首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mycotoxin, cyclopiazonic acid (CPA), inhibits the Ca2+-stimulated ATPase (EC 3.6.1.38) and Ca2+ transport activity of sarcoplasmic reticulum (Goeger, D. E., Riley, R. T., Dorner, J. W., and Cole, R. J. (1988) Biochem. Pharmacol. 37, 978-981). We found that at low ATP concentrations (0.5-2 microM) the inhibition of ATPase activity was essentially complete at a CPA concentration of 6-8 nmol/mg protein, indicating stoichiometric reaction of CPA with the Ca2+-ATPase. Cyclopiazonic acid caused similar inhibition of the Ca2+-stimulated ATP hydrolysis in intact sarcoplasmic reticulum and in a purified preparation of Ca2+-ATPase. Cyclopiazonic acid also inhibited the Ca2+-dependent acetylphosphate, p-nitrophenylphosphate and carbamylphosphate hydrolysis by sarcoplasmic reticulum. ATP protected the enzyme in a competitive manner against inhibition by CPA, while a 10(5)-fold change in free Ca2+ concentration had only moderate effect on the extent of inhibition. CPA did not influence the crystallization of Ca2+-ATPase by vanadate or the reaction of fluorescein-5'-isothiocyanate with the Ca2+-ATPase, but it completely blocked at concentrations as low as 1-2 mol of CPA/mol of ATPase the fluorescence changes induced by Ca2+ and [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) in FITC-labeled sarcoplasmic reticulum and inhibited the cleavage of Ca2+-ATPase by trypsin at the T2 cleavage site in the presence of EGTA. These observations suggest that CPA interferes with the ATP-induced conformational changes related to Ca2+ transport. The effect of CPA on the sarcoplasmic reticulum Ca2+-ATPase appears to be fairly specific, since the kidney and brain Na+,K+-ATPase (EC 3.6.1.37), the gastric H+,K+-ATPase (EC 3.6.1.36), the mitochondrial F1-ATPase (EC 3.6.1.34), the Ca2+-ATPase of erythrocytes, and the Mg2+-activated ATPase of T-tubules and surface membranes of rat skeletal muscle were not inhibited by CPA, even at concentrations as high as 1000 nmol/mg protein.  相似文献   

2.
We have shown that the rat liver plasma membrane has at least two (Ca2+-Mg2+)-ATPases. One of them has the properties of a plasma membrane Ca2+-pump (Lin, S.-H. (1985) J. Biol. Chem. 260, 7850-7856); the other one, which we have purified (Lin, S.-H., and Fain, J.N. (1984) J. Biol. Chem. 259, 3016-3020) and characterized (Lin, S.-H. (1985) J. Biol. Chem. 260, 10976-10980) has no established function. In this study we present evidence that the purified (Ca2+-Mg2+)-ATPase is a plasma membrane ecto-ATPase. In hepatocytes in primary culture, we can detect Ca2+-ATPase and Mg2+-ATPase activities by addition of ATP to the intact cells. The external localization of the active site of the ATPase was confirmed by the observation that the Ca2+-ATPase and Mg2+-ATPase activities were the same for intact cells, saponin-treated cells, and cell homogenates. Less than 14% of total intracellular lactate dehydrogenase, a cytosolic enzyme, was released during a 30-min incubation of the hepatocytes with 2 mM ATP. This indicates that the hepatocytes maintained cytoplasmic membrane integrity during the 30-min incubation with ATP, and the Ca2+-ATPase and Mg2+-ATPase activity measured in the intact cell preparation was due to cell surface ATPase activity. The possibility that the ecto-Ca2+-ATPase and Mg2+-ATPase may be the same protein as the previously purified (Ca2+-Mg2+)-ATPase was tested by comparing the properties of the ecto-ATPase with those of (Ca2+-Mg2+)-ATPase. Both the ecto-ATPase and the (Ca2+-Mg2+)-ATPase have broad nucleotide-hydrolyzing activity, i.e. they both hydrolyze ATP, GTP, UTP, CTP, ADP, and GDP to a similar extent. The effect of Ca2+ and Mg2+ on the ecto-ATPase activity is not additive indicating that both Ca2+- and Mg2+-ATPase activities are part of the same enzyme. The ecto-ATPase activity, like the (Ca2+-Mg2+)-ATPase, is not sensitive to oligomycin, vanadate, N-ethylmaleimide and p-chloromercuribenzoate; and both the ecto-ATPase and purified (Ca2+-Mg2+)-ATPase activities are insensitive to protease treatments. These properties indicate that the previously purified (Ca2+-Mg2+)-ATPase is an ecto-ATPase and may function in regulating the effect of ATP and ADP on hepatocyte Ca2+ mobilization (Charest, R., Blackmore, P.F., and Exton, J.H. (1985) J. Biol. Chem. 260, 15789-15794).  相似文献   

