首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To add detail to the genetic map of Arabidopsis lyrata, and compare it with that of A. thaliana, we have developed many additional markers in the A. lyrata linkage groups, LG1 and LG2, corresponding to A. thaliana chromosome 1. We used a newly developed method for marker development for single nucleotide polymorphisms present in gene sequences, plus length differences, to map genes in an A. lyrata family, including variants in several genes close to the A. thaliana centromere 1, providing the first data on the location of an A. lyrata centromere; we discuss the implications for the evolution of chromosome 1 of A. thaliana. With our larger marker density, large rearrangements between the two Arabidopsis species are excluded, except for a large inversion on LG2. This was previously known in Capsella; its presence in A. lyrata suggests that, like most other rearrangements, it probably arose in the A. thaliana lineage. Knowing that marker orders are similar, we can now compare homologous, non-rearranged map distances to test the prediction of more frequent crossing-over in the more inbreeding species. Our results support the previous conclusion of similar distances in the two species for A. lyrata LG1 markers. For LG2 markers, the distances were consistently, but non-significantly, larger in A. lyrata. Given the two species' large DNA content difference, the similarity of map lengths, particularly for LG1, suggests that crossing-over is more frequent across comparable physical distances in the inbreeder, A. thaliana, as predicted.  相似文献   

2.
We analyzed linkage and chromosomal positions of genes in A. lyrata ssp. petraea that are located near the centromere (CEN) regions of A. thaliana, using at least two genes from the short and long arms of each chromosome. In our map, genes from all 10 A. thaliana chromosome arms are also tightly linked in A. lyrata. Genes from the regions on the two sides of CEN5 have distant map localizations in A. lyrata (genes on the A. thaliana short-arm genes are on linkage group AL6, and long-arm genes are on AL7), but genes from the other four A. thaliana centromere regions remain closely linked in A. lyrata. The observation of complete linkage between short- and long-arm centromere genes, but not between genes in other genome regions that are separated by similar physical distances, suggests that crossing-over frequencies near the A. lyrata ssp. petraea centromere regions are low, as in A. thaliana. Thus, the centromere positions appear to be conserved between A. thaliana and A. lyrata, even though three centromeres have been lost in A. thaliana, and the core satellite sequences in the two species are very different. We can now definitively identify the three centromeres that were eliminated in the fusions that formed the A. thaliana chromosomes. However, we cannot tell whether genes were lost along with these centromeres, because such genes are absent from the A. thaliana genome, which is the sole source of markers for our mapping.  相似文献   

3.
Olfactory receptor (OR) genes of the 7E subfamily have been duplicated to multiple regions throughout the human genome. Segmental duplications containing 7E OR genes have been associated with both pathological and evolutionary chromosome rearrangements. Many of these breakpoint regions coincide with breaks of chromosomal synteny in the mouse, rat and/or chicken genomes. Collectively, these data suggest that 7E OR-containing regions represent hot spots of genomic instability.  相似文献   

4.
We analyzed the complete genome sequence of Arabidopsis thaliana and sequence data from 83 genes in the outcrossing A. lyrata, to better understand the role of gene expression on the strength of natural selection on synonymous and replacement sites in Arabidopsis. From data on tRNA gene abundance, we find a good concordance between codon preferences and the relative abundance of isoaccepting tRNAs in the complete A. thaliana genome, consistent with models of translational selection. Both EST-based and new quantitative measures of gene expression (MPSS) suggest that codon preferences derived from information on tRNA abundance are more strongly associated with gene expression than those obtained from multivariate analysis, which provides further support for the hypothesis that codon bias in Arabidopsis is under selection mediated by tRNA abundance. Consistent with previous results, analysis of protein evolution reveals a significant correlation between gene expression level and amino acid substitution rate. Analysis by MPSS estimates of gene expression suggests that this effect is primarily the result of a correlation between the number of tissues in which a gene is expressed and the rate of amino acid substitution, which indicates that the degree of tissue specialization may be an important determinant of the rate of protein evolution in Arabidopsis.  相似文献   

5.
U Lagercrantz 《Genetics》1998,150(3):1217-1228
Chromosome organization and evolution in the Brassicaceae family was studied using comparative linkage mapping. A total of 160 mapped Arabidopsis thaliana DNA fragments identified 284 homologous loci covering 751 cM in Brassica nigra. The data support that modern diploid Brassica species are descended from a hexaploid ancestor, and that the A. thaliana genome is similar in structure and complexity to those of each of the hypothetical diploid progenitors of the proposed hexaploid. Thus, the Brassica lineage probably went through a triplication after the divergence of the lineages leading to A. thaliana and B. nigra. These duplications were also accompanied by an exceptionally high rate of chromosomal rearrangements. The average length of conserved segments between A. thaliana and B. nigra was estimated at 8 cM. This estimate corresponds to approximately 90 rearrangements since the divergence of the two species. The estimated rate of chromosomal rearrangements is higher than any previously reported data based on comparative mapping. Despite the large number of rearrangements, fine-scale comparative mapping between model plant A. thaliana and Brassica crops is likely to result in the identification of a large number of genes that affect important traits in Brassica crops.  相似文献   

