首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uterine Natural Killer (uNK) cells are the most abundant lymphocyte population recruited in the uteri during murine and human pregnancy. Previous investigation on uNK cells during mouse pregnancy focused more on its accumulation in postimplantation periods, which were believed to play important roles in regulating trophoblast invasion and angiogenesis towards successful placentation. However, by using recently developed methods of Dolichos biflorus agglutinin (DBA) lectin, a closer examination during mouse preimplantation revealed that there were also dynamic regulations of uNK cell, suggesting a major regulation by steroid hormones. Here we provide a detailed examination of uNK cells distribution during mouse early pregnancy by DBA lectin reactivity, with emphasis on preimplantation period and its hormonal regulation profiles. Our results showed that uNK precursor cells or its cell membrane specific components could be recruited in the uterus by estrogen or/and progesterone, and the effects could be completely abolished by specific antagonists of their nuclear receptors (estrogen and progesterone receptor). These results suggested that the preimplantation uterus, through concerted hormone regulation, could recruit uNK precursor cell or its specific cellular component, which might be conducive for uterine receptivity and further uNK construction/function during postimplantation.  相似文献   

2.
3.
4.
5.
6.
The cellular actions of steroid hormone progesterone (P) are mediated via its nuclear receptors, which regulate the expression of specific target genes. The identity of gene networks that are regulated by the P receptors (PRs) in the uterus at various stages of the reproductive cycle and pregnancy, however, remain largely unknown. In this study, we have used oligonucleotide microarrays to identify mRNAs whose expression in the pregnant mouse uterus is modulated by RU486, a well-characterized PR antagonist, which is also an effective inhibitor of implantation. We found that, in response to RU486, expression of mRNAs corresponding to 78 known genes was down-regulated at least 2-fold in the preimplantation mouse uterus. The PR regulation of several of these genes was ascertained by administering P to ovariectomized wild-type and PR knockout (PRKO) mice. Detailed spatio-temporal analysis of these genes in the pregnant uterus indicated that their expression in the epithelium and stroma could be correlated with the expression of PR in those cell types. Furthermore, time-course studies suggested that many of these genes are likely primary targets of PR regulation. We also identified 70 known genes that were up-regulated at least 2-fold in the pregnant uterus in response to RU486. Interestingly, initial examination of a number of RU486-inducible genes reveals that their uterine expression is also regulated by estrogen. The identification of several novel PR-regulated gene pathways in the reproductive tract is an important step toward understanding how P regulates the physiological events leading to implantation.  相似文献   

7.
8.
9.
10.
11.
12.
Regulation of progesterone receptor (PR) in uterine stroma (endometrial stroma plus myometrium) by estrogen was investigated in estrogen receptor-alpha (ERalpha) knockout (alphaERKO) mice. 17 beta-Estradiol (E(2)) increased PR levels in uterine stroma of ovariectomized alphaERKO mice, and ICI 182 780 (ICI) inhibited this E(2)-induced PR expression. Estrogen receptor-beta(ER beta) was detected in both uterine epithelium and stroma of wild-type and alphaERKO mice by immunohistochemistry. In organ cultures of alphaERKO uterus, both E(2) and diethylstilbestrol induced stromal PR, and ICI inhibited this induction. These findings suggest that estrogen induces stromal PR via ERbeta in alphaERKO uterus. However, this process is not mediated exclusively by ERbeta+, because in ERbeta knockout mice, which express ERalpha, PR was up-regulated by E(2) in uterine stroma. In both wild-type and alphaERKO mice, progesterone and mechanical traumatization were essential and sufficient to induce decidual cells, even though E(2) and ERalpha were also required for increase in uterine weight. Progesterone receptor was strongly expressed in decidual cells in alphaERKO mice, and ICI did not inhibit decidualization or PR expression. This study suggests that up-regulation of PR in endometrial stroma is mediated through at least three mechanisms: 1) classical estrogen signaling through ERalpha, 2) estrogen signaling through ERbeta, and 3) as a result of mechanical stimulation plus progesterone, which induces stromal cells to differentiate into decidual cells. Each of these pathways can function independently of the others.  相似文献   