3.
The effects of K+ and Na+ on the Ca2+,Mg2+-ATPase of sarcoplasmic reticulum fragments (SRF) were investigated at 1 mM ATP. There was an alteration of the sensitivity of the ATPase to the monovalent cations during storage of the SRF preparation. The Ca2+, Mg2+-ATPase of freshly prepared SRF was slightly activated by 5-10 mM K+ and Na+. Mg2+-ATPase was inhibited by both the monovalent cations to the same extent, and this response to the ions was independent of the freshness of the preparations. After storage of SRF, however, the Ca2+,Mg2+-ATPase was markedly activated by higher concentrations of K+ and Na+ (0.2-0.3 M). K+ and Na+ reduced the Ca uptake at the steady state in freshly prepared SRF, but did not affect pre-steady state uptake. In the presence of oxalate, the rate of Ca accumulation both in fresh and stored preparations was activated by 0.1-0.2 M K+ and Na+. The Ca2+, mg2+-ATPase with oxalate, so-called "extra ATPase," showed the same response to the ions as did the activity without oxalate during storage.  相似文献   

4.
Myometrial (Na+ + K+)-activated ATPase and its Ca2+ sensitivity   总被引:1,自引:0,他引:1  
Ouabain-sensitive (Na+ + K+)-ATPase activity in the rat myometrial microsome fraction could only be determined following detergent treatment. The (Na+ + K+)-ATPase activity manifested by detergent treatment proved very stable even to high concentrations of NaN3, in contrast Mg+-ATPase activity was reduced to about 30 percent of the control. The major part of the Mg2+-ATPase in the myometrial membrane preparation was found to be identical with the NaN3-sensitive ATP diphosphohydrolase capable of ATP and ADP hydrolysis. This monovalent-cation-insensitive ATP hydrolysis could be extensively reduced by DMSO. Furthermore DMSO prevented the inactivation of the (Na+ + K+)-ATPase activity. 10-100 microM Ca2+ inhibited the (Na+ + K+)-ATPase activity obtained in the presence of SDS by 15-50 percent. The Ca2+ sensitivity of the enzyme was considerably decreased if the proteins solubilized by the detergent had been separated from the membrane fragments by ultracentrifugation. The inhibitory effect could be regained by combining the supernatant with the pellet. Ca2+ sensitivity of the (Na+ + K+)-ATPase activity was preserved even after removal of the solubilized proteins provided that DMSO had been applied. It appears that a factor in the plasma membrane solubilized by SDS may be responsible for the loss of Ca2+ sensitivity of the (Na+ + K+)-ATPase activity, the solubilization of which can be prevented by DMSO.  相似文献   