6.
The evolutionary history of the common chloroplast (cp) genome of the allotetraploid Arabidopsis suecica and its maternal parent A. thaliana was investigated by sequencing 50 fragments of cpDNA, resulting in 98 polymorphic sites. The variation in the A. suecica sample was small, in contrast to that of the A. thaliana sample. The time to the most recent common ancestor (T(MRCA)) of the A. suecica cp genome alone was estimated to be about one 37th of the T(MRCA) of both the A. thaliana and A. suecica cp genomes. This corresponds to A. suecica having a MRCA between 10 000 and 50 000 years ago, suggesting that the entire species originated during, or before, this period of time, although the estimates are sensitive to assumptions made about population size and mutation rate. The data was also consistent with the hypothesis of A. suecica being of single origin. Isolation-by-distance and population structure in A. thaliana depended upon the geographical scale analysed; isolation-by-distance was found to be weak on the global scale but locally pronounced. Within the genealogical cp tree of A. thaliana, there were indications that the root of the A. suecica species is located among accessions of A. thaliana that come primarily from central Europe. Selective neutrality of the cp genome could not be rejected, despite the fact that it contains several completely linked protein-coding genes.  相似文献   

7.
拟南芥和琴叶拟南芥中MADS-box基因的比较进化分析   总被引:1,自引:0,他引:1  
MADS-box基因编码一类转录因子。在被子植物中,MADS-box基因对于营养生长和生殖发育都有重要的调控作用,是植物体(特别是花序、花和果实)的正常发育所不可或缺的。为了理解近缘物种在遗传基础上的异同,我们对拟南芥(Arabidopsis thaliana)和琴叶拟南芥(A.lyrata)基因组中MADS-box基因的拷贝数目和进化式样进行了比较分析。通过搜索公共数据库,我们在拟南芥和琴叶拟南芥中分别鉴定出了106和115个基因。系统发育分析的结果表明,这些基因属于I型和II型MADS-box基因。在两个物种分化之后,II型基因的拷贝数目变化不大,I型基因则经历了多次独立的基因丢失和获得事件。通过比较这些基因在染色体上的排列,我们不但鉴定出了存在微共线性的基因组区段,而且发现新基因产生的主要机制是串联重复和散在重复。分子进化的研究进一步表明,I型和II型基因在进化式样上存在着显著差异:II型基因在进化中一般都受到了较强的选择压力,而I型基因大多受到的选择压力较弱。本研究将为深入理解近缘物种在基因和基因组层面上的异同、探讨物种分化和生物多样性形成的机制等问题提供新思路。  相似文献   

8.
9.
A combination of FISH and RH mapping was used to study the evolution of sex chromosome genes in the pig. In total, 19 genes were identified, including 3 PAR genes (STS, KAL, PRK). The gene order of the porcine X Chromosome (Chr) closely resembled the human X Chr (PRK/STS/KAL–AMELX–EIF2s3X/ZFX–USP9X–DBX–SMCX), suggesting that the porcine X has undergone very little rearrangement during evolution. For the porcine Y Chr, two linkage groups of 10 NRY genes were found, and the following order was established: Ypter–(AMELY–EIF2S3Y/ZFY–USP9Y–DBY/UTY)–(TSPY–SMCY–UBE1Y–SRY)–CEN. This gene order showed greater conservation with the murine Y than with the human Y Chr. In addition, all porcine Y Chr genes mapped to Yp, which is similar to the mouse and included EIF2s3Y and UBE1Y, which are not present in humans. Interestingly, complete conservation of X/Y homologous gene order was found between the pig X and Y Chrs, indicating that the porcine Y Chr has not undergone extensive reorganisation with respect to the X. This suggests that the order of the X/Y homologous genes of the porcine X and Y Chrs may closely resemble the ancestral gene order of the eutherian sex chromosomes.  相似文献   

