首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro zinc uptake by human erythrocytes was studied under a range of zinc concentrations representing three different plasma zinc levels i.e., zinc deficient [0.35–0.61 ppm], zinc normal [0.74–1.59 ppm], and zinc excess [1.65–2.3 ppm]. Further, interactions of physiological levels of riboflavin, flavin adenine dinucleotide (FAD), nicotinic acid, nicotinamide adenine dinucleotide (NAD), thiamine, thiamine pyrophosphate (TPP), folic acid, and ascorbic acid with zinc uptakes were studied in independent experiments. In control experiments, as compared to the normal zinc state, the rate of change of zinc uptake over change in zinc levels was 1.6 times in the excess state and 0.12 times in the deficient state, indicating three distinct patterns. Under the zinc-deficient state, thiamine significantly enhanced the zinc uptakes (p<0.05), whereas ascorbic acid and riboflavin inhibited zinc uptakes (p<0.05). The percent hemolysis of the cells was also significantly lower in the presence of thiamine (p<0.05). Under normal and excess zinc states, the vitamin-zinc interactions were not significant. The results suggest that with erythrocytes as the vehicles, thiamine might be playing an enhancer role in uptake of zinc, whereas the action of ascorbic acid might be inhibitory for zinc uptakes under deficient zinc states.  相似文献   

2.
Many studies have suggested that there is a close correlation among declines in internal ascorbic acid (AsA) levels, various disorders, and senescence. To clarify the relationships between age-associated changes in intracellular AsA levels and the effects of AsA administration on intracellular reactive oxygen species (ROS) levels, we investigated aging-related changes in AsA uptake, ROS levels, and the effects of AsA administration on intracellular ROS levels in young and old (senescent) human fibroblasts. Our results demonstrated that AsA uptake was increased in old cells compared with young cells, although mRNA and protein expression of sodium-dependent vitamin C transporter 2 was barely altered between the young and old cells. We also demonstrated that the intracellular superoxide anion level was higher in young cells, whereas the level of intracellular peroxides was significantly increased in old cells under both normal and oxidative stress conditions. Moreover, AsA administration markedly decreased the augmentation of intracellular peroxides in old cells, whereas there was no effect of AsA treatment in young cells under both normal and oxidative stress conditions. Therefore, our results also indicate that AsA could play an important role in regulating the intracellular ROS levels in senescent cells and that the need for AsA is enhanced by cellular senescence.  相似文献   

3.
Zinc transferrin, when added to serum-free cultures of phytohemagglutinin-stimulated human lymphocytes, causes an increase in deoxyribonucleic acid synthesis over that seen with phytohemagglutinin alone, as judged by the uptake of tritiated thymidine. This effect is not seen with zinc acetate, zinc albumin, or zinc ovotransferrin. Zinc transferrin also has a similar effect on ribonucleic acid synthesis. Furthermore, transferrin-bound zinc is specifically taken up by stimulated lymphocytes, maximal uptake occurring approximately 14 hr after the addition of phytohemagglutinin. These results indicate a function for serum transferrin in zinc metabolism, and, moreover, a role for the zinc transferrin complex in lymphocyte metabolism.  相似文献   

4.
The effects of high dose ascorbic acid (10 000 mg· kg–1 in the diet) and the transition metal on the presence of oxidative stress in the internal organs of growing chicks, as well as on the innate immune system status, were investigated. Supplementation with a high dose of ascorbic acid had pro‐inflammatory effects on the intestinal mucosa, and lysozyme levels were decreased significantly in all organs studied. High‐dose ascorbic acid caused an imbalance between prooxidative and antioxidative activities and was associated with the generation of semiquinone radicals. We observed that ascorbic acid increased iron and cadmium absorption. When a high dose of ascorbic acid was applied, elevated kidney and intestinal mucosa iron concentrations were observed. The amount of free malondialdehyde in the above organs has increased as well. These data have important implications for the mechanism of the oxidative stress development under the influence of high dose of ascorbic acid, indicating the importance of the side reactions of the mitochondrial electron transport chain with the formation of semiquinone radicals and the role of transition metals in this process. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Ascorbic acid is present as a primary antioxidant in plasma and within cells, protecting both cytosolic and membrane components of cells from oxidative damage. The effects of intracellular ascorbic acid on F(2)-isoprostanes (biomarkers of oxidative stress) and monocyte chemoattractant protein-1 (marker of inflammatory responses) production in monocytic THP-1 cells were investigated under conditions of 2,2'-Azobis(2-methylpropionamidine)dihydrochloride (AAPH) induced oxidative stress. Cells cultured under normal conditions have extremely low ascorbate levels and the intracellular ascorbate can be augmented significantly by adding ascorbate to the culture medium. While AAPH treatment reduced cell viability, increased F(2)-isoprostanes and MCP-1 production, the presence of intracellular ascorbic acid maintained high cell viability and attenuated both F(2)-isoprostanes and MCP-1 production. Measurement of intracellular ascorbic acid and its oxidised products showed that intracellular ASC was oxidised to a significantly greater extent during AAPH treatment and may be utilised to protect the cells under conditions of oxidative stress. This study demonstrates the importance of intracellular ascorbate, which may be lacking under normal cell culture conditions, under conditions of increased oxidative stress.  相似文献   

