首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Medium conditions for reliable shoot regeneration from cotyledonary explants of Chinese cabbage were examined. Maximum shoot regeneration was obtained in the presence of 5 mg/l BA and 0.5 mg/l NAA. Shoot induction was further improved by the addition of AgNO3 as well as higher concentrations (1.2–1.6%) of agar in the regeneration medium. When 123 genotypes were tested, a large variation in regeneration frequency was observed, ranging from 95% to 0%. Shoot regeneration frequency was not related to origin and days to maturity of the genotypes. Ethylene production from cultured explants seemed to play an important role in shoot regeneration. Explants of highly responsive genotypes or if cultured on the medium solidified with a higher concentration of agar generally showed low levels of ethylene production. However, AgNO3, which also enhanced shoot induction, resulted in an increase in ethylene production. The possible interaction between ethylene and shoot regeneration is discussed. Received: 26 September 1997 / Revision received: 6 March 1998 / Accepted: 20 March 1998  相似文献   

2.
Thidiazuron (TDZ), primarily a cotton defoliant, has been later accepted as a plant growth regulator. In spite of extensive studies, the physiological function of TDZ is still uncertain. The aim of the present experiment was to study the activity of TDZ in in vitro regeneration of soybean. The seeds of soybean were cultured separately on MS and B5 medium supplemented with TDZ. The hypocotyls, cotyledons, cotyledonary nodes without axillary buds and cotyledonary nodes with axillary buds were used as explants and their capacity to direct regeneration was tested on both MS and B5 media containing TDZ (0.9–5.4 μM). Shoot formation was observed only on cotyledonary nodes with axillary buds cultured on MS and B5 basal media with TDZ (0.9–5.4 μM). All tested explants cultured on B5 medium with TDZ produced roots. Root formation was not observed on MS basal media supplemented with TDZ. Results show that TDZ functions as cytokinin (to produce the shoots) and auxin (to produce the roots) on various explants depending on the basal medium used.  相似文献   

3.
The morphogenetic responses of seedling explants of mung bean (Vigna radiata L. Wilczek cv ML-5) were studied in vitro. Direct induction of shoots/plants was possible from shoot tip, cotyledon and cotyledonary node explants. Dedifferentiation of the explants viz; Shoot tip, cotyledons, cotyledonary node, primordial leaves and roots was obtained on basal medium supplemented with auxin and cytokinin. Shoot regeneration was limited to primary calli while rhizogenesis was of common occurrence in established calli. In addition to differences in hormonal requirements, the various explants showed preferential growth in different basal media.  相似文献   

4.
Critical developmental and gene expression profiles were charted during the formation of shoots from root explants in Arabidopsis tissue culture. Shoot organogenesis is a two-step process involving pre-incubation on an auxin-rich callus induction medium (CIM) during which time root explants acquire competence to form shoots during subsequent incubation on a cytokinin-rich shoot induction medium (SIM). At a histological level, the organization of shoot apical meristems (SAMs) appears to occur during incubation on SIM about the time of shoot commitment, i.e. the transition from hormone-dependent to hormone-independent shoot development. Genes involved in SAM formation, such as SHOOTMERISTEMLESS (STM) and CLAVATA1 (CLV1), were upregulated at about the time of shoot commitment, while WUSCHEL (WUS) was upregulated somewhat earlier. Genes required for STM expression, such as CUP-SHAPED COTYLEDON 1 and 2 (CUC1 and 2) were upregulated prior to shoot commitment. Gene expression patterns were determined for two GFP enhancer trap lines with tissue-specific expression in the SAM, including one line reporting on CUC1 expression. CUC1 was generally expressed in callus tissue during early incubation on SIM, but later CUC1 was expressed more locally in presumptive sites of shoot formation. In contrast, the expression pattern of the enhancer trap lines during zygotic embryogenesis was more localized to the presumptive SAM even in early stages of embryogenesis.  相似文献   

5.
The role of nitrate, ammonium, and culture medium pH on shoot organogenesis in Nicotiana tabacum zz100 leaf discs was examined. The nitrogen composition of a basal liquid shoot induction medium (SIM) containing 39.4 mM and 20.6 mM was altered whilst maintaining the overall ionic balance with Na(+) and Cl(-) ions. Omission of total nitrogen and nitrate, but not ammonium, from SIM prevented the initiation and formation of shoots. When nitrate was used as the sole source of nitrogen, a high frequency of explants initiated and produced leafy shoots. However, the numbers of shoots produced were significantly fewer than the control SIM. Buffering nitrate-only media with the organic acid 2[N-morpholino]ethanesulphonic acid (MES) could not compensate for the omission of ammonium. Ammonium used as the sole source of nitrogen appeared to have a negative effect on explant growth and morphogenesis, with a significant lowering of media pH. Buffering ammonium-only media with MES stabilized pH and allowed a low frequency of explants to initiate shoot meristems. However, no further differentiation into leafy shoots was observed. The amount of available nitrogen appears to be less important than the ratio between nitrate and ammonium. Shoot formation was achieved with a wide range of ratios, but media containing 40 mM nitrate and 20 mM ammonium (70:30) produced the greatest number of shoots per explant. Results from this study indicate a synergistic effect between ammonium and nitrate on shoot organogenesis independent of culture medium pH.  相似文献   