10.
We have constructed a genetic map of Arabidopsis lyrata, a self-incompatible relative of the plant model species A. thaliana. A. lyrata is a diploid (n = 8) species that diverged from A. thaliana (n = 5) approximately 5 MYA. Mapping was conducted in a full-sib progeny of two unrelated F(1) hybrids between two European populations of A. lyrata ssp. petraea. We used the least-squares method of the Joinmap program for map construction. The gross chromosomal differences between the two species were most parsimoniously explained with three fusions, two reciprocal translocations, and one inversion. The total map length was 515 cM, and the distances were 12% larger than those between corresponding markers in the linkage map of A. thaliana. The 72 markers, consisting of microsatellites and gene-based markers, were spaced on average every 8 cM. Transmission ratio distortion was extensive, and most distortions were specific to each reciprocal cross, suggesting cytoplasmic interactions. We estimate locations and most probable genotype frequencies of transmission ratio distorting loci (TRDL) with a Bayesian method and discuss the possible reasons for the observed distortions.  相似文献   

11.
12.
X Huang  X Wang  H Jia  S Feng  K Cao  C Sun 《DNA research》1999,6(6):375-379
COP9 complex is one of the most important components that act in repressing photomorphogenesis in Arabidopsis thaliana. FUS6 has been identified as one of eight subunits of the COP9 complex in Arabidopsis. Using Arabidopsis Fus6 cDNA as a probe, we screened a rice root cDNA library and a rice genomic library. A 1730-bp cDNA was obtained, which has an open reading frame corresponding to 441-amino-acid. This 441 amino acids putative protein has 67% identity with Arabidopsis COP11/FUS6 (AtFUS6) and 40% identity with human GPS1, an AtFUS6 orthologue. So we designated this novel gene as rFUS6. The 6.2-kb genomic sequence of rFUS6 was also obtained. Sequence comparison showed that the rFUS6 gene had six exons and five introns. Sequence inspection of the 5'-flanking region revealed the presence of some potential light-regulated cis-elements such as a G-box, GT-1 binding sites, and a TGACG motif. Southern hybridization with rice total DNA showed that rFUS6 was perhaps a single copy gene. The rFUS6 locus was mapped by hybridization with a rice BAC library membrane and the results showed that rFUS6 had a locus at 16.3 cM of chromosome 1.  相似文献   

13.
Canine tricuspid valve malformation (CTVM) maps to canine chromosome 9 (CFA9), in a region syntenic with gene-dense human chromosome 17q. To define synteny blocks, we analyzed 148 markers on CFA9 using radiation hybrid mapping and established a four-way comparative map for human, mouse, rat, and dog. We identified a large number of rearrangements, allowing us to reconstruct the evolutionary history of individual synteny blocks and large chromosomal segments. A most parsimonious rearrangement scenario for all four species reveals that human chromosome 17q differs from CFA9 and the syntenic rodent chromosomes through two macroreversals of 9.2 and 23 Mb. Compared to a recovered ancestral gene order, CFA9 has undergone 11 reversals of <3 Mb and 2 reversals of >3 Mb. Interspecies reuse of breakpoints for micro- and macrorearrangements was observed. Gene order and content of the ctvm interval are best extrapolated from murine data, showing that multispecies genome rearrangement scenarios contribute to identifying gene content in canine mapping studies.  相似文献   

14.
During meiotic prophase I chromosomes undergo dramatic conformational changes that accompany chromosome condensation, pairing and recombination between homologs. These changes include the anchoring of telomeres to the nuclear envelope and their clustering to form a bouquet. In plants, these events have been studied and illustrated in intact meiocytes of species with large genomes. Arabidopsis thaliana is an excellent genetic model in which major molecular pathways that control synapsis and recombination between homologs have been uncovered. Yet the study of chromosome dynamics is hampered by current cytological methods that disrupt the three‐dimensional (3D) architecture of the nucleus. Here we set up a protocol to preserve the 3D configuration of A. thaliana meiocytes. We showed that this technique is compatible with the use of a variety of antibodies that label structural and recombination proteins and were able to highlight the presence of clustered synapsis initiation centers at the nuclear periphery. By using fluorescence in situ hybridization we also studied the behavior of chromosomes during pre‐meiotic G2 and prophase I, revealing the existence of a telomere bouquet during A. thaliana male meiosis. In addition we showed that the number of telomeres in a bouquet and its volume vary greatly, thus revealing the complexity of telomere behavior during meiotic prophase I. Finally, by using probes that label subtelomeric regions of individual chromosomes, we revealed differential localization behaviors of chromosome ends. Our protocol opens new areas of research for investigating chromosome dynamics in A. thaliana meiocytes.  相似文献   

