首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis with 6% polyacrylamide was used to resolve the 100-kDa catalytic (alpha subunit) polypeptide of (Na+ + K+)-adenosinetriphosphatase from various tissues. The catalytic subunit was identified on immunoblots with antisera against mouse brain catalytic subunit and lamb kidney holoenzyme. Immunoblots and Coomassie Blue-stained companion gels showed double species of the 100-kDa subunit in sucrose gradient fractions of mouse brain and kidney, bovine grey and white matter, purified lamb kidney and duck salt gland holoenzyme, electroplax microsomes, and NaI-extracted microsomes of goldfish and rat brain. The apparent molecular mass differences between the two species in each tissue all ranged between 5 and 8 kDa. Both forms in rat brain and lamb kidney enzyme contain common epitopes reactive with antibodies immunoaffinity-purified on either species from mouse brain. In addition, ouabain-dependent acid-stable inorganic phosphate incorporation was tested with mouse brain, lamb kidney, and electroplax enzyme. Ouabain-dependent phosphorylation was demonstrated in both species in lamb kidney and electroplax and in the larger of the two forms in mouse brain. These results suggest that double species of the phosphorylatable subunit are present generally in epithelial as well as excitable tissues and in fish and avian as well as mammalian species. Work is needed to elucidate their qualitative and quantitative characteristics in different tissues.  相似文献   

2.
Na+,K+-ATPase plays a central role in the mechanism of cerebrospinal fluid secretion by the choroid plexus. We have used an antiserum to the 100 KD catalytic polypeptide of the enzyme purified from mouse brain (30) to localize the catalytic unit in mouse choroid plexus at the light and electron microscopic levels. Pre-embedding immunostaining with the peroxidase-conjugated second antibody technique showed that microvillar borders facing the ventricle were intensely reactive. In contrast, basal and lateral plasma membrane surfaces were devoid of activity. Identical localization was obtained with a post-embedding procedure in which protein A-gold was used to stain immunoreactive sites on thin sections of Lowicryl-embedded tissue. For comparison, immunogold staining was shown to be restricted to basolateral membranes of kidney medullary ascending thick limbs. The apical localization of Na+,K+-ATPase in choroid plexus is in striking contrast to the almost exclusive basolateral localization seen in other ion-transporting tissues. The immunocytochemical data are completely consistent with physiological data on choroidal epithelial transport and with light microscopic autoradiographic localization of [3H]-ouabain binding sites.  相似文献   

3.
Immunocytochemical localization of Na+, K+-ATPase in the rat kidney   总被引:1,自引:0,他引:1  
To determine if rat kidney Na+, K+-ATPase can be localized by immunoperoxidase staining after fixation and embedding, we prepared rabbit antiserum to purified lamb kidney medulla Na+, K+-ATPase. When sodium dodecylsulfate polyacrylamide electrophoretic gels of purified lamb kidney Na+, K+-ATPase and rat kidney microsomes were treated with antiserum (1:200), followed by [125I]-Protein A and autoradiography, the rat kidney microsomes showed a prominent radioactive band coincident with the alpha-subunit of the purified lamb kidney enzyme and a fainter radioactive band which corresponded to the beta-subunit. When the Na+, K+-ATPase antiserum was used for immunoperoxidase staining of paraffin and plastic sections of rat kidney fixed with Bouin's, glutaraldehyde, or paraformaldehyde, intense immunoreactive staining was present in the distal convoluted tubules, subcapsular collecting tubules, thick ascending limb of the loops of Henle, and papillary collecting ducts. Proximal convoluted tubules stained faintly, and the thin portions of the loops of Henle, straight descending portions of proximal tubules, and outer medullary collecting ducts did not stain. Staining was confined to basolateral surfaces of tubular epithelial cells. No staining was obtained with preimmune serum or primary antiserum absorbed with purified lamb kidney Na+, K+-ATPase, or with osmium tetroxide postfixation. We conclude that the basolateral membranes of the distal convoluted tubules and ascending thick limb of the loops of Henle are the major sites of immunoreactive Na+, K+-ATPase concentration in the rat kidney.  相似文献   