6.
In Arabidopsis, adventitious shoots are formed at a high frequency when the calli are induced from roots or hypocotyls cultured on callus induction medium (CIM) and then transferred to shoot induction medium (SIM). The prolonged duration of culture on CIM decreased the frequency of shoot regeneration. However, when 5′-azacitidine (AzaC), an inhibitor of DNA methylation, was added to CIM, the excess culturing on CIM did not decrease the frequency of shoot regeneration. The level of methyl cytosine was up-regulated when hypocotyl explants were cultured on CIM for 2 weeks. We examined the expression patterns of genes that are involved in the formation or regeneration of shoots. Prolonged duration of culture on CIM up-regulated the CUC1, CLV1, CLV3, ESR1, and WUS mRNA levels, and the addition of AzaC to CIM reduced their expression levels. Our results suggest that an increase in DNA methylation decreased the shoot-forming ability and that AzaC can partially recover this ability.  相似文献   

7.
Micropropagation of an elite Darjeeling tea clone   总被引:1,自引:0,他引:1  
Shoot cultures of Camellia sinensis (L.) O. Kuntz var. T-78, an elite Darjeeling tea clone, were established from cotyledonary nodes and shoot tips of germinated seedlings as well as from nodal explants of field grown plants. Shoot multiplication rate ranged from 4x in nodal explants to 35x in cotyledonary nodes after 18 weeks of culture. Rooting was achieved in 80–90% micro-shoots by either placing them on an inductive medium for 10 d and then transferring shoots to hormone-free medium, or by treating micro-shoots with a chronic dose of IBA (500 mg/l) for 30–40 min. Rooted plants were established in soil under glasshouse condition at 60% frequency after hardening phase of 4–6 weeks. The regenerated plants show a constant chromosome number of 2n=30 and are morphologically true to type. This procedure can be applied for conservation and utilisation of an elite clone of Darjeeling tea.  相似文献   

8.
A two-step protocol for improving the frequency of shoot regeneration from oilseed rape (Brassica napus L.) hypocotyl explants was established. The protocol consists of a pre-culture on callus induction medium (CIM) and a subsequent shoot regeneration on shoot induction medium (SIM). The SIM was Murashige and Skoog medium supplemented with different concentrations of 6-benzylaminopurine (BA; 2–5 mg dm−3) and naphthaleneacetic acid (NAA; 0.05–0.15 mg dm−3). Maximum frequency of shoot regeneration (13 %) was on the SIM medium containing 4 mg dm−3 BA and 0.1 mg dm−3 NAA, but it increased to 24.45 % when 20 μM silver thiosulphate (STS) was added. Strikingly, an extremely high frequency of shoot regeneration up to 96.67 % was reached by a two-step protocol when hypocotyl explants had been pre-cultured for 7 d on a CIM medium containing 1.5 mg dm−3 2,4-dichlorophenoxyacetic acid. In addition, the shoot emergence was also 7 d earlier than that observed by use of the one-step protocol. The two-step protocol was also applied for regeneration of transgenic plants with cZR-3, a nematode resistance candidate gene. As a result, 43 plants were generated from 270 shoots and from these 6 plants proved to be transgenic.  相似文献   

9.
Summary Shoot tips of cardamom var. Malabar isolated from multiple shoot cultures were encapsulated in 3 % (w/v) sodium alginate with different gel matrices. Maximum conversion of the encapsulated shoot tips into plantlets was on White's medium and the plantlets were successfully grown in soil.  相似文献   

10.
The effect of copper sulphate on differentiation and elongation of shoot buds from cotyledonary explants of Capsicum annuum L. cv X-235 was investigated. Shoot buds were induced on medium supplemented with 22.2 μM BAP and 14.7 μM PAA. Elongation of shoot buds was obtained on MS medium containing 13.3 μM BAP + 0.58 μM GA3. Both shoot induction and elongation media were supplemented with different levels of CuSO4 (0–5 μM). The levels of CuSO4 in the induction as well as elongation medium highly influenced the shoot bud formation and their subsequent elongation. Highest number of shoot buds per explant was obtained when the concentration of CuSO4 was increased 30 times to the normal MS level. Shoot buds formation frequency i.e., the number of shoots formed per explant was increased two fold as compared to those formed on control. Elongation both in terms of percentage and length of shoots was better than that on control. Healthy elongated shoots were rooted on MS medium supplemented with 5.7 μM IAA. Rooted plantlets were transferred to field conditions.  相似文献   