5.
The ATPase activities were studied in rat erythrocytes permeabilized with saponin. The concentrations of calcium and magnesium ions were varied within the range of 0.1-60 microM and 50-370 microM, respectively, by using EGTA-citrate buffer. The maximal activity of Ca2(+)-ATPase of permeabilized erythrocytes was by one order of magnitude higher, whereas the Ca2(+)-binding affinity was 1.5-2 times higher than that in erythrocyte ghosts washed an isotonic solution containing EGTA. Addition of the hemolysate restored the kinetic parameters of ghost Ca2(+)-ATPase practically completely, whereas in the presence of exogenous calmodulin only part of Ca2(+)-ATPase activity was recovered. Neither calmodulin nor R24571, a highly potent specific inhibitor of calmodulin-dependent reactions, influenced the Ca2(+)-ATPase activity of permeabilized erythrocytes. At Ca2+ concentrations below 0.7 microM, ouabain (0.5-1 mM) activated whereas at higher Ca2+ concentrations it inhibited the Ca2(+)-ATPase activity. Taking this observation into account the Na+/K(+)-ATPase was determined as the difference of between the ATPase activities in the presence of Na+ and K+ and in the presence of K+ alone. At physiological concentration of Mg2+ (370 microM), the addition of 0.3-1 microM Ca2+ increased Na+/K(+)-ATPase activity by 1.5-3-fold. Higher concentrations of this cation inhibited the enzyme. At low Mg2+ concentration (e.g., 50 microM) only Na+/K(+)-ATPase inhibition by Ca2+ was seen. It was found that at [NaCl] less than 20 mM furosemide was increased ouabain-inhibited component of ATPase in Ca2(+)-free media. This activating effect of furosemide was enhanced with a diminution of [Na+] upto 2 mM and did not reach the saturation level unless the 2 mM of drug was used. The activating effect of furosemide on Na+/K(+)-ATPase activity confirmed by experiments in which the ouabain-inhibited component was measured by the 86Rb+ influx into intact erythrocytes.  相似文献   

6.
Two Ca2+-stimulated ATPase activities have been identified in the plasma membrane of rat parotid: (a) a (Ca2+ + Mg2+)-ATPase with high affinity for free Ca2+ (apparent Km = 208 nM, Vmax = 188 nmol/min per mg) and requiring micromolar concentration of Mg2+ and (b) a (Ca2+ or Mg2+)-ATPase with relatively low affinity for free Ca2+ (K0.5 = 23 microM) or free Mg2+ (K0.5 = 26 microM). The low-affinity (Ca2+ or Mg2+)-ATPase can be maximally stimulated by Ca2+ alone or Mg2+ alone. The high-affinity (Ca2+ + Mg2+)-ATPase exhibits sigmoidal kinetics with respect to ATP concentration with K0.5 = 0.4 mM and a Hill coefficient of 1.91. It displays low substrate specificity with respect to nucleotide triphosphates. Although trifluoperazine inhibits the activity of the high affinity (Ca2+ + Mg2+)-ATPase only slightly, it inhibits the activity of the low-affinity (Ca2+ or Mg2+)-ATPase quite potently with 22 microM trifluoperazine inhibiting the enzymic activity by 50%. Vanadate, inositol 1,4,5-trisphosphate, phosphatidylinositol 4,5-bisphosphate, Na+,K+ and ouabain had no effect on the activities of both ATPases. Calmodulin added to the plasma membranes does not stimulate the activities of both ATPases. The properties of the high-affinity (Ca2+ + Mg2+)-ATPase are distinctly different from those of the previously reported Ca2+-pump activity of the rat parotid plasma membrane.  相似文献   

7.
AIF4- inhibits the (Ca2+ + Mg2+)-ATPase activity of the plasma-membrane and the sarcoplasmic-reticulum Ca2+-transport ATPase [Missiaen, Wuytack, De Smedt, Vrolix & Casteels (1988) Biochem. J. 253, 827-833]. The aim of the present work was to investigate this inhibition further. We now report that AIF4- inhibits not only the (Ca2+ + Mg2+)-ATPase activity, but also the ATP-dependent 45Ca2+ transport, and the formation of the phosphoprotein intermediate by these pumps. Mg2+ potentiated the effect of AIF4-, whereas K+ had no such effect. The plasma-membrane Ca2+-transport ATPase from erythrocytes was 20 times less sensitive to inhibition by AIF4- as compared with the Ca2+-transport ATPase from smooth muscle. The endoplasmic-reticulum Ca2+-transport ATPase from smooth muscle was inhibited to a greater extent than the sarcoplasmic-reticulum Ca2+-transport ATPase of slow and fast skeletal muscle.  相似文献   