4.
The (Na+ plus K+)-ATPase activities in salt gland homogenates increased 3- to 4-fold after saline treatment of ducks for 3 weeks. The ATPase was purified to a specific activity of 460 and 1015 mumol Pi/mg protein per h, respectively, in control and saline-treated ducks. The catalytic protein was identified on polyacrylamide electrophoresis gels by phosphorylating the enzyme with (32P)ATP. The molecular weight of the protein was estimated to be 98 000. The amount of catalytic unit increased commensurately with the enzyme activity after saline treatment. It is therefore concluded that the increased enzyme activity is due to a de novo enzyme synthesis and is not an activation effect. Phospholipid concentration in the salt gland tissue increased 1.7-fold after the saline treatment. Significant increases occurred in the percentage of the total phospholipids as phosphatidylserine and sphingomyelin. In the partially purified (Na+ plus K+)-ATPase preparation, the percentage composition of phosphatidylserine and phosphatidylethanolamine increased after saline treatment.  相似文献   

5.
Highly purified lamb kidney (Na+ + K+)-ATPase was photoaffinity labeled with the tritiated 2-nitro-5-azidobenzoyl derivative of ouabain (NAB-ouabain). The labeled (Na+ + K+)-ATPase was mixed with unlabeled carrier enzyme. Two proteolipid (gamma 1 and gamma 2) fractions were then isolated by chromatography on columns of Sepharose CL-6B and Sephadex LH-60. The two fractions were interchangeable when rechromatographed on the LH-60 column, suggesting that gamma 1 is an aggregated form of gamma 2. The total yield was 0.8-1.5 mol of gamma component per mol of catalytic subunit recovered. This indicates that the gamma component is present in stoichiometric amounts in the Na+ + K+)-ATPase. The proteolipids that were labeled with NAB-ouabain copurified with the unlabeled proteolipids.  相似文献   

6.
The immunological cross-reactivity of the ouabain-sensitive lamb kidney and the ouabain-insensitive rat kidney (Na+ + K+)-ATPase (EC 3.6.1.37) was examined using polyclonal and monoclonal antibodies. Studies using rabbit antisera prepared against both the lamb kidney and rat kidney holoenzymes showed the existence of substantial antigenic differences as well as similarities between the holoenzymes and the respective denatured alpha and beta subunits of these two enzymes. Quantitation of the extent of cross-reactivity using holoenzyme-directed antibodies showed a 40-60% cross-reactivity. In addition, rabbit antisera monospecific to the purified, denatured alpha and beta subunits of the lamb kidney enzyme showed about a 50% cross-reactivity towards the respective subunit of the rat enzyme. In contrast to the cross-reactivity observed using the polyclonal antibodies, six monoclonal antibodies specific for the alpha subunit of the lamb holoenzyme exhibited no cross-reactivity with the rat holoenzyme. Four of these monoclonal antibodies, however, showed substantial cross-reactivity with rat alpha subunit as resolved by SDS-polyacrylamide gel electrophoresis. A fifth antibody did not bind to the denatured alpha subunit of either the lamb or the rat enzyme. Another monoclonal antibody (M7-PB-E9), which is specific for an epitope previously implicated in the regulation of both ATP and ouabain binding to (Na+ + K+)-ATPase (Ball, W.J., Jr. (1984) Biochemistry 2275-2281) was found to bind to the denatured lamb alpha but not to the rat alpha. This antibody has identified a region of the lamb alpha that has an altered amino acid sequence in the ouabain-insensitive rat enzyme. These immunological studies indicate that there are substantial antigenic differences between the lamb and rat kidney (Na+ + K+)-ATPases. The majority of these antigenic differences appear to be due to variations in the tertiary structures rather than to variations in the primary structures of the alpha subunits.  相似文献   