11.
为建立一个高效的大豆再生体系用于大豆的遗传转化,选用3个东北主栽品种‘黑农35’、‘黑农41’和‘黑农58’的子叶节和胚尖作为外植体,分别建立了3个品种的子叶节和胚尖再生体系,并研究了6-BA对大豆再生的影响。结果表明,‘黑农41’子叶节最适芽诱导培养基为MSB5+1.0mg·L-16-BA+0.2mg·L-1IBA,胚尖最适芽诱导培养基为MSB5+0.2mg·L-16-BA+0.2mg·L-1IBA。‘黑农41’再生体系在出芽率、出芽数和芽伸长数上均远高于‘黑农35’和‘黑农58’,是一个优秀的大豆转基因受体材料。  相似文献   

12.
Che P  Lall S  Howell SH 《Planta》2007,226(5):1183-1194
Arabidopsis shoots regenerate from root explants in tissue culture through a two-step process requiring preincubation on an auxin-rich callus induction medium (CIM) followed by incubation on a cytokinin-rich shoot induction medium (SIM). During CIM preincubation, root explants acquire competence to respond to shoot induction signals. During CIM preincubation, pericycle cells in root explants undergo cell divisions and dedifferentiate, losing the expression of a pericycle cell-specific marker. These cells acquire competence to form green callus only after one day CIM preincubation and to form shoots after 2–3 days CIM preincubation. Reversible DNA synthesis inhibitors interfered with the acquisition of competence to form shoots. Genes requiring CIM preincubation for upregulation on SIM were identified by microarray analysis and included RESPONSE REGULATOR 15 (ARR15), POLYGALACTURONASE INHIBITING PROTEIN 2 (PGIP2) and WUSCHEL (WUS). These genes served as developmental markers for the acquisition of competence because the CIM preincubation requirements for ARR15 and PGIP2 upregulation correlated well with the acquisition of competence to form green callus, and the CIM preincubation requirements for WUS upregulation matched those for shoot formation. Unlike ARR15, another cytokinin inducible, A-type ARR gene, ARR5, was upregulated on SIM, but the induction did not require CIM preincubation. These findings indicate that competencies for various events associated with shoot regeneration are acquired progressively during CIM preincubation, and that a set of genes, normally upregulated on SIM, are repressed by a process that can be relieved by CIM preincubation.  相似文献   

13.
An efficient protocol has been developed for in vitro plant regeneration via multiple shoot induction in lucerne (Medicago sativa L). Shoot tips from in vitro grown 5–6 days old seedlings of 3 cultivars, LLC-3, Chetak and RL-88 were used as explants for multiple shoot induction on MS medium supplemented with cytokinins. Maximum of 14 shoots per apical meristem were observed in case of cv Chetak on MS medium supplemented with BAP (12.6 μM) and KN (9.3 μM). Shoot elongation on MS medium supplemented with GA (5.8 μM), while root induction was achieved on MS medium supplemented with IAA (11.4 μM) and activated charcoal (2.0 g l?1). Tissue raised plants showed 75% survival after transfer to soil under field conditions.  相似文献   

14.
An efficient shoot organogenesis protocol for Arabidopsis zygotic embryo explants of Landsberg erecta ecotype was established. This de novo shoot organogenesis protocol has three different steps, i.e., induction of callus in an auxin-rich callus induction medium, the formation of green-organogenic callus in the shoot induction medium (SIM), and the final morphological differentiation of shoot in the hormone-free shoot development medium (SDM). Abscisic acid (ABA), auxin, and cytokinin (CK) were used in the SIM. Individual plant growth regulators as well as their combination were studied to understand their importance in the shoot induction treatment. We found that a combination of ABA + CK and ABA + CK + auxin induced higher shoot organogenic ability in the callus than ABA, CK, and auxin alone. Optimum ABA concentration on shoot organogenesis was determined to be 10?5 M. Morphological characterization of callus induction and shoot organogenesis events indicated that calli were derived from the cotyledons of zygotic embryo explants and the formation of green organogenic calli was specific to the exogenous inclusion of ABA + CK in the SIM. During the time of shoot development, the green organogenic callus became darker green due to the formation of anthocyanins. Shoot organogenic calli in the SIM and the SDM were easily identified by the green-colored calli and anthocyanin pigments, respectively. Furthermore, we demonstrated the significance of exogenous and endogenous ABA in shoot organogenesis by fluridone treatments. The inclusion of ABA in SIM has a significant effect on shoot formation.  相似文献   

