首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mouse embryo fibroblasts growing asynchronously in vitro stained with Feulgen method and their nuclear chromatin was analysed by means of the image analysing computer Quantimet 720D. Cells with 2C, 3C and 4C content of DNA were considered as being in G1, middle S and G2 phase of cell cycle, respectively. It was found that the projected area of nuclei increases during the cell cycle and that the mean optical density of chromatin increases from G1 through S to G2 phase. The curves showing the areas of chromatin at different optical density thresholds are different for cells in G1, S and G2 phase. The results demonstrate cyclic changes in chromatin morphology in the interphase nuclei during the cell cycle.  相似文献   

2.
Summary Cell distribution in different compartments of the cell cycle (G1, early, middle and late S, G2 and mitosis) has been studied during treatment with 0.5 mM 5-aminouracil and recovery inAllium cepa L. root meristems by cytophotometric and autoradiographic methods. At optimum conditions for obtaining mitotic synchronization, 5-aminouracil gives rise to cell accumulation in the S period, preferentially in its middle zone where the relative DNA content is 2.8 ± 0.1 C. After a 14-hour treatment 33% of the proliferative population is accumulated in this particular region.During recovery, a drastic reduction of the S phase and a clear increase of the mitotic frequency are the most important events observed. Apparently, the removal of the drug frees the blockage and the accumulated cells complete their interphase making up the mitotic wave.  相似文献   

3.
The time and duration of each phase of the premeiotic interphase were determined in microsporocytes of two clones (S and K clones) ofTrillium kamtschaticum. After collectionTrillium plants were stored at 3 C or 7 C prior to completion of premeiotic mitosis in archesporial cells. For autoradiography, cells were explanted in the presence of3H-thymidine to identify the interval of the premeiotic DNA synthesis. Approximate durations of the G1, S and G2 phases for the K clone stored at 3 C were estimated to be 12, 12 and 14 days, respectively. The interval of premeiotic development was markedly different between clones. A high degree of synchrony in meiotic development, which is usually observed within anthers up to late meiotic prophase, was confirmed at the S phase, suggesting that synchrony is established during the G1 interval.  相似文献   

4.
W. Nagl 《Protoplasma》1977,91(4):389-407
Summary The structure and ultrastructure of nuclei in the S period and other phases of the mitotic cell cycle have been studied in semi- and ultrathin sections of root tips ofAllium carinatum. Significant structural differences have been found and classified by means of DNA measurements by scanning photometry of Feulgen-stained squash preparations. In G1 and early S (S1 and S2) the euchromatin forms small, compact and electron-dense patches, while the heterochromatin is condensed into a number of chromocenters of the same electron-density as the euchromatin. In middle S (S3) the euchromatic elements become larger and more thread-like. In late S (S4) the euchromatin appears in the form of thick and uniform strands as in G2, and the heterochromatin decondenses into strands of the same, or a little higher, diameter, as the euchromatin. DNA replication starts in the condensed heterochromatin (S1, becomes shifted to euchromatin (S2), continues over both eu- and heterochromatin during middle S (S3), and is restricted to decondensed heterochromatin in late S (S4). Quantitative data of various nuclear parameters are given for the different stages. The results are discussed in relation to the species-specific nuclear ultrastructure, its molecular basis, and its variation during the mitotic interphase, as well as with respect to the timing and structural expression of DNA replication.  相似文献   

5.
Summary Using cryo-fixation and freeze-substitution electron microscopy, the effects of brefeldin A (BFA) on the structure of the trans-Golgi network (TGN), the endoplasmic reticulum (ER), and Golgi bodies in the unicellular green algaBotryococcus braunii were examined at various stages of the cell cycle. In the presence of BFA, all the TGNs of interphase and dividing cells aggregated to form a single tubular mass. In contrast, the TGNs decomposed just after cell division and disappeared during cell wall formation. Throughout the cell cycle, the TGN produced at least six kinds of vesicles, of which two were not formed in the presence of BFA: vesicles with a diameter of 200 nm and fibrillar substances, which formed in interphase cells; and vesicles with a diameter of 180–240 nm, which may participate in septum formation. In addition, the number of clathrin-coated vesicles attaching to the TGN decreased. In interphase cells, BFA induced the disassembly of Golgi bodies and an increase in the smooth-ER cisternae at the cis-side of Golgi bodies. This result may suggest the existence of retrograde transport from the Golgi bodies to the ER in the presence of BFA. These drastic structural changes in the Golgi bodies and the ER of interphase cells were not observed in BFA-treated dividing cells.Abbreviations BFA brefeldin A - ER endoplasmic reticulum - TGN trans-Golgi network  相似文献   