7.
The phosphorylation of two isozymes (alpha(+) and alpha) of (Na+ + K+)-ATPase by 32Pi was studied under equilibrium conditions in various enzyme preparations from rat medulla oblongata, rat cerebral cortex, rat cerebellum, rat kidney, guinea pig kidney, and rabbit kidney. In ouabain-sensitive (Na+ + K+)-ATPases such as the brain, guinea pig kidney, and rabbit kidney enzymes, ouabain stimulated the Mg2+-dependent phosphorylation at lower concentrations, while a higher concentration was required for the stimulation of rat kidney (Na+ + K+)-ATPase, an ouabain-insensitive enzyme. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that two isozymes of the brain (Na+ + K+)-ATPase were also phosphorylated by 32Pi in the presence of ouabain. The properties of the phosphorylation were compared between the medullar oblongata (referred to as alpha(+] and the kidney (referred to as alpha) (Na+ + K+)-ATPases. The steady-state level of phosphorylation was achieved faster in the kidney enzymes than in the medulla oblongata enzyme. Phosphorylation without ouabain was greater in the kidney enzymes than in the brain enzymes. Furthermore, the former enzymes were inhibited by K+ much more than the latter. These findings suggest that the two isozymes of (Na+ + K+)-ATPase differ in their conformational changes during enzyme turnover.  相似文献   

8.
Several experiments were carried out to study the difference between two isozymes (alpha(+) and alpha) of (Na+ + K+)-ATPase in the conformational equilibrium. Rat brain (Na+ + K+)-ATPase was much more thermolabile than the kidney enzyme. Both enzymes were protected from heat inactivation not only by Na+ and K+, but also by choline in varying degrees, though there was a difference between the two enzymes in the protection by the ligands. The brain enzyme was partially protected from N-ethylmaleimide (NEM) inactivation by both Na+ and K+, but the effects of the ligands on NEM inactivation of the kidney enzyme were more complex. Though ligands differentially affected the thermostability and NEM sensitivity of the two enzymes, the effects were not simply related to the conformational states. The sensitivity of phosphoenzyme (EP) formed in the presence of ATP, Na+, and Mg2+ to ADP or K+ and K+-p-nitrophenyl phosphatase (pNPPase) was then studied as a probe of the differences in the conformational equilibrium between the two isozymes. The EP of the brain enzyme was partially sensitive to ADP, while those of the heart and kidney enzymes were not. At physiological Na+ concentrations the percentages of E1P formed by the brain and kidney enzymes were determined to be about 40-50 and 10-20% of the total EP, respectively. The hydrolytic activity of pNPP in the presence of Li+, a selective activator at catalytic sites of the reaction, was much higher in the kidney enzyme than in the brain enzyme. The inhibition of K+-stimulated pNPPase by ATP and Na+ was greater in the latter enzyme than in the former. These results suggest that neuronal and nonneuronal (Na+ + K+)-ATPases differ in their conformational equilibrium: the E1 or E1P may be more stable in the alpha(+) than in the alpha during the turnover, and conversely the E2 or E2P may be more stable in the latter than in the former.  相似文献   

9.
Interpeptide cross-linking of alpha-subunits with concomitant loss of Na+ + K+-transporting ATPase (Na+, K+-ATPase) activity was found when the purified lamb kidney enzyme was treated with the bifunctional thiol reagent 4,4'-difluoro-3,3'-dinitrodiphenyl sulphone (F2DNS). Several forms of the enzyme could be clearly distinguished: one binding ATP (non-phosphorylated enzyme, E1 X ATP), a phosphorylated form (E2-P) and a phosphoenzyme-ouabain complex (E2P X ouabain). A polypeptide of approx. Mr 240 000 and probable alpha 2 composition comprised up to 5-20% of the total polypeptides after reaction of the lamb kidney Na+, K+-ATPase with F2DNS. The amount of this polypeptide formed was related to the conformational state of the enzyme. The presence of adenine nucleotide greatly diminished the amount of 240 000-Mr polypeptide formed and provides evidence for an enzyme-adenine-nucleotide complex under conditions where the enzyme is not phosphorylated. F2DNS reacted with the enzyme in the presence of Mg2+, Pi and ouabain to form a new polypeptide with an approx. Mr of 116 000, and comprised 23% of the total, whereas the 240 000-Mr polypeptide comprised 9% of the total. This suggests that the 116 000-Mr polypeptide is a characteristic marker of the E2P X ouabain complex. By using specific antibodies it was established that both the 240 000- and 116 000-Mr polypeptides contained alpha-, but not beta-, subunits of the Na+, K+-ATPase.  相似文献   