6.
Oxidative stress is implicated in the cognitive deterioration associated with normal aging as well as neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. We investigated the effect of ascorbic acid (vitamin C) on oxidative stress, cognition, and motor abilities in mice null for gulono-γ-lactone oxidase (Gulo). Gulo−/− mice are unable to synthesize ascorbic acid and depend on dietary ascorbic acid for survival. Gulo−/− mice were given supplements that provided them either with ascorbic acid levels equal to- or slightly higher than wild-type mice (Gulo-sufficient), or lower than physiological levels (Gulo-low) that were just enough to prevent scurvy. Ascorbic acid is a major anti-oxidant in mice and any reduction in ascorbic acid level is therefore likely to result in increased oxidative stress. Ascorbic acid levels in the brain and liver were higher in Gulo-sufficient mice than in Gulo-low mice. F4-neuroprostanes were elevated in cortex and cerebellum in Gulo-low mice and in the cortex of Gulo-sufficient mice. All Gulo−/− mice were cognitively normal but had a strength and agility deficit that was worse in Gulo-low mice. This suggests that low levels of ascorbic acid and elevated oxidative stress as measured by F4-neuroprostanes alone are insufficient to impair memory in the knockouts but may be responsible for the exacerbated motor deficits in Gulo-low mice, and ascorbic acid may have a vital role in maintaining motor abilities.  相似文献   

7.
Zinc and myoglobin content in muscles from pigs were studied under various conditions. Zinc concentration was considerably higher in red than in white muscles. In muscles, where the metabolic pattern changes from glycolytic to oxidative during the period from birth to weaning, a simultaneous increase in zinc content was seen. A significant positive correlation exists between myoglobin and zinc content under normal conditions. However, while myoglobin concentration decreases due to iron deficiency anaemia no changes occur in zinc content. It is concluded that no functional link seems to exist between zinc metabolism and myoglobin synthesis in porcine muscles.  相似文献   

8.
Approximately 12% of Americans do not consume the estimated average requirement for zinc and could be at risk for zinc deficiency. Since zinc has proposed antioxidant function, inadequate zinc consumption may lead to an enhanced susceptibility to oxidative stress through several mechanisms, including altered antioxidant defenses. In this study, we hypothesized that dietary zinc restriction would result in lower antioxidant status and increased oxidative damage. We fed weanling Sprague-Dawley rats (n=12 per group) a zinc-adequate (50 mg/kg of zinc) diet, a zinc-deficient (<0.05 mg/kg of zinc) diet or a pair-fed diet for 3 weeks and then assessed their antioxidant status and oxidative stress parameters. Rats were zinc deficient as indicated by a significant (P<.05) reduction in body weight (49%) and 19% lower (P<.05) hepatic zinc (20.6+/-2.1 mg/kg) as compared with zinc-adequate rats (24.6+/-2.2 mg/kg). Zinc deficiency resulted in elevated (P<.05) plasma F(2) isoprostanes. Zinc deficiency-mediated oxidative stress was accompanied by a 20% decrease (P<.05) in the ferritin-reducing ability of plasma assay and a 50% reduction in plasma uric acid (P<.05). No significant change in plasma ascorbic acid or in plasma alpha-tocopherol and gamma-tocopherol was observed. However, hepatic alpha-tocopherol and gamma-tocopherol concentrations were decreased by 38% and 27% (P<.05), respectively, as compared with those in zinc-adequate rats. Hepatic alpha-tocopherol transfer protein levels were unaltered (P>.05) by zinc deficiency, but cytochrome P450 (CYP) 4F2 protein levels were elevated (P<.05) as compared with those in zinc-adequate rats. Collectively, zinc deficiency increased oxidative stress, which may be partially explained by increased CYP activity and reductions in hepatic alpha-tocopherol and gamma-tocopherol and in plasma uric acid.  相似文献   