6.
M. Wierzbicka 《Protoplasma》1999,207(3-4):186-194
Summary Allium cepa (L.) adventitious roots were treated with lead (2.5 mg of Pb2+ [from Pb(NO3)2] per dm3) for 30–72 h. The cell cycle was studied by pulse labeling with [3H]thymidine. Mitotic activity kinetics, occurrence of disturbed mitoses (c-mitoses), and level of DNA synthesis were examined. It was found that lead prolonged the cell cycle and that cells in two phases of the cycle, G2 and S, differed in their sensitivity to lead. Cells in G2 were more sensitive; lead lengthened their cycle by 216% and disturbed the course of cell division by causing c-mitoses. Cells in S phase were less sensitive. Their cell cycle was longer by 55%. They went through their G2 phase without major disturbances, mitosis in these cells was normal. During treatment ofA. cepa with lead, its destructive effects on cells were exerted only during the first few hours (around 6 h) of incubation. That is when the inhibition of mitotic activity, numerous disturbances of cell division, a decline in the number of cells synthesizing DNA, and a lower level of DNA synthesis were observed. As the incubation continued, the above processes were found to return to normal. In the discussion, data are presented supporting the hypothesis that during the initial period of exposure ofA. cepa to lead, this metal enters both the root apoplast and symplast, exerting a destructive effect on cells, while later, lead penetrates only into the root apoplast, and in this way remains harmless to cells.  相似文献   

7.
Cell cycle regulation during growth-dormancy cycles in pea axillary buds   总被引:10,自引:2,他引:8  
Accumulation patterns of mRNAs corresponding to histones H2A and H4, ribosomal protein genes rpL27 and rpL34, MAP kinase, cdc2 kinase and cyclin B were analyzed during growth-dormancy cycles in pea (Pisum sativum cv. Alaska) axillary buds. The level of each of these mRNAs was low in dormant buds on intact plants, increased when buds were stimulated to grow by decapitating the terminal bud, decreased when buds ceased growing and became dormant, and then increased when buds began to grow again. Flow cytometry was used to determine nuclear DNA content during these developmental transitions. Dormant buds contain G1 and G2 nuclei (about 3:1 ratio), but only low levels of S phase nuclei. It is hypothesized that cells in dormant buds are arrested at three points in the cell cycle, in mid-G1, at the G1/S boundary and near the S/G2 boundary. Based on the accumulation of histone H2A and H4 mRNAs, which are markers for S phase, cells arrested at the G1/S boundary enter S within one hour of decaptitation. The presence of a cell population arrested in mid-G1 is indicated by a second peak of histone mRNA accumulation 6 h after the first peak. Based on the accumulation of cyclin B mRNA, a marker for late G2 and mitosis, cells arrested at G1/S begin to divide between 12 and 18 h after decapitation. A small increase in the level of cyclin B mRNA at 6 h after decapitation may represent mitosis of the cells that had been arrested near the S/G2 boundary. Accumulation of MAP kinase, cdc2 kinase, rpL27 and rpL34 mRNAs are correlated with cell proliferation but not with a particular phase of the cell cycle.  相似文献   

