetics of oxidation and reduction of a number of c-cytochromes by solving the simultaneous differential equations defining the mechanism is possible, and allows assignment of all six rate constants describing a minimum three-step mechanism [cyto(Fe(+3)) + Fe(+2) right harpoon over left harpoon cyto (Fe(+3)) - Fe(+2) right harpoon over left harpoon cyto(Fe(+2)) - Fe(+3) right harpoon over left harpoon cyto(Fe(+2)) + Fe(+3)]. We find that the usual steady-state approximations are not valid. Furthermore, the ratio of first-order rate constants for electron transfer was approximately 1.0, and no correlation was found between any of the six rate constants and the differences in oxidation-reduction potential of the iron-hexacyanides and different cytochromes c. However, it was found that the ratio of the rate constants for complex formation between ferricytochrome c and potassium ferrocyanide and ferrocytochrome c and potassium ferricyanide was proportional to the difference in oxidation-reduction potentials. Thus the minimum three-step mechanism given above accurately describes the observed kinetic data. However, this mechanism leads to a number of conceptual difficulties. Specifically, the mechanism requires that the collision complexes formed [cyto(Fe(+3)) - Fe(CN)(6) (-4) and cyto(Fe(+2)) - Fe(CN)(6) (-3)] have very different equilibrium constants, and further requires that formation of the collision complexes be accompanied by "chemistry" to make the intermediates isoenergetic. A more complex five-step mechanism which requires that the reactants [Fe(CN)(6) (-4) and ferricytochrome c or Fe(CN)(6) (-3) and ferrocytochrome c] form a collision complex followed by a first-order process before electron transfer, was found to yield results similar to those of the three-step mechanism. However, describing the formation of the collision complex in terms of a rapid equilibrium circumvents conceptual difficulties and leads to a physically reasonable mechanism. In this mechanism the reactants are in rapid equilibrium with the collision complexes and the rate constants for complex formation are controlled by diffusion and accessibility. The collision complexes then rearrange, possibly through conformational changes and/or solvent reorganization, to yield isoenergetic intermediates that can undergo rapid reversible electron transfer. The five-step mechanism can be described by the same rate constants obtained from the three-step mechanism with the appropriate adjustments to account for rapid equilibrium. This more complex analysis associates the oxidation-reduction potential of a particular cytochrome with the relative magnitude of the first-order conversion of the oxidant and reductant collision complexes to their respective intermediates. Thus the cytochromes c control their oxidation-reduction potential by chemical and/or structural alterations. This mechanism appears to be general in that it is consistent with the observed kinetics of 11 different cytochromes c from a wide variety of sources with a range of oxidation-reduction potentials.  相似文献   

18.
The destructive oxidation of aerobically isolated 7Fe Azotobacter vinelandii ferredoxin I [(7Fe)FdI] by Fe(CN)3-6 is examined using low-temperature magnetic circular dichroism (MCD) and EPR. The results demonstrate that oxidation of the [3Fe-3S] cluster occurs only after essentially complete destruction of the [4Fe-4S] cluster. It is therefore feasible by controlled Fe(CN)3-6 oxidation to obtain a partially metallated form of FdI, (3Fe)FdI, containing only a [3Fe-3S] cluster. The MCD and EPR data demonstrate that the [3Fe-3S] cluster in (3Fe)FdI is essentially identical in structure to that in the native protein.  相似文献   

19.
Iron (2+ and 3+) is believed to transfer through the three-fold channels in the ferritin shell during iron deposition and release in animal ferritins. However, the rate of iron transit in and out through these channels has not been reported. The recent synthesis of [Fe(CN)6]3-, Prussian Blue (PB) and desferrioxamine (DES) all trapped within the horse spleen ferritin (HoSF) interior makes these measurements feasible. We report the rate of Fe2+ penetrating into the ferritin interior by adding external Fe2+ to [Fe(CN)6]3- encapsulated in the HoSF interior and measuring the rate of formation of the resulting encapsulated PB. The rate at which Fe2+ reacts with [Fe(CN)6]3- in the HoSF interior is much slower than the formation of free PB in solution and is proceeded by a lag period. We assume this lag period and the difference in rate represent the transfer of Fe2+ through the HoSF protein shell. The calculated diffusion coefficient, D approximately 5.8x10(-20) m2/s corresponds to the measured lag time of 10-20 s before PB forms within the HoSF interior. The activation energy for Fe2+ transfer from the outside solution through the protein shell was determined to be 52.9 kJ/mol by conducting the reactions at 10 approximately 40 degrees C. The reaction of Fe3+ with encapsulated [Fe(CN)6]4- also readily forms PB in the HoSF interior, but the rate is faster than the corresponding Fe2+ reaction. The rate for Fe3+ transfer through the ferritin shell was confirmed by measuring the rate of the formation of Fe-DES inside HoSF and an activation energy of 58.4 kJ/mol was determined. An attempt was made to determine the rate of iron (2+ and 3+) transit out from the ferritin interior by adding excess bipyridine or DES to PB trapped within the HoSF interior. However, the reactions are slow and occur at almost identical rates for free and HoSF-encapsulated PB, indicating that the transfer of iron from the interior through the protein shell is faster than the rate-limiting step of PB dissociation. The method described in this work presents a novel way of determining the rate of transfer of iron and possibly other small molecules through the ferritin shell.  相似文献   

20.
A novel FAD-dependent glucose dehydrogenase (FAD-GDH) was found and its enzymatic property for glucose sensing was characterized. FAD-GDH oxidized glucose in the presence of some artificial electron acceptors, except for O2, and exhibited thermostability, high substrate specificity and a large Michaelis constant for glucose. FAD-GDH was applied to an amperometric glucose sensor with Fe(CN)6(3-) as a soluble mediator. The use of a relatively high concentration of Fe(CN)6(3-) resulted in a good linearity between the current response and the glucose concentration, taking into account a large Michaelis constant for Fe(CN)6(3-). The glucose sensor was completely insensitive to O2 and responded linearly to glucose up to 30 mM. Compared to glucose, the response to other saccharides was negligible. The sensor can be stored at room temperature in a desiccator for at least one month without any change in the response or activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号