8.
Catalytic and regulatory binding sites for ATP on the red cell Ca2+ pump have been investigated using fluorescein isothiocyanate (FITC). Both (Ca2+ + Mg2+)-ATPase activity and ATP-dependent Ca2+ flux are selectively and irreversibly inactivated by FITC and the pump is protected from FITC by the presence of ATP. The time course of inactivation by FITC is characteristically biphasic. Analysis of the kinetics of inactivation by FITC and protection by ATP reveals the participation of both high and low affinity binding sites for ATP and FITC. The sites binding ATP or reacting with FITC do not, however, appear to co-exist on the same enzyme molecules. Thus, "flip-flop" mechanisms for (Ca2+ + Mg2+)-ATPase, involving negative interactions between high and low affinity ATP sites, are considered unlikely. The two affinities for ATP are most simply explained by assuming that the Ca2+ pump protein exists in alternative conformational forms, E1 having a high affinity for ATP and E2 having a low affinity for ATP. Ca2+ pumping and (Ca2+ + Mg2+)-ATPase involve interconversion between these forms. It is suggested that regulation of Ca2+ pump activity by Mg-ATP reflects acceleration of the conformational transition between the E1 and E2 forms, as well as a previously described acceleration of phosphoenzyme hydrolysis (Muallem, S., and Karlish, S. J. D. (1981) Biochim. Biophys. Acta 647, 73-86; Garrahan, P. J., and Rega, A. F. (1978) Biochim. Biophys. Acta 513, 59-65).  相似文献   

9.
Recently, we have shown that a hydrophobic amine (AU-1421) produces an irreversible inactivation of Na+/K(+)-ATPase activity. This inactivation was prevented by K+ and its congeners. In this study, we examined the possibility of Ca2+ or ethylenediamine as a probe of the K+ occlusion center of Na+/K(+)-ATPase. The inactivation by AU-1421 was prevented by Ca2+ with an apparent high affinity (approximately 0.1 mM). Ca2+ protection was cancelled by high concentrations of ATP, ADP or Mg2+. Ca2+ and K+ were similar in these respects. Kinetic analyses of the above data indicated the presence of two AU-1421 occlusion sites on the enzyme, either one of which is susceptible to Ca2+ occlusion. Ethylenediamine also prevented the inactivation by AU-1421 or by C12E8 solubilization of the enzyme, suggesting that ethylenediamine, like K+, stabilized the enzyme. However, an apparent affinity of ethylenediamine (approximately 1.4 mM) was one order of magnitude lower than that of K+ (approximately 0.2 mM), and the protective manner did not show a simple competition. In addition, ethylenediamine binding was unaffected by ATP or ADP at a low affinity site, and antagonized K+ binding. From these results we concluded that ethylenediamine does not act like K+ or Ca2+ in protecting AU-1421 inactivation, since it can't stabilize the enzyme conformation as an E2 (K(+)-bound form).  相似文献   

