首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sodium-free contracture was directly dependent on the presence of Ca2+ in Tyrode sulphate solution. The first phase of contracture increased in Tyrode nitrate solution more quickly than in sulphate solution, while the second phase was the same. Higher amplitude of isotonic contractions was observed on substituting nitrates for chlorides in the Tyrode solution than in sulphate substitution. In Tyrode sulphate solution, spontaneous contractions appeared in 50% of the experiments. The relationship between the duration and tension of isotonic contraction, given the same pre-loading, showed greater diminution of the contractions, at the lower temperature (22 degrees C) than at the higher temperature (35 degrees C), whereas passive stretching of the muscle was not influenced by the temperature. Isometric contrations lasted longer at the lower temperature. The amphlitude of isometric contractions was directly correlated to the frequency of electrical stimulation at a constant temperature (22 degrees C). The results showed that shifts of the calcium participating in contraction of the rat ventricle are influenced both by the anion and cation content of the medium and by its temperature.  相似文献   

2.
Katina IE  Nasledov GA 《Biofizika》2006,51(5):898-905
A comparative analysis of the effects of the concentrations of Ca2+ in external medium and the inhibitor (dantrolene) and activator (4-chloro-m-cresol) of rhyanodine-sensitive Ca2+ channels of carcoplasmic reticulum on the characteristics of potassium contracture in frog twitch and tonic skeletal muscles has been performed. It was shown that the duration of contracture in tonic muscles is not restricted by the presence of Ca2+, as distinct from twitch muscles. Dandrolene does not practically affect the contractile responses of tonic fibres, and the concentration of cresol eliciting the contracture for tonic fibres is substantially higher (1 mM) than for twitch fibers (0.25 mM). In twitch fibers, the potassium contracture activated in the presence of cresol is comparable in amplitude and dynamics with the contracture under control conditions, and in tonic fibers a summing of responses without relaxation after the washing of excessive potassium is observed. This suggests that, in twitch fibers, the influx of Ca2+ can directly create the concentration sufficient for the maintenance of contraction, and in tonic fibers its involvement is mediated through the Ca(2+)-dependent activation of the beta-isoform of rhyanodine-sensitive channels.  相似文献   

3.
We compared the influence of external calcium and the inhibitor (dantrolene) and activator (4-chloro-m-cresol) of ryanodine-sensitive Ca channels of the sarcoplasmic reticulum on the characteristics of potassium contracture in phasic and tonic frog skeletal muscle fibers. The duration of contracture in tonic fibers, as contrasted to the phasic ones, is not limited by the presence of Ca2+. The tonic contractile response is virtually indifferent to dantrolene and is much less sensitive to chlorocresol than the phasic one (1 mM vs. 0.25 mM). In phasic fibers, the K+ contracture on the chlorocresol background is quite similar in amplitude and dynamics to that in control, whereas tonic fibers exhibit response summation without relaxation upon removal of excessive K+. One can suggest that in phasic fibers the Ca2+ influx can directly create a level sufficient to sustain contraction, while in tonic fibers its effect is mediated by Ca-dependent activation of the beta isoform of the ryanodine-sensitive channel.  相似文献   

4.
Chemically skinned fibers from guinea pig taenia caecum were prepared by saponin treatment to study the smooth muscle contractile system in a state as close to the living state as posible. The skinned fibers showed tension development with an increase of Ca2+ in the solution, the threshold tension occurring as 5 X 10(-7) M Ca2+. The maximal tension induced with 10(-4) M Ca2+ was as large and rapid as the potassium-induced contracture in the intact fibers. The slope of the pCa tension curve was less steep than that of skeletal muscle fibers and shifted in the direction of lower pCa with an increase of MgATP. The presence of greater than 1 mM Mg2+ was required for Ca2+-induced contraction in the skinned fibers as well as for the activation of ATPase and superprecipitation in smooth muscle myosin B. Mg2+ above 2 mM caused a slow tension development by itself in the absence of Ca2+. Such a Mg2+-induced tension showed a linear relation to concentrations up to 8 mM in the presence of MgATP. Increase of MgATP concentration revealed a monophasic response without inhibition of Ca2+-induced tension development, unlike the biphasic response in striated muscle. When MgATP was removed from the relaxing solution, the tension developed slowly and slightly, even though the Mg2+ concentrations was fixed at 2 mM. These results suggest a substantial difference in the mode of actin-myosin interaction between smooth and skeletal muscle.  相似文献   

