首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Comparative genomic analysis of important signaling pathways in Caenorhabditis briggsae and Caenorhabditis elegans reveals both conserved features and also differences. To build a framework to address the significance of these features we determined the C. briggsae embryonic cell lineage, using the tools StarryNite and AceTree. We traced both cell divisions and cell positions for all cells through all but the last round of cell division and for selected cells through the final round. We found the lineage to be remarkably similar to that of C. elegans. Not only did the founder cells give rise to similar numbers of progeny, the relative cell division timing and positions were largely maintained. These lineage similarities appear to give rise to similar cell fates as judged both by the positions of lineally equivalent cells and by the patterns of cell deaths in both species. However, some reproducible differences were seen, e.g., the P4 cell cycle length is more than 40% longer in C. briggsae than that in C. elegans (p < 0.01). The extensive conservation of embryonic development between such divergent species suggests that substantial evolutionary distance between these two species has not altered these early developmental cellular events, although the developmental defects of transpecies hybrids suggest that the details of the underlying molecular pathways have diverged sufficiently so as to not be interchangeable.  相似文献   

2.
The characteristic features of senescence developed prematurely in Caenorhabditis briggsae treated with the DNA synthesis inhibitor aminopterin at the minimum dosage which inhibits gonad formation. In addition, aminopterin induced other changes which thus far have not been associated with normal aging of C. briggsae. Interpretations of these results are given based on current knowledge of the mode action of aminopterin and an extant theory of aging.  相似文献   

3.
Identification of five laboratory strains (1-5) of putative Caenorhabditis briggsae was undertaken. Examination of the male bursal ray arrangement, mating tests with males of Caenorhabditis elegans, malate dehydrogenase zymograms, and SDS polyacrylamide electrophoresis demonstrated that strain 4 was C. briggsae and the others were C. elegans.  相似文献   

4.
5.
Neuropeptides are important signaling molecules that function in cell-cell communication as neurotransmitters or hormones to orchestrate a wide variety of physiological conditions and behaviors. These endogenous peptides can be monitored by high throughput peptidomics technologies from virtually any tissue or organism. The neuropeptide complement of the soil nematode Caenorhabditis elegans has been characterized by on-line two-dimensional liquid chromatography and quadrupole time-of-flight tandem mass spectrometry (2D-nanoLC Q-TOF MS/MS). Here, we use an alternative peptidomics approach combining liquid chromatography (LC) with matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry to map the peptide content of C. elegans and another Caenorhabditis species, Caenorhabditis briggsae. This study allows a better annotation of neuropeptide-encoding genes from the C. briggsae genome and provides a promising basis for further evolutionary comparisons.  相似文献   

6.
7.
In several insects and fish, and probably some mammals, the gene controlling the male-female switch has changed during evolution. It now seems that this has also happened in honeybees, where the sex-determining gene has now been shown to be a duplicate of another Hymenopteran sex-determining gene.  相似文献   

8.
Turning clustering loops: sex determination in Caenorhabditis elegans   总被引:4,自引:0,他引:4  
The nematode Caenorhabditis elegans has two sexes: males and hermaphrodites. Hermaphrodites are essentially female animals that produce sperm and oocytes. In the past few years tremendous progress has been made towards understanding how sexual identity is controlled in the worm. These analyses have revealed that the regulatory pathway controlling sexual development is far from linear and that it contains a number of loops and branches that play crucial roles in regulating sexual development. This review summarizes our current understanding of the mechanisms that regulate sexual cell fate in C. elegans.  相似文献   

9.
The free-living hermaphroditic nematode, Caenorhabditis briggsae, enters a dauer stage under certain conditions in axenic culture. Dauer larvae differ from directly-developing third-stage larvae in internal structure, size at time of second molt, morphology of second and third cuticles, separation zone of cuticular caps, and survival at 4 C and 37 C, temperatures fatal to other stages. Males, which occur rarely in liquid medium, may mature under conditions which cause most of the hermaphrodites to go into the dauer stage, resulting in a culture with increased male-to-hermaphrodite ratio.  相似文献   