8.
The relationship between nuclear 1 C DNA content and cell cycle progression throughout successive stages of antheridial filaments were studied among five taxa ofChara: two dioecious species (n = 14):C. aspera (7.2 pg DNA),C. tomentosa (7.4 pg DNA), and three monoecious species (n = 28):C. vulgaris (13.5 pg DNA),C. fragilis (19.3 pg DNA), andC. contraria (19.6 pg DNA). With the use of double3H-thymidine labelling and morphometry a number of characteristics common to all of the investigated species were determined within the proliferative periods preceding spermiogenesis. These include: (1) simplified type of the cell cycle (S + G2 + M), due to complete lack of G1 intervals, (2) constant duration of S phase, (3) progressive shortening of G2 + M periods, and (4) gradual reduction of cell lengths at successive mitotic divisions. Nucleotypic dependence was found between genome size and several time parameters estimated for consecutive stages of antheridial filaments: the higher the DNA C-value, the longer the cell cycles, their component phases, the total duration of the proliferative period, as well as the lower the rate of growth of interphase cells. Differential Giemsa staining of late G2 phase nuclei revealed that the higher content of C-heterochromatin is connected with prolonged cell cycle durations in species with similar DNA C-values.  相似文献   

9.
UV-induction of thymine dimers in cellular DNA and their excision during different phases of the cell cycle of HeLa S3 cells were studied. Induction of thymine dimers was higher in the mitotic phase and the middle of the S phase than in the G1 phase and from the late S phase to the early G2 phase which are rather insensitive to UV. However, there is no significant difference in excision rate of UV-induced thymine dimers from the irradiated cells through the cell cycle. These findings indicate that the cyclic variation of UV-survivals during the cell cycle may be due to differences in the amount of thymine dimers in cellular DNA induced by UV-irradiation.  相似文献   

10.
Summary A method for the isolation of dictyosomes fromEuglena gracilis Klebs strain Z (Pringsheim) is described. An extensive Golgi system, with the individual dictyosomes commonly containing ten to twenty cisternae is present. Log phase cells are broken in a French pressure cell at 105 to 120 kg/cm2 in a breaking mix containing sucrose, sorbitol and ficoll. Addition of 0.3% of glutaraldehyde or formaldehyde to the breaking mix increases the number of stacked cisternae present in the final preparation. In addition to membrane stacks, the fractions contain numerous smooth vesicles. Swollen cisternae, which are also present, may account for these vesicles. Three dictyosome-enriched fractions are obtained by centrifugation in a discontinuous sucrose gradient. Fractions differ morphologically in the degree of stacking of cisternae. Further identification of the membrane fractions was accomplished by measuring IDPase activities in each of the fractions. Inosine diphosphatase activity is enriched 8–10-fold relative to the initial homogenate. The highest IDPase activity was present in the fraction containing the greatest number of stacked cisternae.  相似文献   

11.
Summary Exponentially growing HeLa cells have been separated according to their cell cycle age by sedimenting at unit gravity for 3 hr on a phosphate-buffered sucrose density gradient. Measurements of cell size, cell number, DNA content, and tritiated thymidine incorporation in consecutive portions of the gradient showed that cells in upper fractions were in G1, cells in middle fractions were in S, and cells in lower fractions were in G2. Basic amino acids were rapidly incorporated into nuclear protein during late G1 and S; some incorporation also took place during G2. This work is supported by grant A-3458 from the National Research Council of Canada.  相似文献   

12.
Summary In order to examine changes in survival and mutation rates during a cell cycle in higher plant, fertilized egg cells of rice were irradiated with X-rays at 2 h intervals for the first 36 h after pollination, i.e., at different phases of the first and second cell cycles. The most sensitive phase in lethality was late G1 to early S, followed by late G2 to M, which were more sensitive than the other phases. In both M1 and M2 generations, sterile plants appeared most frequently when fertilized egg cells were irradiated at G2 and M phases. Different kinds of mutated characters gave rise to the respective maximum mutation rates at different phases of a cell cycle: namely, albino and viridis were efficiently induced at early G1, xantha at early S, short-culm mutant at mid G2, heading-date mutant at M to early G1. The present study suggests the possibility that the differential mutation spectrums concerning agronomic traits are obtained by selecting the time of irradiation after pollination.  相似文献   