5.
Cardiac contractile activity is usually controlled by intracellular Ca2+, but it can also be modified by oxidizing agents. Incubation of guinea pig heart myofibrils with diamide (3 mM, 1 h) increased basal (no Ca2+) ATPase activity by 580% and abolished Ca2+ dependence. The effect was proportional to diamide concentration (0.01-1 mM) and duration of preincubation (up to 2 h). Dithiothreitol (5 mM, 1 h) reversed most of the basal ATPase activation and restored Ca2+ sensitivity. Other sulfhydryl reagents produced a similar effect but also produced inhibition of total ATPase. In intact cell preparations, diamide produced a slow tonic contraction, consistent with myofibril activation. In the perfused rat heart, 1 mM diamide slowly increased diastolic ventricular pressure; this increase was partially reversed by dithioerythritol. In isolated rat heart myocytes, 1 mM diamide produced a slow tonic contraction, increased contractility in response to stimulation. Cardiocytes superfused for 1 h with buffer containing EGTA to deplete Ca2+ did not contract in response to stimulation but showed a slow tonic contraction with diamide. This contraction could be slowly and only partially reversed by dithioerythritol. Response to stimulation was restored by addition of Ca2+. The results show that diamide can produce contraction in viable cells. This contraction does not require extracellular Ca2+ and is unlikely to involve intracellular Ca2+. The direct activation of myofibrillar ATPase may contribute to the increased myocardial stiffness seen in ischemia and to ischemic contracture.  相似文献   

6.
Effects of temperature and Na0+ on the relaxation of guinea-pig ureter smooth muscle were studied. Relaxation of phasic contraction was found to be highly temperature-dependent, practically independent of Na0+ and Ca02+, and resistant to vanadate. The relaxation of the tonic tension of both high-K and low-Na contracture was less temperature-dependent and affected by Na0+. The relaxation of tonic tension produced by introduction of Na0+ was about 3-5 times faster than that produced by Ca-free solution. La3+ ions were found to block the relaxation of the tonic component of the Na+-free contracture initiated by removal of Ca02+. Three systems of regulation of cell calcium are suggested to be operative in the ureter muscle: a fast one which is highly temperature-dependent and responsible for the relaxation of the phasic contraction (probably the sarcoplasmic reticulum), and two slow membrane-linked carriers, one of which is dependent on Na0+ (probably Na-Ca exchange) and another one which is independent of Na0+ and inhibited by La3+ (probably Ca-pump).  相似文献   

7.
A small muscle preparation of stomach circular muscle of the newt responded to carbachol (CCh) with a phasic contracture. At 20 degrees C, in Ca-free Ringer solution (+1 mM EGTA), the amplitude of CCh contracture was very rapidly inhibited to less than 10% of that in normal Ringer solution (1.8 mM Ca). The amplitude of this CCh contracture was markedly enhanced with increasing [K]0. CCh contracture in Ca-free Ringer solution was also enhanced after K contracture was induced once in the presence of 1.8 mM Ca, followed by soaking in normal Ringer solution. The amplitude of this enhanced CCh contracture persisted up to about 5 min, following rapid decrease to about 70%, and then gradually decreased to a steady level in Ca-free Ringer solution. This decrease in amplitude was prevented by increasing [K]0 during soaking in Ca-free solution; even when the temperature was elevated from 20 to 35 degrees C during the periods of soaking in Ca-free solution, CCh contracture was inhibited only by about 20% in Ca-free high K solution, whereas in Ca-free or Ca-free low Na (Tris) Ringer solution it was inhibited by more than 50%.  相似文献   

8.
The development of contracture related to changes of ionic environment (ionic contracture coupling) has been studied in the slowly responding fibers of frog skeletal muscle. When deprived of external ions for 30 minutes by use of solutions of sucrose, mannitol, or glucose, the slow skeletal muscle fibers, but not the fast, develop pronounced and easily reversible contractures. Partial replacement of the non-ionic substance with calcium or sodium reduces the development of the contractures but replacement by potassium does not. The concentration of calcium necessary to prevent contracture induced by a non-ionic solution is greater than that needed to maintain relaxation in ionic solutions. To suppress the non-ionic-induced contractures to the same extent as does calcium requires several fold higher concentrations of sodium. Two types of ionic contracture coupling occur in slow type striated muscle fibers: (a) a calcium deprivation type which develops maximally at full physiological concentration of external sodium, shows a flow rate dependency for the calcium-depriving fluid, and is lessened when the sodium concentration is decreased by replacement with sucrose; (b) a sodium deprivation type which occurs maximally without external sodium, is lessened by increasing the sodium concentration, and has no flow rate dependency for ion deprivation. Both types of contracture are largely prevented by the presence of sufficient calcium. There thus seem to be calcium- and sodium-linked processes at work in the ionic contracture coupling of slow striated muscle.  相似文献   