10.
Antibodies against Lubrol-solubilized Electrophorus electroplax (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) and its 96 000-dalton polypeptide (P96) were raised in rabbits. The P96 antibody does not cross react with the (Na+ + K+)-ATPase from mammalian species and tissues, but it cross reacts with the (Na+ + K+)-ATPase from both Electrophorus electroplax and brain. The combination of enzyme with anti-P96 is found to inhibit phosphoryl enzyme formation to the same extent that it inhibits enzyme activity. The rate of K+-sensitive dephosphorylation of phosphoryl enzyme appears to be unchanged. These are also found to be true with the antibody against the whole enzyme. Upon tryptic digestion of the enzyme-anti-P96 complex only the large polypeptide of the enzyme is protected. In the case of enzyme-anti-Lubrol-solubilized enzyme complex, both the large and small polypeptides are protected, whereas preimmune sera are without any protecting effect. The data indicate that the phosphoryl acceptor polypeptide and the Lubrol-solubilized electroplax (Na+ + K+)-ATPase from which the polypeptide is derived are phylogenetically distinct from those of the mammalian (Na+ + K+)-ATPases. The selective tryptic resistance of the enzyme-anti-P96 complex indicates that the two polypeptides are spatially well separated, possibly on opposite sides of the membrane.  相似文献   

11.
Liposomes containing either purified or microsomal (Na+,K+)-ATPase preparations from lamb kidney medulla catalyzed ATP-dependent transport of Na+ and K+ with a ratio of approximately 3Na+ to 2K+, which was inhibited by ouabain. Similar results were obtained with liposomes containing a partially purified (Na+,K+)-ATPase from cardiac muscle. This contrasts with an earlier report by Goldin and Tong (J. Biol. Chem. 249, 5907-5915, 1974), in which liposomes containing purified dog kidney (Na+,K+)-ATPase did not transport K+ but catalyzed ATP-dependent symport of Na+ and Cl-. When purified by our procedure, dog kidney (Na+,K+)-ATPase showed some ability to transport K+ but the ratio of Na+ : K+ was 5 : 1.  相似文献   

12.
F Noel  R S Pardon 《Life sciences》1989,44(22):1677-1683
Vanadate inhibitory effects on Na+, K+-ATPases from carcass of Schistosoma mansoni and from lamb kidney outer medulla were compared in the presence of various concentrations of Na+, K+ and Mg2+. Depending on the ionic conditions, the schistosomal Na+, K+-ATPase was 2.4- to 175-fold less sensitive to vanadate than the lamb kidney enzyme. In 100 mM Na+, 3 mM K+ and 3 mM Mg2+, schistosomal Na+, K+-ATPase was surprisingly resistant to vanadate (I50 = 944 microM). The difference in vanadate sensitivity between schistosomal and lamb Na+, K+-ATPases may be due to a species difference in the efficacy of Na+, K+ and Mg2+ in promoting conformational changes between E1 and E2 forms of the enzyme.  相似文献   

13.
Origin of the gamma polypeptide of the Na+/K+-ATPase   总被引:1,自引:0,他引:1  
The Na+/K+-ATPase purified from lamb kidney contains a gamma polypeptide fraction which is a collection of fragments derived from the alpha and beta polypeptides of the enzyme. This fraction has the solubility characteristics of a proteolipid and was isolated either by high performance liquid chromatography (size exclusion chromatography) in 1% sodium dodecyl sulfate or by sequential organic extraction of purified lamb kidney Na+/K+-ATPase. Formation of gamma polypeptide(s) from detergent solubilized holoenzyme was accelerated by sulfhydryl containing reagents and was unaffected by addition of inhibitors of proteolytic enzymes. Treatment of the holoenzyme with the photoaffinity reagent N-(2-nitro-4-azidophenyl)[3H]ouabain ([3H]NAP-ouabain) labeled the alpha polypeptide and the gamma polypeptide fraction but not the beta polypeptide. Amino acid sequence analysis of one gamma polypeptide preparation revealed homology of one component of this fraction with the N-terminus of the beta subunit of the Na+/K+-ATPase. Amino acid analysis of two preparations of proteolipid showed similar amino acid compositions with a peptide derived from the alpha subunit. The insolubility and complexity of the gamma polypeptide(s)/proteolipid fraction appears to preclude a conclusive sequence analysis of all components of this fraction.  相似文献   