10.
Various reaction intermediates of sarcoplasmic reticulum Ca2+,Mg2+-ATPase were stabilized and accumulated by modifying a specific SH group or by using nucleotide analogs. Conformational changes of the Ca2+,Mg2+-ATPase during the catalytic cycle were studied in the stabilized intermediates by the use of fluorescent and spin probes, which were introduced at specific SH groups of ATPase, namely one highly reactive but functionally nonessential (SHN) and one essential for the decomposition of the E-P intermediate (SHD) [Kawakita, M., et al. (1980) J. Biochem. 87, 609-617]. The fluorescence intensity of N-(7-dimethylamino-4-methyl-3-coumarinyl)maleimide attached to SHD decreased by 2.5% upon addition of 10 microM AMP-P(NH)P provided that Ca2+ was also present. The AMP-P(NH)P-induced fluorescence change could also be detected by using other fluorescent probes such as N-[p-(2-benzimidazolyl)phenyl]maleimide and N-(1-anilinonaphthyl-4)maleimide. Moreover, labeling at SHN gave similar results. When SHN was labeled with N-[p-(2-benzimidazolyl)phenyl]maleimide, the fluorescence intensity also decreased by 2.5% upon addition of ATP only in the presence of Ca2+, where E-P formation took place. A conformational difference between ECa1-P X ADP and ECa1-P was suggested from saturation transfer ESR measurement of spin-labeled ATPase by using ADP beta S as an ADP analog to cause accumulation of ECa1-P X ADP beta S complex. Possible structural similarities among some of the intermediates are discussed based on these findings.  相似文献   

11.
We have shown previously (Brooker, R.J., and Slayman, C.W. (1982) J. Biol. Chem. 257, 12051-12055; Brooker, R. J., and Slayman, C. W. (1983) J. Biol. Chem. 258, 222-226) that the plasma membrane [H+]-ATPase of Neurospora crassa is inhibited by N-ethylmaleimide (NEM), which reacts at an essential nucleotide-protectable site on the Mr = 104,000 polypeptide. The present study demonstrates that Mg2+ has a biphasic effect on NEM inhibition. At low concentrations (0.01-0.1 mM, Mg2+ decreases the sensitivity of the enzyme to NEM, while at high concentrations (greater than 1 mM), it enhances sensitivity. These effects are seen in the presence or absence of nucleotides (ATP, ADP). Mg2+ also acts in a concentration-dependent way to influence the degradation of the ATPase by trypsin. Low concentrations of Mg2+ have little or no effect on tryptic inactivation of ATPase activity or on the disappearance of the Mr = 104,000 polypeptide and the stepwise appearance of Mr = 100,000 and 91,000 tryptic fragments. High concentrations of Mg2+ decrease the rate of inactivation, and a new fragment of Mr = 98,000 is seen. Taken together, the NEM and trypsin results indicate that the Neurospora [H+]-ATPase possesses high and low affinity Mg2+ binding sites which affect the conformation of the enzyme. The divalent cation specificity of the sites has also been investigated. Co2+, Mn2+, and (to a lesser extent) Ni2+ mimic the behavior of Mg2+, but Ca2+ has a different effect, at least at the high affinity site. It appears to bind to that site, based on its ability to inhibit ATP hydrolysis (in the presence of Mg2+), but does not offer protection against NEM inhibition. The results suggest a way in which Ca2+ may serve as a physiological regulator of the ATPase.  相似文献   