10.
Summary On the basis of widespread phylogenetic conservatism, it has been propose'd that serologically-defined H-Y antigen is the inducer of primary sex differentiation in mammals, causing the initially indifferent gonad to become a testis rather than an ovary. The proposal has withstood extensive testing in a variety of biological circumstances: XX males have testes and are H-Y+ and fertile XY females lack testicular tissue and are H-Y; soluble H-Y antigen induces testicular organogenesis in XX indifferent gonads of the fetal calf in culture; H-Y antibody blocks tubular reaggregation of dispersed XY testicular cells, causing them to organize follicular clusters.There is a gonadal receptor for H-Y antigen: fetal ovarian cells that have been exposed to soluble H-Y (released for example by testicular Sertoli cells) take up the molecule and acquire the H-Y+ phenotype; they absorb H-Y antibody in serological tests. Specific uptake of soluble H-Y does not occur in the extra-gonadal tissues.It may be inferred that H-Y antigen is disseminated during embryogenesis and bound by specific receptors in cells of the primordial gonad, and that reaction of H-Y and its receptor signals a program of testicular differentiation, regardless of karyotype. The several anomalies of primary sexual differentiation manifest in such conditions as the XX male, the XX true hermaphrodite, and the XY female can thus reasonably be viewed as specific errors of synthesis, dissemination, and binding of H-Y antigen.H-Y is secreted by Daudi cells, cultured from a human XY Burkitt lymphoma. The Daudi-secreted moiety is a single hydrophobic protein of 18,000 molecular weight. Early attempts to characterize H-Y secreted by testicular Sertoli cells have yielded two molecules, one of 16,500 MW (corresponding to the Daudi-secreted 18,000 MW protein), and one of 31,000 MW. It remains to be ascertained whether both are in fact H-Y antigens, and if so, whether one is a polymer of the other, or whether each represents the product of genes with discrete testis-determining functions.  相似文献   

11.
Inoue T  Ailion M  Poon S  Kim HK  Thomas JH  Sternberg PW 《Genetics》2007,177(2):809-818
Molecular changes that underlie evolutionary changes in behavior and physiology are not well understood. Dauer formation in Caenorhabditis elegans is a temperature-sensitive process controlled through a network of signaling pathways associated with sensory neurons and is potentially an excellent system in which to investigate molecular changes in neuronal function during evolution. To begin to investigate the evolution of dauer formation in the genus Caenorhabditis at the molecular level, we isolated dauer-formation mutations in C. briggsae, a species closely related to the model organism C. elegans. We identified mutations in orthologs of C. elegans genes daf-2 (insulin receptor), daf-3 (Smad), and daf-4 (TGF-beta type 2 receptor), as well as genes required for formation of sensory cilia. Phenotypic analyses revealed that functions of these genes are conserved between C. elegans and C. briggsae. Analysis of C. briggsae mutations also revealed a significant difference between the two species in their responses to high temperatures (>26 degrees). C. elegans is strongly induced to form dauers at temperatures above 26 degrees, near the upper limit for growth of C. elegans. In contrast, C. briggsae, which is capable of growth at higher temperatures than C. elegans, lacks this response.  相似文献   

12.
Comparative studies of Caenorhabditis briggsae and C. elegans have provided insights into gene function and developmental control in both organisms. C. elegans is a well developed model organism with a variety of molecular and genetic tools to study gene functions. In contrast, there are only very limited tools available for its closest relative, C. briggsae. To take advantage of the full potential of this comparative approach, we have developed several genetic and molecular tools to facilitate functional analysis in C. briggsae. First, we designed and implemented an SNP-based oligonucleotide microarray for rapid mapping of genetic mutants in C. briggsae. Second, we generated a mutagenized frozen library to permit the isolation of targeted deletions and used the library to recover a deletion mutant of cbr-unc-119 for use as a transgenic marker. Third, we used the cbr-unc-119 mutant in ballistic transformation and generated fluorescently labeled strains that allow automated lineaging and cellular resolution expression analysis. Finally, we demonstrated the potential of automated lineaging by profiling expression of egl-5, hlh-1, and pha-4 at cellular resolution and by detailed phenotyping of the perturbations on the Wnt signaling pathway. These additions to the experimental toolkit for C. briggsae should greatly increase its utility in comparative studies with C. elegans. With the emerging sequence of nematode species more closely related to C. briggsae, these tools may open novel avenues of experimentation in C. briggsae itself.  相似文献   