13.
Summary Microspectrophotometry following Feulgen staining and autoradiography following (3H)-thymidine labelling were used to study cell-cycle events during pollen development in tobacco (Nicotiana tabacum L.). During normal gametophytic pollen development in the anther and in vitro the generative nucleus passes through the S phase to the G2 phase soon after microspore mitosis, while the vegetative nucleus remains arrested in G1 (=G0). During embryogenie induction by an in vitro starvation treatment of immature pollen ongoing DNA replication in the generative nucleus is completed and followed by DNA replication in the vegetative cell in a large fraction of the pollen grains. Addition of the DNA replication inhibitor hydroxyurea to the starvation medium postpones S phase entry until the pollen is transferred to a rich medium and does not affect embryo formation. These results demonstrate that one of the crucial events of embryogenic induction is the derepression of the G1 arrest in the cell cycle of the vegetative cell.  相似文献   

14.
Summary Mouse fibroblasts, subline L-929 F were synchronized by mitotic detachment. The synchronized cell cultures were irradiated with 200 kVp X-rays at different time after mitosis, and age reponse functions and dose effect curves were determined using the colony test. The cell age in the mitotic cycle was obtained from a computer analysis of flow cytometric DNA histograms. Both intrinsic radiosensitivity 1/D 0 and extrapolation numbern were found to vary during the cell cycle. TheD 0 has a maximum value of 176 ± 1 rad in the middle ofG 1 phase and a minimum of 71 ± 1 rad at theS/G 2 transition, while the extrapolation number is rather constant from the beginning ofG 1 phase (1.9 ± 0.1) to the middle ofS phase (2.3 ± 0.1) and reaches a steep maximum of 9.3 ± 1.1 atS/G 2 transition. The values ofn in the various phases of cell cycle are compared with the respective values of the recovery factor determined after fractionated irradiation. - Cell survival after a single dose of 616 rad has minima for irradiation atG 1/S transition and in earlyG 2 phase; the survival in earlyG 2 being about 40 times smaller than in earlyG 1 phase. Implications for a cell cycle specific therapy are discussed.Supported by the Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg  相似文献   

15.
Summary In Fanconi anemia (FA) cells the duration of the G2 phase of the cell cycle prolonged. Such a slowing of the G2 phase can be induced in normal cells by irradiation with rays during S phase, which also further increases the duration of G2 in FA cells. The addition of caffeine during the last 7h of culture shortens the G2 phase in both nonirradiated and irradiated FA cells. In nonirradiated normal cells it may have no effect or may increase G2 phase duration, but in irradiated normal reduces the slowing of G2 induced by the radiation. This suggests that FA cells recognize and repair preexisting DNA lesions during G2 phase and that caffeine inhibits this process. The principal anomaly in FA may be a deficient repair during S phase, as manifest in the prolonged postreplication repair period during G2 phase required to repair the larger number of lesions passing through S phase.  相似文献   

16.
Two-color fluorescence in situ hybridization (FISH) with chromosome enumeration DNA probes specific to chromosomes 7, 11, 17, and 18 was applied to CAL-51 breast cancer cells to examine whether the fluorescence intensity of FISH spots was associated with cell cycle progression. The fluorescence intensity of each FISH spot was quantitatively analyzed based on the cell cycle stage determined by image cytometry at the single-cell level. The spot intensity of cells in the G2 phase was larger than that in the G0/1 phase. This increased intensity was not seen during the early and mid S phases, whereas the cells in the late S phase showed significant increases in spot intensity, reaching the same level as that observed in the G2 phase, indicating that alpha satellite DNA in the centromeric region was replicated in the late S phase. Thus, image cytometry can successfully detect small differences in the fluorescence intensities of centromeric spots of homologous chromosomes. This combinational image analysis of FISH spots and the cell cycle with cell image cytometry provides insights into new aspects of the cell cycle. This is the first report demonstrating that image cytometry can be used to analyze the fluorescence intensity of FISH signals during the cell cycle.  相似文献   