9.
Zinc ions have an insulin-like (insulinomimetic) effect. A particularly sensitive target of zinc ions is protein tyrosine phosphatase 1B (PTP 1B), a key regulator of the phosphorylation state of the insulin receptor. Modulation of insulin signaling by zinc chelating agents and the recognition of temporal and spatial fluctuations of zinc suggest a physiological role of zinc in insulin signal transduction. Tyrosine phosphatases seem to be regulated jointly by insulin-induced redox (hydrogen peroxide) signaling, which results in their oxidative inactivation, and by their zinc inhibition after oxidative zinc release from other proteins. In␣diabetes, the significant oxidative stress and associated changes in zinc metabolism modify the cell’s response and sensitivity to insulin. Zinc deficiency activates stress pathways and may result in a loss of tyrosine phosphatase control, thereby causing insulin resistance.  相似文献   

10.
Photosynthesis, respiration, and other processes produce reactive oxygen species (ROS) that can cause oxidative modifications to proteins, lipids, and DNA. The production of ROS increases under stress conditions, causing oxidative damage and impairment of normal metabolism. In this work, oxidative damage to various subcellular compartments (i.e. chloroplasts, mitochondria, and peroxisomes) was studied in two cultivars of wheat differing in ascorbic acid content, and growing under good irrigation or drought. In well-watered plants, mitochondria contained 9-28-fold higher concentrations of oxidatively modified proteins than chloroplasts or peroxisomes. In general, oxidative damage to proteins was more intense in the cultivar with the lower content of ascorbic acid, particularly in the chloroplast stroma. Water stress caused a marked increase in oxidative damage to proteins, particularly in mitochondria and peroxisomes. These results indicate that mitochondria are the main target for oxidative damage to proteins under well-irrigated and drought conditions.  相似文献   

11.
Zinc is an element that under physiological conditions preferentially binds to and is a potent inducer of metallothionein under physiological conditions. The present study was conducted to explore whether zinc supplementation morphologically and biochemically protects against diabetic nephropathy through modulation of kidney metallothionein induction and oxidative stress in streptozotocin-induced diabetic rats. Thirty-two Wistar albino male rats were equally divided into four groups. The first group was used as untreated controls and the second group was supplemented with 30?mg/kg/day zinc as zinc sulfate. The third group was treated with streptozotocin to induce diabetes and the fourth group was treated with streptozotocin and supplemented with zinc as described for group 2. The blood glucose and micro-albuminuria levels, body and kidney weights were measured during the 42-day experimental period. At the end of the experiment, the kidneys were removed from all animals from the four groups. Diabetes resulted in degenerative kidney morphological changes. The metallothionein immunoreactivity level was lower and the kidney lipid peroxidation levels were higher in the diabetes group than in the controls. The metallothionein immunoreactivity levels were higher in the tubules of the zinc-supplemented diabetic rats as compared to the non-supplemented diabetic group. The zinc and metallothionein concentrations in kidney tissue were higher in the supplemented diabetic group compared to the non-supplemented diabetes group. The activity of glutathione peroxidase did not change in any of the four groups. In conclusion, the present study shows that zinc has a protective effect against diabetic damage of kidney tissue through stimulation of metallothionein synthesis and regulation of the oxidative stress.  相似文献   

12.
Hydrogen-rich water (HW) has been suggested to possess antioxidant properties of value in treatments of lifestyle diseases and for prevention of latent pathologies. To date, the potential benefits of HW against the deleterious effects of excessive salt intake and hypertension have not been investigated. Here, we first examined the effects of HW or HW supplemented with 0.1% ascorbic acid (HWA) on spontaneously hypertensive rats (SHR) that had been fed a normal diet. In comparison to control rats given distilled water (DW), we found that HW did not significantly influence systolic blood pressure (SBP) or diastolic blood pressure (DBP) in SHR; however, the increase in SBP and DBP were inhibited in the HWA group. Next, four groups of SHR were given DW, 0.1% ascorbic acid-added DW (DWA), HW, or HWA in combination with a 4% NaCl-added diet. SHR fed the 4% NaCl-added diet showed increased hypertension; HWA treatment resulted in a significant reduction in blood pressure. The HWA group tended to have lower plasma angiotensin II levels than the DW group. In addition, urinary volumes and urinary sodium levels were significantly lower in the HWA group than the DW group. Urinary isoprostane, an oxidative stress marker, was also significantly lower in the HWA group, suggesting that the inhibitory effect of HWA on blood pressure elevation was caused by a reduction in oxidative stress. These findings suggest a synergistic interaction between HW and ascorbic acid, and also suggest that HWA ingestion has potential for prevention of hypertension.  相似文献   