15.
To help understand the evolution of suppressed recombination between sex chromosomes, and its consequences for evolution of the sequences of Y-linked genes, we have studied four X-Y gene pairs, including one gene not previously characterized, in plants in a group of closely related dioecious species of Silene which have an X-Y sex-determining system (S. latifolia, S. dioica, and S. diclinis). We used the X-linked copies to build a genetic map of the X chromosomes, with a marker in the pseudoautosomal region (PAR) to orient the map. The map covers a large part of the X chromosomes—at least 50 centimorgans. Except for a recent rearrangement in S. dioica, the gene order is the same in the X chromosomes of all three species. Silent site divergence between the DNA sequences of the X and Y copies of the different genes increases with the genes' distances from the PAR, suggesting progressive restriction of recombination between the X and Y chromosomes. This was confirmed by phylogenetic analyses of the four genes, which also revealed that the least-diverged X-Y pair could have ceased recombining independently in the dioecious species after their split. Analysis of amino acid replacements vs. synonymous changes showed that, with one possible exception, the Y-linked copies appear to be functional in all three species, but there are nevertheless some signs of degenerative processes affecting the genes that have been Y-linked for the longest times. Although the X-Y system evolved quite recently in Silene (less than 10 million years ago) compared to mammals (about 320 million years ago), our results suggest that similar processes have been at work in the evolution of sex chromosomes in plants and mammals, and shed some light on the molecular mechanisms suppressing recombination between X and Y chromosomes.  相似文献   

16.
To gain insight into genomic relationships between soybean (Glycine max) and Medicago truncatula, eight groups of bacterial artificial chromosome (BAC) contigs, together spanning 2.60 million base pairs (Mb) in G. max and 1.56 Mb in M. truncatula, were compared through high-resolution physical mapping combined with sequence and hybridization analysis of low-copy BAC ends. Cross-hybridization among G. max and M. truncatula contigs uncovered microsynteny in six of the contig groups and extensive microsynteny in three. Between G. max homoeologous (within genome duplicate) contigs, 85% of coding and 75% of noncoding sequences were conserved at the level of cross-hybridization. By contrast, only 29% of sequences were conserved between G. max and M. truncatula, and some kilobase-scale rearrangements were also observed. Detailed restriction maps were constructed for 11 contigs from the three highly microsyntenic groups, and these maps suggested that sequence order was highly conserved between G. max duplicates and generally conserved between G. max and M. truncatula. One instance of homoeologous BAC contigs in M. truncatula was also observed and examined in detail. A sequence similarity search against the Arabidopsis thaliana genome sequence identified up to three microsyntenic regions in A. thaliana for each of two of the legume BAC contig groups. Together, these results confirm previous predictions of one recent genome-wide duplication in G. max and suggest that M. truncatula also experienced ancient large-scale genome duplications.  相似文献   

17.
We examined microsatellite variation in two diploid, outcrossing relatives of Arabidopsis thaliana, Arabis petraea and Arabis lyrata. The primer sequences were derived from A. thaliana. About 50% (14 loci) of the A. thaliana primers could successfully amplify microsatellites in the related species. Analysis of microsatellite structure in the related species showed that there had been large changes in the microsatellites: there were large differences in repeat numbers and many of the A. thaliana simple repeats were shorter in the related species. For the loci we compared, the related species had a much lower level of variability at the microsatellites than Japanese wild populations of A. thaliana. This is presumably related to the different microsatellite structures, because allozyme data showed that the outcrossing relatives were highly polymorphic compared to other outcrossing herbaceous species. Use of microsatellites in assessing variability or phylogenetic relationships between different species requires caution, because changes in microsatellite structure may alter evolutionary rates.   相似文献   

18.
19.
20.
As a starting point for a phylogenetic study of self-incompatibility (SI) in crucifers and to elucidate the genetic basis of transitions between outcrossing and self-fertilizing mating systems in this family, we investigated the SI system of Arabidopsis lyrata. A. lyrata is an outcrossing close relative of the self-fertile A. thaliana and is thought to have diverged from A. thaliana approximately 5 million years ago and from Brassica spp 15 to 20 million years ago. Analysis of two S (sterility) locus haplotypes demonstrates that the A. lyrata S locus contains tightly linked orthologs of the S locus receptor kinase (SRK) gene and the S locus cysteine-rich protein (SCR) gene, which are the determinants of SI specificity in stigma and pollen, respectively, but lacks an S locus glycoprotein gene. As described previously in Brassica, the S haplotypes of A. lyrata differ by the rearranged order of their genes and by their variable physical sizes. Comparative mapping of the A. lyrata and Brassica S loci indicates that the S locus of crucifers is a dynamic locus that has undergone several duplication events since the Arabidopsis--Brassica split and was translocated as a unit between two distant chromosomal locations during diversification of the two taxa. Furthermore, comparative analysis of the S locus region of A. lyrata and its homeolog in self-fertile A. thaliana identified orthologs of the SRK and SCR genes and demonstrated that self-compatibility in this species is associated with inactivation of SI specificity genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号