12.
The local anesthetics dibucaine and tetracaine inhibit the (Ca2+ + Mg2+)-ATPase from skeletal muscle sarcoplasmic reticulum [DeBoland, A. R., Jilka, R. L., & Martonosi, A. N. (1975) J. Biol. Chem. 250, 7501-7510; Suko, J., Winkler, F., Scharinger, B., & Hellmann, G. (1976) Biochim. Biophys. Acta 443, 571-586]. We have carried out differential scanning calorimetry and fluorescence measurements to study the interaction of these drugs with sarcoplasmic reticulum membranes and with purified (Ca2+ + Mg2+)-ATPase. The temperature range of denaturation of the (Ca2+ + Mg2+)-ATPase in the sarcoplasmic reticulum membrane, determined from our scanning calorimetry experiments, is ca. 45-55 degrees C and for the purified enzyme ca. 40-50 degrees C. Millimolar concentrations of dibucaine and tetracaine, and ethanol at concentrations higher than 1% v/v, lower a few degrees (degrees C) the denaturation temperature of the (Ca2+ + Mg2+)-ATPase. Other local anesthetics reported to have no effect on the ATPase activity, such as lidocaine and procaine, did not significantly alter the differential scanning calorimetry pattern of these membranes up to a concentration of 10 mM. The order parameter of the sarcoplasmic reticulum membranes, calculated from measurements of the polarization of the fluorescence of diphenylhexatriene, is not significantly altered at the local anesthetic concentrations that shift the denaturation temperature of the (Ca2+ + Mg2+)-ATPase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The high affinity (Ca2+-Mg2+)-ATPase purified from rat liver plasma membrane (Lin, S.-H., and Fain, J. N. (1984) J. Biol. Chem. 259, 3016-3020) has been further characterized. This enzyme also possesses Mg2+-stimulated ATPase activity with K0.5 of 0.16 microM free Mg2+. However, the Vm of the Mg2+-stimulated activity is only half that of the Ca2+-stimulated ATPase activity. The effects of Ca2+ and Mg2+ on this enzyme are not additive. Both the Ca2+-stimulated ATPase and Mg2+-stimulated ATPase activities have similar affinities for ATP (0.21 mM and 0.13 mM, respectively) and similar substrate specificities (they are able to utilize ATP, GTP, UTP, CTP, ADP, and GDP as substrates); both activities are not inhibited by vanadate, p-chloromercuribenzoate, ouabain, dicyclohexylcarbodiimide, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, oligomycin, F-, N-ethylmaleimide, La3+, and oxidized glutathione. These properties of the Mg2+- and Ca2+-ATPases indicate that both activities reside on the same protein. A comparison of the properties of this high affinity (Ca2+-Mg2+)-ATPase with those of the liver plasma membrane ATP-dependent Ca2+ transport activity reconstituted into artificial liposomes (Lin, S.-H. (1985) J. Biol. Chem. 260, 7850-7856) suggests that this high affinity (Ca2+-Mg2+)-ATPase is not the biochemical expression of the liver plasma membrane Ca2+ pump. The function of this high affinity (Ca2+-Mg2+)-ATPase remains unknown.  相似文献   

14.
Inactivation of Na+, K+ -ATPase from cattle brain by sodium fluoride   总被引:3,自引:0,他引:3  
The influence of the physiological ligands and modifiers on the plasma membrane Na+, K+ -ATPase from calf brain inactivation by sodium fluoride (NaF) is studied. ATP-hydrolyzing activity of the enzyme was found to be more stable as to NaF inhibition than its K+ -pNPPase activity. The activatory ions of Na+, K+ -ATPase have different effects on the process of the enzyme inhibition by NaF. K+ intensifies inhibition, but Na+ does not affect it. An increase of [Mg2+free] in the incubation medium (from 0.5 to 3.0 mM) rises the sensitivity of Na+, K+ -ATPase to NaF inhibition. But an increase of [ATP] from 0.3 to 1.5 mM has no effect on this process. Ca and Mg ions modify Na+, K+ -ATPase inhibition by fluoride differently. Ca2+free levels this process, and Mg2+free on the contrary increases it. In the presence of Ca ions and in the neutral-alkaline medium (pH 7.0-8.5) the recovery of activity of the transport ATPase inhibited by-NaF takes place. Sodium citrate also protects both ATP-hydrolizing and K-pNPPase activity of the Na+, K+ -ATPase from NaF inhibition. Under the modifing membranous effects (the treatment of plasma membranes by Ds-Na and digitonin) the partial loss of Na+, K+ -ATPase sensitivity to NaF inhibition is observed. It is concluded that Na+, K+ -ATPase inactivation by NaF depends on the influence of the physiological ligands and modifiers as well as on the integrity of membrane structure.  相似文献   