14.
Detergent (Lubrol WX)-solubilized sodium-potassium-activated adenosine triphosphatase ((Na+ + K+)-ATPase) of electrophorus electric organ contains two major constituent polypeptides with molecular weights of 96,000 and 58,000 which can be readily demonstrated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. These two polypeptides can be clearly separated and can be obtained in milligram quantities by preparative sodium dodecyl sulfate gel electrophoresis. The separated polypeptides, after removal of sodium dodecyl sulfate, and Lubrol-solubilized (Na+ + K+)-ATPase activity to some degree. Moreover, the degree of inhibition is directly proportional to the increasing amounts of antisera. The inhibition is maximal 4 weeks after the first injection. Immunodiffusion in 1% agar gel indicated that only Lubrol-solubilized enzyme antiserum, but not 58,000-dalton or 96,00-dalton polypeptide antiserum, gives one major precipitin band. However, specific complex formation between each polypeptide antiserum and Lubrol-solubilized enzyme occurs. This was demonstrated indirectly. After incubating Lubrol-solubilized enzyme with increasing amounts of polypeptide antisera at 37 degrees for 15 min, they were placed in the side wells of an immunodiffusion plate with antiserum against Lubrol-solubilized enzyme in the central well. The intensity of the precipitin band decreased with increasing amounts of polypeptide antisera. Thus, the results indicate that both 96,000-dalton and 58,000-dalton polypeptides are integral subunits of (Na+ + K+)-ATPase.  相似文献   

15.
Regulation of rat brain (Na+ +K+)-ATPase activity by cyclic AMP   总被引:3,自引:0,他引:3  
The interaction between the (Na+ +K+)-ATPase and the adenylate cyclase enzyme systems was examined. Cyclic AMP, but not 5'-AMP, cyclic GMP or 5'-GMP, could inhibit the (Na+ +K+)-ATPase enzyme present in crude rat brain plasma membranes. On the other hand, the cyclic AMP inhibition could not be observed with purified preparations of (Na+ +K+)-ATPase enzyme. Rat brain synaptosomal membranes were prepared and treated with either NaCl or cyclic AMP plus NaCl as described by Corbin, J., Sugden, P., Lincoln, T. and Keely, S. ((1977) J. Biol. Chem. 252, 3854-3861). This resulted in the dissociation and removal of the catalytic subunit of a membrane-bound cyclic AMP-dependent protein kinase. The decrease in cyclic AMP-dependent protein kinase activity was accompanied by an increase in (Na+ +K+)-ATPase activity. Exposure of synaptosomal membranes containing the cyclic AMP-dependent protein kinase holoenzyme to a specific cyclic AMP-dependent protein kinase inhibitor resulted in an increase in (Na+ +K+)-ATPase enzyme activity. Synaptosomal membranes lacking the catalytic subunit of the cyclic-AMP-dependent protein kinase did not show this effect. Reconstitution of the solubilized membrane-bound cyclic AMP-dependent protein kinase, in the presence of a neuronal membrane substrate protein for the activated protein kinase, with a purified preparation of (Na+ +K+)-ATPase, resulted in a decrease in overall (Na+ +K+)-ATPase activity in the presence of cyclic AMP. Reconstitution of the protein kinase alone or the substrate protein alone, with the (Na+ +K+)-ATPase has no effect on (Na+ +K+)-ATPase activity in the absence or presence of cyclic AMP. Preliminary experiments indicate that, when the activated protein kinase and the substrate protein were reconstituted with the (Na+ +K+)-ATPase enzyme, there appeared to be a decrease in the Na+-dependent phosphorylation of the Na+-ATPase enzyme, while the K+-dependent dephosphorylation of the (Na+ +K+)-ATPase was unaffected.  相似文献   