15.
CUP SHAPED COTELYDON 2 (CUC2) was tested as a marker for shoot induction to monitor and facilitate the optimization of in vitro regeneration of Arabidopsis thaliana. The expression of a pCUC2::3XVENUS-N7 fluorescent marker allowed the observation of early steps in the initiation and development of shoots on root explants. The explants were first incubated on an auxin-rich callus induction medium (CIM) and then transferred to a cytokinin-rich shoot induction medium (SIM). CUC2-expression occurred prior to visible shoot formation during the incubation of the root explant on CIM. Shoot formation was invariably preceded by the accumulation of CUC2 expression at dispersed sites along the root explant. These patches of CUC2-expression also marked the site of lateral root primordium formation in root explants that were transferred to hormone free medium. Thus, CUC2 is a predictive marker for the acquisition of root explant competence for root and shoot organogenesis.  相似文献   

16.
Callus was obtained from hypocotyls of Mesembryanthemum crystallinum seedlings cultured on two types of medium—germination medium (GM) and callus induction medium (CIM). Following subculture on shoot induction medium SIM1, the callus formed on CIM medium regenerated roots or somatic embryos, while that obtained on GM medium was non-regenerative. The activities of CuZn-superoxidase dismutase (SOD) were comparable in all calli, but the activities of FeSOD and MnSOD varied according to the activity of photosystem II and the regenerative potential of the tissues. Catalase (CAT) activity was related to H2O2 concentration and affected by both the culture conditions and the morphogenic potential of the calli. The possible role of CAT, SODs and H2O2 in the regeneration of M. crystallinum from callus is discussed.This work is dedicated to Prof. Dr. Hubert Ziegler on his 80th birthday.  相似文献   

17.
A rapid and highly-effective method for micropropagation from nodal segment and shoot tip explants was established for Coleus blumei Benth. Nodal segments and shoot tips were inoculated on MS medium containing 0.7 % agar, 3 % commercial sugar, and different combinations of 6-benzyladenine (BA) with indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) or α-naphthaleneacetic acid (NAA). Hundred percent shoot induction from both explants was achieved on the medium containing BA (2 mg dm−3) and NAA (1 mg dm−3). Shoot tips were proved to be the better explant in comparison to nodal segments in having high rate of shoot induction and more number of shoots. The same media conditions were found suitable for shoot multiplication. Multiplied shoots rooted best on MS medium supplemented with IBA (2 mg dm−3). Micropropagated plants were successfully established in soil after hardening, with 100 % survival rate.  相似文献   

18.
19.
A successful, efficient system for multiple soybean shoot induction of soybean [Glycine max (L.) Merr.] is reported. Multiple shoots were induced from cotyledonary nodes and hypocotyl segments cultured on media supplemented with 2 mg/l thidiazuron (TDZ) or 1.15 mg/l benzyladenine (BA). It was found that TDZ induced adventitious shoots more efficiently than BA and that hypocotyl segments promoted more adventitious shoots than cotyledonary nodes. The optimal TDZ concentrations for shoot organogenesis from hypocotyl segments were between 1 and 2 mg/l. Basal media also influenced the efficiency of shoot organogenesis. The frequency of adventitious shoot formation tended to increase when the salt concentration in the basal media supplemented with 2 mg/l TDZ was reduced. Two media (1/2B5 and 1/2L2) stimulated shoot organogenesis efficiently from hypocotyl segments. This method can thus be advantageously applied in the production of transgenic soybean plants. Received: 3 July 1996 / Accepted: 9 May 1997  相似文献   

20.
In vitro clonal propagation of Capparis decidua was achieved using nodal explants from mature trees, and cotyledonary node, cotyledon and hypocotyl explants taken from the seedlings. Explants cultured on MS medium supplemented with BAP showed differentiation of multiple shoots and shoot buds in 4–5 weeks in the primary cultures. The medium with BAP (5 mg/l) was the best for shoot bud proliferation from the nodal as well as seedling explant. Shoot multiplication was best on cotyledonary node. In the nodal explants shoot multiplication was best on medium supplemented with 5 mg/l BAP and after second subculturing further multiplication of shoot buds was highest on the medium containing 3 mg/l BAP. Shoots were separated from mother cultures in each subculturing for rooting. Rooting was best achieved using 1 mg/l IBA in the medium. Rooted plantlets were transferred td earthen pots with garden soil and peat moss mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号