15.
Beta-adrenoceptor blocking agents may have, in addition to their primary action, also ancillary effects on the cell membrane. In the present paper the non-specific interaction of exaprolol with the ATPase systems in isolated rat heart sarcolemmal membranes was investigated. When preincubated with sarcolemmal membranes in vitro, exaprolol in concentrations below 10(-4) mol.l-1 had no significant effect on sarcolemmal Mg2+-, Ca2+- and (Na+ + K+)-ATPase activities. At exaprolol concentration of 10(-4) mol.l-1 the Mg2+- and Ca2+-ATPase activities became inhibited whereas the (Na+ + K+)-ATPase activity was markedly stimulated. A kinetic analysis of these interactions revealed a non-competitive inhibition of Mg2+- and Ca2+-ATPase. In the case of (Na+ + K+)-ATPase a synergistic type of stimulation characterized by an exaprolol-induced conversion of an essential sulfhydryl group in the active site of the enzyme to the more reactive [S-] form has been observed thus increasing the affinity of the enzyme to ATP. Exaprolol concentrations exceeding 5 X 10(-4) mol.l-1 induced an overall depression of the investigated enzyme activities.  相似文献   

16.
Inhibition of red cell Ca2+-ATPase by vanadate   总被引:3,自引:0,他引:3  
1. The Mg2+- plus Ca2+-dependent ATPase (Ca2+-ATPase) in human red cell membranes is susceptible to inhibition by low concentrations of vanadate. 2. Several natural activators of Ca2+-ATPase (Mg2+, K+, Na+ and calmodulin) modify inhibition by increasing the apparent affinity of the enzyme for vanadate. 3. Among the ligands tests, K+, in combination with Mg2+, had the most pronounced effect on inhibition by vanadate. 4. Under conditions optimal for inhibition of Ca2+-ATPase, the K 1/2 for vanadate was 1.5 microM and inhibition was nearly complete at saturating vanadate concentrations. 5. There are similarities between the kinetics of inhibition of red cell Ca2+-ATPase and (Na+ + K+)-ATPase prepared from a variety of sources; however, (Na+ + K+)-ATPase is approx. 3 times more sensitive to inhibition by vanadate.  相似文献   

17.
We have purified a cofactor protein previously shown (Pollard, T. D., and Korn, E. D. (1973) J. Biol. Chem. 248, 4691-4697) to be required for actin activation of the Mg2+-ATPase activity of Acanthamoeba myosin I. The purified cofactor protein is a novel myosin kinase that phosphorylates the single heavy chain, but neither of the two light chains, of Acanthamoeba myosin I. Phosphorylation of Acanthamoeba myosin I by the purified cofactor protein requires ATP and Mg2+ but is Ca2+-independent. The Mg2+-ATPase activity of phosphorylated Acanthamoeba myosin I is highly activated by F-actin in the absence of cofactor protein. Actin-activated Mg2+-ATPase activity is lost when phosphorylated Acanthamoeba myosin I is dephosphorylated by platelet phosphatase. Phosphorylation and dephosphorylation have no effect on the (K+,EDTA)-ATPase and Ca2+-ATPase activities of Acanthamoeba myosin I. These results show that cofactor protein is an Acanthamoeba myosin I heavy chain kinase and that phosphorylation of the heavy chain of this myosin is required for actin activation of its Mg2+-ATPase activity.  相似文献   