13.
The effect of bacterial endotoxin on the ascorbic acid uptake by 3T6 fibroblasts was studied. Endotoxin inhibited ascorbic acid uptake by fibroblasts in a dose dependent manner. The inhibition by endotoxin takes place only in the presence of unheated serum; decomplementing serum by heat inactivation at 56 degrees C for 30 minutes eliminates endotoxin's inhibitory effect on ascorbic acid uptake. The effect of endotoxin appears to be instantaneous since the inhibition seen in the cells without any preexposure was similar to the cells preexposed to endotoxin for up to 6 hours. Polymyxin B sulfate which is known to bind the lipid A portion of endotoxin did not reverse the inhibition of ascorbic acid uptake caused by endotoxin.  相似文献   

14.
The effects of oxygen on ascorbic acid concentration and transport were studied in chick embryo (Gallus gallus domesticus). During normoxic incubations, plasma ascorbic acid concentration peaked on fetal day 12 and then fell, before increasing again on day 20 when pulmonary respiration began. In contrast, cerebral ascorbic acid concentration rose after day 6, was maintained at a relatively high level during days 8–18, and then fell significantly by day 20. Exposure of day 16 embryos for 48 h to 42% ambient O2 concentration decreased ascorbic acid concentration by four-fifths in plasma and by one-half in brain, compared to values in normoxic (21% O2) or hypoxic (15% O2) controls. Hyperoxic preincubation of embryos also inhibited ascorbic acid transport, as evidenced by decreased initial rates of saturable and Na+-dependent [14C]ascorbic acid uptake into isolated brain cells. It may be concluded that changes in ascorbic acid concentration occur in response to oxidative stress, consistent with a role for the vitamin in the detoxification of oxygen radicals in fetal tissues. However, changing O2 levels have less effect on ascorbic acid concentration in brain than in plasma, indicating regulation of the vitamin by brain cells. Furthermore, the effect of hyperoxia on cerebral vitamin C may result, in part, from inhibition of cellular ascorbic acid transport.  相似文献   

15.
16.
Nicotinic acid has functional groups capable of forming complexes with trace metals. The present study examines the effect of nicotinic acid supplementation on absorption and utilization of zinc and iron. In vitro zinc uptake by human erythrocytes was studied using blood samples of 10 healthy subjects. It was found that 8 moles nicotinic acid or NADP increased 65Zn uptake by 38.9% and 43.1% in fasting, and by 70.9% and 28.1% in postprandial conditions. In animal experiments, nicotinic acid supplementation to finger millet based diet resulted in significant enhancement of percent zinc absorption, liver zinc and growth of weanling mice (P < 0.05). When mice were fed with nicotinic acid-deficient, -adequate and -excess synthetic diets for four weeks it was observed that, in comparison with the nicotinic acid-deficient diet, percent zinc absorption, intestinal zinc, percent haeomoglobin and liver iron increased significantly under nicotinic acid-adequate and -excess conditions. The results obtained suggested that nicotinic acid, in addition to its known effect on growth and metabolism, may be playing an important role in enhancing zinc and iron utilization.  相似文献   