9.
Experiments were performed on isolated strips of guinea pig taenia coli by the double sucrose-gap method. The artificial node was depolarized with potassium solution (from 120 to 167.7 mM KCl). When the bathing solution contained 0.4 mM Ca and the temperature was equal to 25 degrees C then potassium contracture was followed by fast relaxation. The muscular tone changed slightly during rectangular pulse of hyperpolarizing current, after switching off the current muscle generated a transient contractile response. The amplitude of such off-responses increased in some range with increasing in strength and duration of conditioning current. Treatment of muscle with compound D-600 resulted in a reduction of muscular tone and elimination of off-responses. The addition of Na ions to potassium solution (substitution of 47.7 mM KCl with the same quantity of NaCl) reduced muscular tone and enhanced the relaxation after off-responses. In sodium-free potassium solution each off-response was followed by increasing muscular tone but when the bathing solution contained Na ions this increase of the tone was not observed. The data obtained strongly suggest that the spontaneous relaxation of smooth muscle which was contracted in K-solution resulted from: 1) inactivation of calcium channels of surface membrane, 2) sequastration of Ca ions by intracellular storange sites, 3) extrusion of Ca in extracellular space (in part by means of Na-Ca exchange diffusion).  相似文献   

10.
Inactivation of slow Ca2+ channels was studied in intact twitch skeletal muscle fibers of the frog by using the three-microelectrode voltage-clamp technique. Hypertonic sucrose solutions were used to abolish contraction. The rate constant of decay of the slow Ca2+ current (ICa) remained practically unchanged when the recording solution containing 10 mM Ca2+ was replaced by a Ca2+-buffered solution (126 mM Ca-maleate). The rate constant of decay of ICa monotonically increased with depolarization although the corresponding time integral of ICa followed a bell-shaped function. The replacement of Ca2+ by Ba2+ did not result in a slowing of the rate of decay of the inward current nor did it reduce the degree of steady-state inactivation. The voltage dependence of the steady-state inactivation curve was steeper in the presence of Ba2+. In two-pulse experiments with large conditioning depolarizations ICa inactivation remained unchanged although Ca2+ influx during the prepulse greatly decreased. Dantrolene (12 microM) increased mechanical threshold at all pulse durations tested, the effect being more prominent for short pulses. Dantrolene did not significantly modify ICa decay and the voltage dependence of inactivation. These results indicate that in intact muscle fibers Ca2+ channels inactivate in a voltage-dependent manner through a mechanism that does not require Ca2+ entry into the cell.  相似文献   

11.
Bovine adrenocortical microsomes were prepared and partially purified by discontinuous sucrose density gradient. Light fractions of the microsomes at the interface between 15 and 30% sucrose solution, exhibited ATP dependent Ca2+ uptake. The Ca2+ uptake was dependent on temperature and stimulated by free Ca2+ (the concentration for half maximal activation = 1.0 microM) and Mg2+. The Ca2+ uptake was inhibited by ADP but not affected by 10 mM NaN3 or 0.5 mM ouabain. Calcium release from the microsomes was accelerated by a Ca2+ ionophore, A23187, but not by a Ca2+ antagonist, diltiazem. A microsomal protein with a molecular weight of 100-110 kDa was phosphorylated by [gamma-32P]ATP in the presence of Ca2+, and the Ca2+ dependency was over the same range as the Ca2+ uptake (the concentration for half maximal activation = 3.0 microM). The phosphorylated protein (EP) was stable at acidic pH but labile at alkaline pH and sensitive to hydroxylamine. The rate of EP formation at 0 degrees C in the presence of 1 microM ATP and 10 microM Ca2+ (half time = 0.2 s) was less than that in the sarcoplasmic reticulum (SR) of rabbit skeletal muscle (half time = 0.1 s). The rate of EP decomposition at 0 degrees C after adding EGTA was about 6.7 times slower (rate constant: kd = 4.3 X 10(-3) s-1) than that of SR. It was suggested that adrenocortical microsomes contain a Ca2+ dependent ATPase which function as a Ca2+ pump with similar properties to that of SR.  相似文献   