13.
14.
Page AP 《Gene》1999,230(2):1871-275
In the free-living model nematode, Caenorhabditis elegans, a protein-folding co-transcribed gene pair has previously been described. The degree and form of trans-splicing, orientation and spacing of the genes, and the co-ordinate co-expression of protein folding catalysts in the nematode's hypodermis indicated this to be a functionally important operon. This gene pair has now been cloned and compared in the related organism Caenorhabditis briggsae to identify evolutionarily conserved, functionally important features. The corresponding C. briggsae gene pair was found to share the operon-specific features, including sequence homology blocks in the upstream 5′ flanking regions. The intergenic regions were not conserved. The homology block closest to the translational initiation codon of the upstream gene was found to contain a known Ceanorhabbitis promoter element site, and may therefore be an important cis-regulatory region directing the hypodermis-specific expression of this operon gene of C. elegans. This study also provides further confirmation of the high degree of chromosomal synteny between these nematode species.  相似文献   

15.
New genomic resources and genetic tools of the past few years have advanced the nematode genus Caenorhabditis as a model for comparative biology. However, understanding of natural genetic variation at molecular and phenotypic levels remains rudimentary for most species in this genus, and for C. briggsae in particular. Here we characterize phenotypic variation in C. briggsae’s sensitivity to the potentially important and variable environmental toxin, ethanol, for globally diverse strains. We also quantify nucleotide variation in a new sample of 32 strains from four continents, including small islands, and for the closest‐known relative of this species (C. sp. 9). We demonstrate that C. briggsae exhibits little heritable variation for the effects of ethanol on the norm of reaction for survival and reproduction. Moreover, C. briggsae does not differ significantly from C. elegans in our assays of its response to this substance that both species likely encounter regularly in habitats of rotting fruit and vegetation. However, we uncover drastically more molecular genetic variation than was known previously for this species, despite most strains, including all island strains, conforming to the broad biogeographic patterns described previously. Using patterns of sequence divergence between populations and between species, we estimate that the self‐fertilizing mode of reproduction by hermaphrodites in C. briggsae likely evolved sometime between 0.9 and 10 million generations ago. These insights into C. briggsae’s natural history and natural genetic variation greatly expand the potential of this organism as an emerging model for studies in molecular and quantitative genetics, the evolution of development, and ecological genetics.  相似文献   

16.
17.
M Haight  J Frim  J Pasternak  H Frey 《Cryobiology》1975,12(5):497-505
Approximately 75% or more of the L2 and L3 juvenile stages of the free-living nematode Caenorhabditis briggsae survived freezing and thawing without loss of fertility. Optimum survival depended upon a combination of conditions: (1) pretreatment with 5% DMSO at 0 °C for 10 min, (2) 0.2 °C per minute cooling rate from 0 to ?100 °C prior to immersion into liquid nitrogen, and (3) a 27.6 °C per minute warming rate from ?196 °C to ?10 °C. Storage at ?196 °C for more than 100 days was without effect on viability or fertility. Some of the L4 (about 50%) and adult (about 3%) stages survive the routine freeze-thaw treatment. However, there was no recovery of either embryonic stages or embryonated eggs from ?196 °C under these standard conditions. Either very fast cooling (about 545 °C/min) or fast warming (about 858 °C/min) rates diminished survival of the L2 and L3 stages drastically.Scanning electron microscopy revealed that freeze-thaw survivors with aberrant swimming behavior had cuticular defects. In juvenile forms, the altered swimming motion was lost after a molt whereas as abnormal adults grew, sinusoidal movement resumed. In the L4 and adult forms the cuticular abnormalities lowered viability and fertility. It is concluded that survival of nematodes from a freeze-thaw cycle is contingent upon establishing specific cryobiological conditions by varying aspects of the procedure that gave high recoveries of L2 and L3 stages.  相似文献   

18.
19.
The signal for sex determination in the nematode Caenorhabditis elegans is the ratio between the number of X chromosomes and the number of sets of autosomes (the X/A ratio). Animals with an X/A ratio of 0.67 (a triploid with two X chromosomes) or less are males. Animals with an X/A ratio of 0.75 or more are hermaphrodites. Thus, diploid males have one X chromosome and diploid hermaphrodites have two X chromosomes. However, the difference in X-chromosome number between the sexes is not reflected in general levels of X-linked gene expression because of the phenomenon of dosage compensation. In dosage compensation, X-linked gene expression appears to be 'turned down' in 2X animals to the 1X level of expression. An intriguing and unexplained finding is that mutations and X-chromosome duplications that elevate X-linked gene expression also feminize triploid males. One way that this relationship between sex determination and X-linked gene expression may be operating is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号