13.
14.
A critical role of progesterone (P) during early pregnancy is to induce differentiation of the endometrial stromal cells into specialized decidual cells that support the development of the implanting embryo. The P-induced signaling pathways that participate in the formation and function of the decidual cells remain poorly understood. We report here that the expression of the bone morphogenetic protein 2 (BMP2), a morphogen belonging to the TGFbeta superfamily, is induced downstream of P action in the mouse uterine stroma during decidualization. To determine the function of BMP2 during this differentiation process, we employed a primary culture system in which undifferentiated stromal cells isolated from pregnant mouse uterus undergo decidualization. When recombinant BMP2 was added to these stromal cultures, it markedly advanced the differentiation program. We also found that siRNA-mediated silencing of BMP2 expression in these cells efficiently blocked the differentiation process. Gene expression profiling experiments identified Wnt4 as a downstream target of BMP2 regulation in stromal cells undergoing decidualization. Attenuation of Wnt4 expression by siRNAs greatly reduced stromal differentiation in vitro, indicating that it is a key mediator of BMP2-induced decidualization. We also observed a remarkable induction in the expression of BMP2 in human endometrial stromal cells during decidualization in vitro in response to steroids and cAMP. Addition of BMP2 to these cultures led to a robust enhancement of Wnt4 expression and stimulated the differentiation process. Collectively, our studies uncovered a unique conserved pathway involving BMP2 and Wnt4 that mediates P-induced stromal decidualization in the mouse and the human.  相似文献   

15.
In order for a successful pregnancy to occur, the embryo must attach to the luminal epithelial cells and invade into the stroma. Then, the surrounding stromal cells need to undergo decidualization in order to establish the vasculature necessary for survival of the embryo. These events in early pregnancy are tightly regulated by the steroid hormones, estrogen (E2) and progesterone (P4), through their cognate receptors, the estrogen receptor (ER) and the progesterone receptor (PR), respectively. Using a mouse model in which the PR has been ablated, it was demonstrated that the PR is necessary for embryo implantation and decidualization. Therefore, understanding the mechanism of PR action in the adult uterus is necessary in order to understand the events of early pregnancy. Insights from both mouse models and human samples have been integral in elucidating uterine PR action. These studies have shown that not only PR target genes, but also mediators of PR action are important for correct PR action in early pregnancy. Many of the genes involved in PR action in early pregnancy have also been shown to have roles in uterine diseases such as endometriosis and endometrial cancer. Therefore, the integration of mouse and human studies on PR action in the uterus will be important for the future understanding of uterine diseases and in the development of treatment for these diseases.  相似文献   

16.
In order for a successful pregnancy to occur, the embryo must attach to the luminal epithelial cells and invade into the stroma. Then, the surrounding stromal cells need to undergo decidualization in order to establish the vasculature necessary for survival of the embryo. These events in early pregnancy are tightly regulated by the steroid hormones, estrogen (E2) and progesterone (P4), through their cognate receptors, the estrogen receptor (ER) and the progesterone receptor (PR), respectively. Using a mouse model in which the PR has been ablated, it was demonstrated that the PR is necessary for embryo implantation and decidualization. Therefore, understanding the mechanism of PR action in the adult uterus is necessary in order to understand the events of early pregnancy. Insights from both mouse models and human samples have been integral in elucidating uterine PR action. These studies have shown that not only PR target genes, but also mediators of PR action are important for correct PR action in early pregnancy. Many of the genes involved in PR action in early pregnancy have also been shown to have roles in uterine diseases such as endometriosis and endometrial cancer. Therefore, the integration of mouse and human studies on PR action in the uterus will be important for the future understanding of uterine diseases and in the development of treatment for these diseases.  相似文献   

17.
Cai L  Zhang J  Duan E 《Cytokine》2003,23(6):193-178
Embryo implantation depends on the synchronized development of the blastocyst and the endometrium. This process is highly controlled by the coordinated action of the steroid hormones: estrogen and progesterone. By autocrine, paracrine or juxtacrine routes, some growth factors or cytokines are involved in this steroidal regulation pathway. Here we report the effects of epidermal growth factor (EGF) on embryo implantation in the mouse, the expression and distribution patterns of EGF protein in the mouse blastocyst, ectoplacental cone (EPC) and peri-implantation uterus on days 1-8 of gestation.By RT-PCR and dot blot, we found that EGF and its receptor (EGFR) are co-expressed in the blastocyst and peri-implantational uteri of pregnant days 2-8 (D2-D8) mice. Injection of EGF antibody into a uterine horn on the third day of pregnancy (D3) significantly reduced the number of mouse embryos that implanted on D8, indicating EGF have a function in the mouse embryo implantation.Further investigation by using indirect immunofluorescence and confocal microscope was made to trace EGF and EGFR protein localization during the mouse embryo implantation. EGF and EGFR are co-localized in the blastocyst, and in the secondary trophoblastic giant cells (SGC) of the EPC. At the pre-implantation stage, the distribution of EGF protein in the mouse uterus changes from epithelium to stroma. On D1 of pregnancy, EGF is mainly distributed in uterine stroma and myometrium. On D2, it is present in the uterine epithelium. On D3, it changes again from the uterine epithelium to the stroma. By D4, EGF is predominantly in the stroma. This dynamic distribution correlates with the proliferation activity of uterine cells at each period. On D6-D8 of embryo implantation, EGF 3 protein accumulates at the uterine mesometrial pole, a region that contributes to the trophoblastic invasiveness and placentation.This temporal and spatial localization of EGF protein in the mouse uterus implicates the cytokine in the regulation of trophoblastic invasiveness and uterine receptiveness.  相似文献   