12.
In the previous study (Podlubnaya et al., 1999, J. Struc. Biol. 127, 1-15) Ca2+-induced reversible structural transitions in synthetic filaments of pure fast skeletal and cardiac muscle myosins were observed under rigor conditions (-Ca2+/+Ca2+). In the present work these studies have been extended to new more order-producing conditions (presence of ATP in the absence of Ca2+) aimed at arresting the relaxed structure in synthetic filaments of both fast and slow skeletal muscle myosin. Filaments were formed from column-purified myosins (rabbit fast skeletal muscle and rabbit slow skeletal semimebranosusproprius muscle). In the presence of 0.1 mM free Ca2+, 3 mM Mg2+ and 2 mM ATP (activating conditions) these filaments had a spread structure with a random arrangement of myosin heads and subfragments 2 protruding from the filament backbone. Such a structure is indistinguishable from the filament structures observed previously for fast skeletal, cardiac (see reference cited above) and smooth (Podlubnaya et al., 1999, J. Muscle Res. Cell Motil. 20, 547-554) muscle myosins in the presence of 0.1 mM free Ca2+. In the absence of Ca2+ and in the presence of ATP (relaxing conditions) the filaments of both studied myosins revealed a compact ordered structure. The fast skeletal muscle myosin filaments exhibited an axial periodicity of about 14.5 nm and which was much more pronounced than under rigor conditions in the absence of Ca2+ (see the first reference cited). The slow skeletal muscle myosin filaments differ slightly in their appearance from those of fast muscle as they exhibit mainly an axial repeat of about 43 nm while the 14.5 nm repeat is visible only in some regions. This may be a result of a slightly different structural properties of slow skeletal muscle myosin. We conclude that, like other filaments of vertebrate myosins, slow skeletal muscle myosin filaments also undergo the Ca2+-induced structural order-disorder transitions. It is very likely that all vertebrate muscle myosins possess such a property.  相似文献   

13.
Isolated slow and intermediate frog muscle fibres were fixed in the rest state and under potassium contracture (50-100 mM KC1). The longitudinal and cross sections of two types of fibres were investigated. It was shown that at the rest the thick filaments of different fibres had similar length (1.6-1.65 mum), diameter (160-165 A) and the amount of subunits (12-13). Under potassium contracture the length of the thick filaments of both fibre types was shortened by 25-30% of the rest-length, the diameter of the slow fibres increased to 180-185 A, the diameter of the intermediate fibres to 200-220 A. The amount of subunits increased to 14-15 in slow fibres and to 17-18 in intermediate fibres. We believe that the ultrastructural changes observed in the thick filaments are a result of molecular transformation in these filaments, which seems to be important for maintaining the contracture.  相似文献   

14.
The venoms of Latrodectus sp. have been reported to induce contraction probably mediated by adrenergic and cholinergic transmitters. We have demonstrated that the venom of Chilean Latrodectus mactans contains neurotoxins that induce a contraction partially independent of transmitters release. Transmembrane mobility of Na+ and Ca2+ ions and more specifically, the increase of cytoplasmic calcium concentration are responsible for tonic contraction in smooth muscle. Calcium may enter the cell by several ways, such as the voltage-dependent Ca2+ L-type channels and the Na+/Ca2+ exchanger. This study aimed to examine the participation of this exchanger in the tonic contraction of smooth muscle in vas deferent of rat induced by the venom of the Chilean spider L. mactans. Blockers of Na+ channels (amiloride) and Ca2+ L-type channels (nifedipine), and a stimulator of the exchanger (modified Tyrode, Na+ 80 mM) were used. Simultaneously, variations of the cytoplasmic concentration of Ca2+ were registered by microfluorimetry (Fura-2 indicator) in the presence of nifedipine. In presence of amiloride, dose-dependent inhibition of venom-induced contraction was observed, suggesting the participation of voltage-dependent Ca2+ L-type channels. The contraction was only partially inhibited by nifedipine and the Ca2+ cytoplasmic concentration increased, as assessed by the microfluorimetric registration. Finally, the venom-induced contraction increased in the presence of modified Tyrode, probably due to the action of the Na+/Ca2+ exchanger. Taken together, our results support the idea that the Na+/Ca2+ exchanger is active and may be, at least in part, responsible for the contraction induced by the venom of Chilean L. mactans.  相似文献   