17.
Summary In the silkworm, Bombyx mori, diapause occurs at a specific embryonic stage, i.e. after formation of the germ band with cephalic lobes and telson and sequential mesoderm segmentation. As long as the eggs are incubated at 25° C, cell divisions and morphological development of the embryos cease. To examine changes in percentage of embryonic cells in the G1, S and G2 phases during embryogenesis, nuclear fractions were isolated from embryos, stained with propidium iodide and then subjected to flow cytometric analysis. The percentages of embryonic cells in G1, S and G2 were 10, 35 and 55%, respectively, at the stage of formation of cephalic lobes, whilst 98% of cells were in G2 at diapause stage. After termination of diapause by acclimation at 5° C or by a combination of chilling and HCl, cell division resumed in the embryos. During this period, the cells rapidly entered S phase through G1 from G2, suggesting that their G1 phase was short. In eggs in which diapause was averted by HCl-treatment after incubation at 25° C for 20 h after oviposition, embryonic development proceeded continuously for 9.5 days at 25° C until hatching. Along with this development, the G1 fraction increased to levels of about 90%. These results indicate that embryonic cells are arrested in G2 at diapause and suggest that, concomitant with further embryonic development, cell cycles become slower in proportion to an increasing length of G1. Finally, most of the cells may be arrested in G1, while there is only a small fraction of cells continuously cycling. Offprint requests to: T. Yaginuma  相似文献   

18.
Summary

The behaviour of the male and the female pronuclei in Crepidula fornicata is studied, beginning at the formation of the second polar body. Shortly after the extrusion of the second polar body the female pronucleus is formed, and then the male pronucleus enters the yolk-free cytoplasm near the animal pole. Both pronuclei are enveloped by a typical nuclear membrane, and increase in size until the prophase; a zygote nucleus is not formed (“Ascaris type” of fertilization). In the meantime, the chromatin of both pronuclei is arranged in a meshwork in the centre of the pronuclei.

Shortly after the formation of the second polar body a special cytoplasm, the “perinuclear cytoplasm”, is formed in the vicinity of each of the pronuclei. During the early stages of the first cleavage cycle this cytoplasm is composed of numerous Golgi complexes, small dense Golgi vesicles, smooth endoplasmic reticulum vesicles, mitochondria and rosettes of glycogen-like granules. At later stages, when the pronuclei have met and their plasms coalesced, the number of Golgi elements decreases; at the same time, the small dense Golgi vesicles increase in number and aggregate in clusters.

The phases of the first three cleavage cycles are determined by cytophotometry. The nuclear DNA of the male pronucleus and that in the nuclei of the blastomeres of the 2- and the 4-cell stage is reduplicated between 7 and 33% of the normalized cleavage cycles; the G2-phase is between 33 and 57%, while the mitotic phase occupies the last part of each cleavage cycle and the first 7% of the next cleavage cycle. There is no G j-phase. Since the female pronucleus lies just beneath the polar bodies, its DNA content could not be measured separately.  相似文献   

19.
Chromosome number in the cells of the first division cycle in the root tip of Hordeum vulgare (2n=14) was apparently reduced from 2n to n by the chloramphenicol (CAP) treatments in early S, S late and/or early G 2 stages. Morphological observations and measurements of relative DNA content per cell indicated that such reduction was due to tight alignment of chromosomes in pairs. —It was supposed that homologous chromosomes are close together in the interphase nucleus, and their successive association up to mitotic prometaphase was induced by the CAP treatment.  相似文献   

20.
Preparative polyacrylamide gel electrophoresis was used to examine histone phosphorylation in synchronized Chinese hamster cells (line CHO). Results showed that histone f1 phosphorylation, absent in G1-arrested and early G1-traversing cells, commences 2 h before entry of traversing cells into the S phase. It is concluded that f1 phosphorylation is one of the earliest biochemical events associated with conversion of nonproliferating cells to proliferating cells occurring on old f1 before synthesis of new f1 during the S phase. Results also showed that f3 and a subfraction of f1 were rapidly phosphorylated only during the time when cells were crossing the G2/M boundary and traversing prophase. Since these phosphorylation events do not occur in G1, S, or G2 and are reduced greatly in metaphase, it is concluded that these two specific phosphorylation events are involved with condensation of interphase chromatin into mitotic chromosomes. This conclusion is supported by loss of prelabeled 32PO4 from those specific histone fractions during transition of metaphase cells into interphase G1 cells. A model of the relationship of histone phosphorylation to the cell cycle is presented which suggests involvement of f1 phosphorylation in chromatin structural changes associated with a continuous interphase "chromosome cycle" which culminates at mitosis with an f3 and f1 phosphorylation-mediated chromosome condensation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号