18.
During early pregnancy, the steroid hormone progesterone induces differentiation of uterine stroma to decidual cells, which regulate embryo-uterine interactions. The progesterone-induced signaling molecules that participate in the formation and function of decidua remain poorly understood. We recently utilized high-density oligonucleotide microarrays to identify several genes whose expression is markedly altered in pregnant uterus in response to RU486, a well characterized antagonist of the progesterone receptor (PR). Our study revealed that the gene encoding cytotoxic T-lymphocyte antigen-2beta (CTLA-2beta), a cysteine protease inhibitor, is expressed during PR-induced decidualization. The spatio-temporal expression of CTLA-2beta mRNA precisely overlapped with the decidual phase of pregnancy. Interestingly, administration of progesterone to estrogen-primed ovariectomized mice failed to induce CTLA-2beta expression. A concomitant artificial decidual stimulation was necessary to trigger this expression. Uteri of PR knockout mice failed to express this mRNA, even after a combined administration of steroid hormones and artificial stimulation. The uterine expression of CTLA-2beta was, therefore, dependent on PR as well as other unknown factor(s) associated with decidual response. To identify the molecular target(s) of CTLA-2beta,we analyzed its interaction with proteins present in soluble extracts prepared from day 7 pregnant uteri containing implanted embryos. A protein affinity strategy employing recombinant CTLA-2beta helped us to determine that cathepsin L, a cysteine protease, is one of its targets in the pregnant uterus. Consistent with this finding, expression of cathepsin L was detected in the giant trophoblast cells of the ectoplacental cone on day 7 of pregnancy. Collectively, our results support the hypothesis that expression of CTLA-2beta in the decidua may regulate implantation of the embryo by neutralizing the activities of one or more proteases generated by the proliferating trophoblast.  相似文献   

19.
Northern blot analysis of mouse uterine RNA showed that IL-1 (alpha and beta), and TNF-alpha mRNA were abundant on day (D) 1 of pregnancy, reduced on D2, and remained basal throughout the remainder of the preimplantation period (D3 and D4). Elevated IL-1 beta and TNF-alpha mRNA levels on D1 were accompanied by increased levels of immunoreactive protein in uterine cytosol preparations as determined by ELISA. In situ hybridization detected IL-1 beta mRNA in cells located in the endometrial stroma and concentrated in subepithelial regions on D1. Immunocytochemical localization of IL-1 beta and TNF-alpha identified cells scattered throughout the endometrial stroma, but more concentrated in the subepithelial region on D1. On D3 and D4, cytokine-immunopositive cells decreased in number and became located predominantly at the endometrial-myometrial junction. Histochemical localization of peroxidase as a marker predominantly for eosinophils showed an abundance of these cells in the D1 uterus. The distribution of peroxidase-positive cells in the uterus followed the same temporal and spatial changes as cytokine-immunopositive cells during the preimplantation period. These data document the occurrence of an inflammatory response in the uterus on D1 of pregnancy, and demonstrate that as the preimplantation period progresses the distribution of inflammatory cells changes from the subepithelial region of the endometrial stroma to the periphery of the uterus at the endometrial-myometrial junction. Mechanisms regulating the uterine inflammatory response on D1 were investigated. Cytokine mRNA levels were not significantly elevated during the estrous cycle or after treatment of adult ovariectomized mice with estradiol-17 beta. In contrast, mating with vasectomized males resulted in an inflammatory response on D1 of pseudopregnancy similar to that on D1 of normal pregnancy, whereas mechanical stimulation of the uterine cervix failed to elicit such a response. These results strongly suggest a role for some factor(s) in the ejaculate, other than spermatozoa, in the initiation of a uterine inflammatory response after mating, but an effect of the act of mating cannot be excluded.  相似文献   

20.
Summary This study was undertaken to determine whether the influx of progesterone into the uterine lumen of the rabbit, in the preimplantation period, is dependent onuteroglobin (UGL). Rabbits were ovariectomized and, three months later, treated with two defferent doses of progesterone. Purified UGL was injected into one uterine horn and, as a control,immunoglobulin G (IgG) was injected into the other. After four days, the animals were sacrificed their uteri flushed, and the progesterone content of the washes was determined by radioimmunoassay.Animals with the lower serum progesterone level (2.8 ng/ml) had a significantly different uterine horn progesterone content. The hormone accumulation in the horn containing UGL was 2.3 to 7.5 times higher than in the horn containing IgG. Animals with a higher serum progesterone level (7.2 ng/ml) showed no differences. The hormone content was equally high in both horns, presumably due to the synthesis of endogenous UGL being reactivated by the hormone treatment.The validity of these experiments as models for the events during early pregnancy and the physiological role of progesterone available inside the uterus are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号