15.
The effect of substrates on potassium contracture tension of the isolated rat ventricle strip was investigated. The contracture tension magnitude of ventricle strips exposed to potassium rich medium was markedly greater with medium containing pyruvate or acetate than with glucose as the substrate. The effect of substrates on contracture tension was not related to their ability to maintain the ATP stores of the heart, for there was not a significant difference in the ATP levels in ventricle strips incubated in medium containing pyruvate, pyruvate + glucose, or glucose. Glucose reduced the K-contracture tension magnitude of heart strips suspended in medium containing pyruvate or acetate as substrate; 3-0-methylglucose and 2-deoxy-D-glucose did not have this action on K-contracture tension. The reduction of K-contracture tension by glucose was inhibited by iodoacetate and fluoride. Under anaerobic conditions, 50 mM glucose significantly reduced the K-contracture tension of ventricle strips suspended in pyruvate medium. The findings of this study suggest that glucose metabolism has an action on K-contracture tension in cardiac muscle that is not shared by acetate or pyruvate.  相似文献   

16.
Slow Ca-action potentials (CaAP) were studied in normal human skeletal muscle fibers obtained during surgery (fibers with both ends cut). Control studies also were carried out with intact as well as cut rat skeletal muscle fibers. Experiments were performed in hypertonic Cl-free saline with 10 or 84 mM Ca and K-channel blockers; muscles were preincubated in a saline containing Cs and tetraethylammonium. A current-clamp technique with two intracellular microelectrodes was used. In human muscle, 14.5% of the fibers showed fully developed CaAPs, 21% displayed nonregenerative Ca responses, and 64.5% showed only passive responses; CaAPs were never observed in 10 mM Ca. In rat muscle, nearly 90% of the fibers showed CaAPs, which were not affected by the cut-end condition. Human and rat muscle fibers had similar membrane potential and conductance in the resting state. In human muscle (22-32 degrees C, 84 mM Ca), the threshold and peak potential during a CaAP were +26 +/- 6 mV and +70 +/- 3 mV, respectively, and the duration measured at threshold level was 1.7 +/- 0.5 sec. In rat muscle, the duration was four times longer. During a CaAP, membrane conductance was assumed to be a leak conductance in parallel with a Ca and a K conductance. In human muscle (22-32 degrees C, 84 mM Ca, 40 micron fiber diameter), values were 0.4 +/- 0.1 microS, 1.1 +/- 0.7 microS, and 0.9 +/- 0.4 microS, respectively. Rat muscle (22-24 degrees C, 84 mM Ca) showed leak and K conductances similar to those found in human fibers. Ca-conductance in rat muscle was double the values obtained in human muscle fibers.  相似文献   

17.
Effects of pretreatment with caffeine on Ca2+ release induced by caffeine, thymol, quercetin, or p-chloromercuriphenylsulfonic acid (pCMPS) from the heavy fraction of sarcoplasmic reticulum (SR) were studied and compared with those effects on caffeine contracture and tetanus tension in single fibers of frog skeletal muscle. Caffeine (1-5 mM) did induce transient Ca2+ release from SR vesicles, but subsequent further addition of caffeine (10 mM, final concentration) induced little Ca2+ release. Ca2+ release induced by thymol, quercetin, or pCMPS was also inhibited by pretreatment with caffeine. In single muscle fibers, pretreatment with caffeine (1-5 mM) partially reduced the contracture induced by 10 mM caffeine. However, tetanus tension was almost maximally induced by electrical stimulus in caffeine-treated fibers. These results indicate that SR, which becomes less sensitive to caffeine, thymol, quercetin, or pCMPS by pretreatment with caffeine, can still respond to a physiological signal transmitted from transverse tubules.  相似文献   