16.
Phosphorylation states of the (Na+ + K+)-transporting ATPase were studied in highly purified preparations isolated from electric-eel electric organ and from lamb kidney. The steady-state level of phosphorylated lamb kidney enzyme, obtained by reaction with [gamma-32P]ATP, was not appreciably reduced in the presence of ADP unless oligomycin was present. The phosphorylated form of the electric-eel electric-organ enzyme was reduced by at least 95% under the same conditions, suggesting that the E1P state in the kidney enzyme is more transitory than that in electric organ. The level of phosphorylation from [32P]Pi was higher in the lamb kidney preparation than in the electric-organ preparation, and the difference in stimulation of phosphorylation by ouabain in the two preparations was striking. Ouabain increased the level of phosphorylation by 35% in the kidney preparation and 734% in the electric-organ preparation. The E2P state seems to be stabilized by ouabain in the latter preparation. These findings, as well as the different reactivities of the thiol groups to blocking reagents in these preparations, suggest that the tertiary structure in the enzyme isolated from these two sources is different.  相似文献   

17.
Rubratoxin B, a lactone-containing bisanhydride metabolite of certain toxigenic molds, inhibited (Na+-K+)-stimulated ATPase activity of mouse brain microsomes in a dose-dependent manner with an estimated IC50 of 6 x 10(-6) M. Hydrolysis of ATP was linear with time and enzyme concentration, with or without rubratoxin in reaction mixtures. Altered pH and activity curves for (Na+-K+)-ATPase demonstrated comparable inhibition by rubratoxin in buffered acidic, neutral, and alkaline pH ranges. Kinetic studies of cationic-substrate activation of (Na+-K+)-ATPase indicated classical competitive inhibition for Na+ and K+. Results also showed competitive inhibition for K+ activated p-nitrophenyl phosphatase as demonstrated by altered binding site parameters without change in the catalytic velocity of dephosphorylation of the enzyme . phosphoryl complex. Noncompetitive inhibition with regards to activation by ATP and p-nitrophenyl phosphate was indicated by altered Vmax values with no change in Km values. Inhibition was partially restored by repeated washings. Preincubation with sulfhydryl agents protected the enzyme from inhibition. Cumulative inhibition studies with rubratoxin and ouabain indicated possible interaction between the two inhibitors of (Na+-K+)-ATPase. Rubratoxin appeared to exert its effects on (Na+-K+)-ATPase by interacting at Na+ and K+ sites.  相似文献   

18.
We have shown previously that proteoliposomes reconstituted with purified Na+K+-ATPase from Ehrlich ascites tumor cells, transport Na+ with low efficiency (Spector, M., O'Neal, S. and Racker, E. (1980) J. Biol. Chem., 255, 5504-5507). We now present evidence that this low efficiency (expressed in the ratio of Na+-transported/ATP-hydrolyzed) is caused by the phosphorylation of the beta subunit of the Na+K+-ATPase by an endogenous protein kinase. On addition of [gamma-32P]ATP, crude tumor plasma membrane preparations phosphorylated the beta subunit of the ATPase, whereas crude mouse brain plasma membranes did not. However, solubilized Na+K+-ATPase from either tumor or brain wre phosphorylated by purified protein kinase from the tumor plasma membrane and dephosphorylated by a phosphatase. In both cases, the phosphorylated enzyme was inefficient; the dephosphorylated enzyme was efficient after reconstitution into liposomes. During isolation of the Na+K+-ATPase from Ehrlich ascites tumor or mouse brain, an endogenous protease partially cleaved from the beta subunit a polypeptide of 29,000 daltons that contained the phosphorylation site. The proteolytic cleavage of the beta subunit was partially inhibited by phenylmethylsulfonyl fluoride and the major site of phosphorylation was then seen in the 53,000-dalton beta subunit of the enzyme. The isolated 29,000-dalton polypeptide from mouse brain ATPase was phosphorylated by tumor protein kinase with a stoichiometry of 1 mol of phosphate/mol of protein. When this 29,000-dalton polypeptide from mouse brain was incorporated into the tumor Na+K+-ATPase after mild proteolytic digestion, a marked increase in efficiency was observed after reconstitution of the Na+ pump.  相似文献   