17.
The impairment of nitric oxide (NO)-mediated vasodilation in diabetes has been attributed to increased vascular oxidative stress. Lipoic acid has been shown to have substantial antioxidative properties. The aim of this study was to assess the effect of lipoic acid on NO-mediated vasodilation in diabetic patients in comparison with the well-recognized effect of ascorbic acid. Using venous occlusion plethysmography, we examined the effects of lipoic acid (0.2 mM) and ascorbic acid (1 and 10 mM) on forearm blood flow responses to acetylcholine, sodium nitroprusside and concomitant infusion of the NO-inhibitor, N(G)-monomethyl-L-arginine, in 39 diabetic patients and 11 control subjects. Plasma levels of antioxidants and parameters of lipid peroxidation were measured and correlated to endothelial function tests. Lipoic acid improved NO-mediated vasodilation in diabetic patients, but not in controls. NO-mediated vasodilation was improved by ascorbic acid at 10 mM, but not 1 mM. Improvements of endothelial function by ascorbic acid and lipoic acid were closely related. The beneficial effects of lipoic acid were positively related to plasma levels of malondialdehyde and inversely related to levels of ubiquinol-10. These findings support the concept that oxidative stress contributes to endothelial dysfunction and suggest a therapeutic potential of lipoic acid particularly in patients with imbalance between increased oxidative stress and depleted antioxidant defense.  相似文献   

18.
AIMS: To determine the effect of oxidative stress and exogenous ascorbic acid on sclerotial biomass and carotenoid yield of Penicillium sp. PT95. METHODS: In this experiment, high oxidative stress was applied by the inclusion of FeSO(4) in the growth medium and exposure to light. Low oxidative stress was applied by omitting iron from the growth medium and by incubation in the dark. Supplementation of exogenous ascorbic acid (as antioxidant) to the basal medium caused a concentration-dependent delay of sclerotial differentiation (up to 48 h), decrease of sclerotial biomass (up to 40%) and reduction of carotenoid yield (up to 91%). On the contrary, the exogenous ascorbic acid also caused a concentration-dependent decrease of lipid peroxidation in colonies of this fungus. CONCLUSIONS: Under high oxidative stress growth condition, the sclerotial biomass and carotenoid yield of PT95 strain in each plate culture reached 305 mg and 32.94 microg, which were 1.23 and 3.71 times higher, respectively, than those at low oxidative stress growth condition. These data prompted us to consider that in order to attain higher sclerotial biomass and pigment yield, the strain PT95 should be grown under high oxidative stress and in the absence of antioxidants. SIGNIFICANCE AND IMPACT OF THE STUDY: These results suggest that strain PT95 may be used for solid-state fermentation of carotenoid production under high oxidative stress growth conditions.  相似文献   

19.
Folic acid is a vitamin that when used as a dietary supplementation can improve endothelial function. To assess the effect of folic acid on the development of atherosclerosis, male apolipoprotein E-deficient mice fed a standard chow diet received either water (control group) or an aqueous solution of folic acid that provided a dose of 75 microg/kg/day, for ten weeks. At the time of sacrifice, blood was drawn and the heart removed. The study measured plasma homocysteine, lipids, lipoproteins, low-density lipoprotein (LDL) oxidation, isoprostane, paraoxonase, and apolipoproteins, and aortic atherosclerotic areas. In folic acid-treated animals, total cholesterol, mainly carried in very low-density and low-density lipoproteins, increased significantly, and homocysteine, HDL cholesterol, paraoxonase, and triglyceride levels did not change significantly. Plasma isoprostane and apolipoprotein (apo) B levels decreased. The resistance of LDL to oxidization and plasma apoA-I and apoA-IV levels increased with a concomitant decrease in the area of atherosclerotic lesions. The administration of folic acid decreased atherosclerotic lesions independently of plasma homocysteine and cholesterol levels, but was associated with plasma levels of apolipoproteins A-I, A-IV and B, and decreased oxidative stress.  相似文献   

20.
Omega-3 polyunsaturated fatty acids (PUFA) are increasingly finding use as treatments for a variety of medical conditions. PUFA supplementation can, however, result in increased oxidative stress causing elevated turnover rate of membrane phospholipids, impairment of membrane integrity and increased formation of inflammatory mediators. The aim of this study was to determine which antioxidant compounds were most effective in ameliorating the stimulation of phospholipid turnover by oxidative stress. U937 cells were supplemented with eicosapentaenoic acid and either ascorbic acid, alpha-tocopherol, beta-carotene or astaxanthin prior to being challenged with oxidant. Although all antioxidants were found to be effective in decreasing oxidant-stimulated peroxide formation, only alpha-tocopherol significantly decreased oxidant-stimulated release of 3H-labeled arachidonic acid (AA), while ascorbic acid markedly increased release. All antioxidants except alpha-tocopherol decreased oxidant-stimulated 3H-AA uptake. Our data suggest that antioxidants are not equally effective in combating the effects of oxidative stress upon membrane phospholipid turnover, and that optimal protection will require mixtures of antioxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号