18.
A plasma membrane fraction was isolated from lysates of Bacillus Calmette-Guérin-induced alveolar macrophages of rabbit. On the basis of morphological and biochemical criteria this fraction appeared to be minimally contaminated by other subcellular organelles. Concentrations of Ca2+, but not of Mg2+, from 6.10(-8) to 1.10(-5) M markedly stimulated the basal ATPase (EC 3.6.1.3) activity of the plasma membrane, with an apparent Km (Ca2+) of 1.10(-6) M. The specific activity of the Ca2+-ATPase assayed at pCa = 5.5 was enriched about 8-fold in the plasma membrane fraction over the macrophage lysate. In contrast, the specific activity of the K+, EDTA-activated ATPase, associated to macrophage myosin, increased only 1.3-fold. Oligomycin and -SH group reagents exerted no influence on the Ca2+-ATPase activity, which was on the contrary inhibited by detergents such as Triton X-100 and deoxycholate. The activity of the Ca2+-ATPase was maximal at pH 7, and was decreased by 50 mM Na+ and 5 mM K+. On the contrary, the activity of Mg2+-ATPase, also present in the plasma membrane fraction, had a peak at about pH 7.8, and was stimulated by Na+ plus K+. On account of its properties, it is suggested that the Ca2+-ATPase is a component of the plasma membrane of the alveolar macrophage, and that its function may be that of participating in the maintenance of low free Ca2+ concentrations in the macrophage cytosol.  相似文献   

19.
Rat liver plasma membranes contain (Ca2+-Mg2+)-ATPase sensitive to inhibition by both glucagon and Mg2+. We have previously shown that Mg2+ inhibition is mediated by a 30,000-dalton inhibitor, originally identified as a membrane-bound protein. In fact, this inhibitor is also present in the 100,000 X g supernatant of the total liver homogenate. Its purification was achieved from this fraction by a combination of ammonium sulfate washing, gel filtration, and cationic exchange chromatography. N-Ethylmaleimide (NEM) treatment caused the inactivation of the purified inhibitor, which suggested that this protein possesses at least one NEM-sensitive sulfhydryl group essential for its activity. Treatment of the liver plasma membranes with NEM resulted in a 2- and 5-fold decrease in the affinity of the (Ca2+-Mg2+)-ATPase for glucagon and Mg2+, respectively, while the basal enzyme activity remained unchanged. This effect of NEM was concentration-, pH-, and time-dependent, optimal conditions being obtained by a 60-min treatment of plasma membranes with 50 mM NEM, at pH 7 and at 4 degrees C. The presence of 0.5 mM Mg2+ during NEM treatment of the plasma membranes prevented NEM inactivation. Reconstitution experiments showed that addition of the purified inhibitor to NEM-treated plasma membranes restored the inhibitions of the (Ca2+-Mg2+)-ATPase by both magnesium and glucagon. It is proposed that the (Ca2+-Mg2+)-ATPase inhibitor not only confers its sensitivity of the liver (Ca2+-Mg2+)-ATPase to Mg2+, but also mediates the inhibition of this system by glucagon.  相似文献   

20.
The plasma membrane of the human pathogen Leishmania donovani possesses a high-affinity transmembrane Ca(2+)-ATPase that has its catalytic site oriented toward the cytoplasmic milieu (Ghosh, J., Ray, M., Sarkar, S., and Bhaduri, A. (1990) J. Biol. Chem. 265, 11345-11351). When the enzyme is studied in its more authentic, physiologically relevant, membrane-associated form, it exhibits pronounced sigmoidal kinetics with Ca2+ (K0.5 approximately 700 nM) in a trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid buffering system that effectively complexes all available Mg2+. Addition of exogenous Mg2+ (60 microM) completely abolishes sigmoidicity and establishes strictly hyperbolic kinetics, and the Km for Ca2+ reduces to 100 nM. Mg2+ can be replaced by heterologous calmodulin. The exclusive dependence of the enzyme on only Ca2+ for its activity and its positive allosteric modulation by Mg2+ distinguish this enzyme from other well-characterized plasma membrane Ca(2+)-ATPases. Employing this Ca(2+)-ATPase as the assay system, a soluble endogenous activating protein factor was purified that, by several criteria, corresponds to authentic calmodulin. The parasite calmodulin shifts the kinetics to hyperbolic kinetics, increases the Vmax 2-fold, and most important lowers the Km (approximately 100 nM) to a physiological level. The interaction with endogenous calmodulin thus converts the enzyme from a totally inactive to a fully active state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号