19.
(Na+ + K+)-ATPase from beef brain and pig kidney are slowly inactivated by chromium(III) complexes of nucleotide triphosphates in the absence of added univalent and divalent cations. The inactivation of (Na+ + K+)-ATPase activity was accompanied by a parallel decrease of the associated K+-activated p-nitrophenylphosphatase and a parallel loss of the capacity to form, Na+-dependently, a phosphointermediate from [gamma-32P]ATP. The kinetics of inactivation and of phosphorylation with [gamma-32P]CrATP and [alpha-32P]CrATP are consistent with the assumption of the formation of a dissociable complex of CrATP with the enzyme (E) followed by phosphorylation of the enzyme: formula: (see text). The dissociation constant of the CrATP complex of the pig kidney enzyme at 37 degrees C was 43 microM. The inactivation rate constant (k + 2 = 0.033 min-1) was in the range of the dissociation rate constant kd of ADP from the enzyme of 0.011 min-1. The phosphoenzyme was unreactive towards ADP as well as to K+. No hydrolysis of the native isolated phosphoenzyme was observed within 6 h under a variety of conditions, but high concentrations of Na+ reactivated it slowly. The capacity of the Cr-phosphoenzyme of 121 +/- 18 pmol/unit enzyme is identical with the capacity of the unmodified enzyme to form, Na+-dependently, a phosphointermediate. The Cr-phosphoenzyme behaved after acid denaturation like an acylphosphate towards hydroxylamine, but the native phosphoenzyme was not affected by it. ATP protected the enzyme against the inactivation by CrATP (dissociation constant of the enzyme ATP complex = 2.5 microM) as well as low concentrations of K+. CrATP was a competitive inhibitor of (Na+ + K+)-ATPase. It is concluded that CrATP is slowly hydrolyzed at the ATP-binding site of (Na+ + K+)-ATPase and inactivates the enzyme by forming an almost non-reactive phosphoprotein at the site otherwise needed for the Na+-dependent proteinkinase reaction as the phosphate acceptor site.  相似文献   

20.
Rat brain has the alpha 3 form of the (Na+,K+)ATPase   总被引:2,自引:0,他引:2  
Y M Hsu  G Guidotti 《Biochemistry》1989,28(2):569-573
Multiple forms of the catalytic subunit of the (Na+,K+)ATPase have been identified in rat brain. While two of them (alpha 1 and alpha 2) have been well characterized, the third form (alpha 3) of these catalytic subunits only recently has been described by cDNA cloning; the corresponding polypeptide has not been isolated. In this paper it is shown that rat brain contains the alpha 3 chain. The catalytic subunits of the (Na+, K+)ATPase from rat brain axolemma were purified by SDS-PAGE and subjected to formic acid cleavage. Amino acid sequence analysis of the resulting fragments revealed that axolemma has the alpha 3 form of the catalytic subunit. In addition, alpha 3-specific antiserum was raised in rabbits immunized with a synthetic peptide. Immunoblotting with this antiserum revealed that the alpha 3 form of the (Na+,K+)ATPase is present also in whole brain microsomes. In SDS-PAGE, the mobilities of the three catalytic subunits of brain (Na+, K+)ATPase follow the order alpha 1 greater than alpha 2 greater than alpha 3. Determination of the ouabain-inhibitable ATPase activity indicates that if the alpha 3 form of the (Na+,K+)ATPase is able to hydrolyze ATP, it is present in a form of the enzyme with a high affinity for this cardiac glycoside and is similar to the alpha 2 form in this respect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号