18.
The effects of Ba2+ ions on twitches, K+-induced contractures, and on intracellularly recorded membrane potentials (Em) and depolarizations of frog skeletal muscle fibres were investigated. Exposure of toe muscles to choline--Ringer's solution with 10(-3) M Ba2+ with Ca2+ (1.08 mM) eliminated or very greatly reduced contractures produced by 60 mM K+. In contrast, not only did the same concentration of Ba2+ ions fail to depress the twitch tension of isolated semitendinosus fibres when added to Ringer's with Ca2+, but it even restored twitches that had been eliminated in a zero Ca2+ Ringer's solution. The resting Em of sartorius muscle fibres in choline--Ringer's solution was reduced about 20 mV by 10(-3) M Ba2+. This Ba2+ ion concentration also antagonized the K+-induced depolarization. Thus in the presence of 1 mM Ba2+, 20 mM K+ hyperpolarized rather than depolarized the fibres and 60 or 123 mM K+ produced only very slowly developing, small depolarizations. These results suggest that the loss of the K+-induced contracture in choline-Ringer's caused by Ba2+ ions is due to an inhibition of the K+-induced depolarization. The latter result is consistent with previous findings of other workers that Ba2+ ions block membrane K+ channels.  相似文献   

19.
Smooth muscle cells were isolated from estrogenized rat myometrium by collagenase digestion. Electron microscopic examination and measurement of cell lengths by image-splitting micrometry were carried out after fixation with acrolein. Mean lengths of cells before and after isolation were 81.7 and 66.9 micron, respectively. Responses of cells were compared with contractions of isolated strips recorded isometrically. Effects of carbachol and KCl were examined in 2 mM Ca, 2 mM Ca + 4 mM EGTA, and 2 mM Ca + 10(-8) M nitrendipine solution. Carbachol and KCl produced concentration-dependent shortening of isolated cells maximal at 30 s after addition. The concentrations of carbachol required to produce shortenings were about 100-fold less than those required to produce isometric contractions; but no major difference was observed in the concentration dependence of cell shortening and isometric contraction produced by potassium-induced depolarization. In 2 mM Ca solution, there was a phasic response, followed by a tonic response such that more than 50% of maximum cell shortening was maintained for 10 min. However, in 2 mM Ca + 4 mM EGTA or 10(-8) M nitrendipine, the tonic contraction was abolished and cells rapidly relaxed after 30 s. If carbachol was added to cells after varying times in the EGTA-containing solution, the ability to initiate a contraction declined exponentially with a half-time of 160 s. Effects of depolarization by KCl were examined in 2 mM Ca plus nitrendipine and 2 mM Ca + 4 mM EGTA solution. Shortening occurred in 2 mM Ca solution by depolarization but not if nitrendipine was added. Though shortening was not observed in 2 mM Ca + 4 mM EGTA solution by KCl, subsequent addition of carbachol induced shortening. These results suggested that there was an intracellular Ca store site from which Ca was released by carbachol and which was not affected by depolarization in the absence of external Ca. No evidence was obtained that the contraction persists in Ca2+-free medium in isolated cells, which is in agreement with previous findings in small muscle strips in which only a similar transient response was obtained.  相似文献   

20.
The physiological properties of mechanical response and the ultrastructure in the longitudinal body wall muscle (LBWM) of the opisthobranch mollusc Dolabella auricularia were studied to obtain information about excitation-contraction coupling in somatic smooth muscles responsible for smooth and slow body movement of molluscans. The contracture tension produced by 400 mM K was not affected by Mn ions (5--10 mM) and low pH (up to 4.0), but was reduced by procaine (2 mM). The K-contracture tension was not readily eliminated in a Ca-free solution containing ethylene glycol-bis(beta-aminoethyl ether)N,N,N',N'- tetraacetate (EGTA). A large contracture tension was also produced by rapid cooling of the surrounding fluid from 20 degrees to 5 degrees--3 degrees C even when the preparation showed no mechanical response to 400 mM K after prolonged (more than 2 h) soaking in the Ca-free solution. These results indicate that the LBWM fibers contain a large amount of intracellularly stored Ca which can be effectively released by membrane depolarization. The fibers were connected with each other, forming the gap junctions, the desmosomes, and the intermediate junctions. The sarcoplasmic reticulum (SR) consisted of vesicular and tubular elements, and was mostly located near the fiber surface. The plasma membrane showed marked tubular invaginations of 600-800 A in diameter, with many branches (surface tubules), extending inwards for approximately 2 micron. These surface tubules were closely apposed to the SR, and the bridgelike structures analogous to those in the triadic junction of vertebrate skeletal muscle were observed in the space between the surface tubules and the SR. It is suggested that the influence of membrane depolarization is transmitted inwards along the surface tubules to cause the release of Ca from the SR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号