首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major component on sodium dodecyl sulfate-containing gels of solubilized isolated Z-discs, purified from honeybee flight muscle, migrates with an apparent molecular weight of 360,000. Antibodies to this high molecular weight polypeptide have been prepared by injecting rabbits with homogenized gel slices containing the protein band. With indirect immunofluorescence microscopy these antibodies are localized to a region extending from the edge of the Z-band to the A-band in shortened or stretched sarcomeres. Similarly, glycerinated flight muscle treated with antiserum and prepared for electron microscopy shows enhanced density from the ends of the thick filaments to the I-Z junction regardless of sarcomere length. Evidence indicates that antiserum is directed toward a structural protein of connecting filaments, which link thick filaments to the Z-band in insect fibrillar muscle, rather than to a thin filament component. In Ouchterlony double-diffusion experiments a single precipitin band is formed when antiserum is diffused against solubilized Z-discs; no reaction occurs between antiserum and proteins from native thin filaments prepared from honeybee flight muscle. Further, antibody stains the I-band in flight muscle fibrils from which thin filaments are removed. Finally, honeybee leg muscle myofibrils, in which connecting filaments have not been observed, are not labelled with antibody. Since antibody binds to the short projections which extend from the flat surfaces of isolated Z-discs, these projections are assumed to be remnants of connecting filaments and the source of the 360,000 Mr protein.The amino acid composition of this high molecular weight material, purified by Sepharose chromatography, is presented. The protein has been named “projectin”.  相似文献   

2.
Twelve monoclonal antibodies have been raised against proteins in preparations of Z-disks isolated from Drosophila melanogaster flight muscle. The monoclonal antibodies that recognized Z-band components were identified by immunofluorescence microscopy of flight muscle myofibrils. These antibodies have identified three Z-disk antigens on immunoblots of myofibrillar proteins. Monoclonal antibodies alpha:1-4 recognize a 90-100-kD protein which we identify as alpha-actinin on the basis of cross-reactivity with antibodies raised against honeybee and vertebrate alpha-actinins. Monoclonal antibodies P:1-4 bind to the high molecular mass protein, projectin, a component of connecting filaments that link the ends of thick filaments to the Z-band in insect asynchronous flight muscles. The anti-projectin antibodies also stain synchronous muscle, but, surprisingly, the epitopes here are within the A-bands, not between the A- and Z-bands, as in flight muscle. Monoclonal antibodies Z(210):1-4 recognize a 210-kD protein that has not been previously shown to be a Z-band structural component. A fourth antigen, resolved as a doublet (approximately 400/600 kD) on immunoblots of Drosophila fibrillar proteins, is detected by a cross reacting antibody, Z(400):2, raised against a protein in isolated honeybee Z-disks. On Lowicryl sections of asynchronous flight muscle, indirect immunogold staining has localized alpha-actinin and the 210-kD protein throughout the matrix of the Z-band, projectin between the Z- and A-bands, and the 400/600-kD components at the I-band/Z-band junction. Drosophila alpha-actinin, projectin, and the 400/600-kD components share some antigenic determinants with corresponding honeybee proteins, but no honeybee protein interacts with any of the Z(210) antibodies.  相似文献   

3.
A single-site mutation of the flight-muscle-specific actin gene of Drosophila melanogaster causes a substitution of glutamic acid 93 by lysine in all the actin encoded in the indirect flight muscle (IFM). In these Act88FE93K mutants, myofibrillar bundles of thick and thin filaments are present but lack Z-discs and all sarcomeric repeats. Dense filament bundles, which are probably aberrant Z-discs, are seen in myofibrils of pupal flies, but early in adult life these move to the periphery of the fibrils and are not seen in skinned adult fibres. Consistent with this observation, alpha-actinin and other high molecular weight proteins, possibly associated with Z-discs, are not detected on SDS/polyacrylamide gels or Western blots of skinned adult IFM. The mutation lies at the beginning of a loop in the small domain of actin, near the myosin binding region. However, that the mutant actin binds myosin heads is shown by (1) rigor crossbridges in electron micrographs, (2) the appropriate rise in stiffness when ATP is withdrawn in mechanical experiments, and (3) equal protection against tryptic digestion provided by rigor binding between actin and myosin in both wild-type and mutant fibres. Reversal of rigor chevron angle along some thin filaments reflects reversal of thin-filament polarity due to lattice disorder. The absence of Z-discs, alpha-actinin and two high molecular weight proteins, and binding studies by others, suggest that the substitution at residue 93 affects the binding of the mutant actin to a protein, possibly alpha-actinin, which is necessary for Z-disc assembly or maintenance.  相似文献   

4.
Purification and properties of the isolated honeybee Z-disc   总被引:2,自引:0,他引:2  
Z-discs have been isolated from honeybee indirect flight muscle fibers with 0.43% lactic acid, and have been purified with differential and sucrose density-gradient centrifugation. In the light microscope, isolated Z-discs are pale, round, homogeneous structures with diameters ranging from 2 μm to 9 μm, depending on the nature of the suspending medium. In the electron microscope, small Z-discs (2 μm in diameter) examined on Formvar-coated grids are thick, dense and lacking in detail; swollen Z-discs (6 μm in diameter) have a reticular pattern with 3-fold symmetry. Sectioned isolated Z-discs show fine projections extending about 1300 Å from both surfaces. These projections may represent insoluble stubs of thin filaments or “C” filaments, which connect thick filaments to the Z-band.Although honeybee isolated Z-discs are very resistant structures that remain insoluble in a number of protein solvents and in solutions reported to extract Z-band material from vertebrate fibrils, it has been possible to solubilize them in 7 m-guanidine-HCl, 2.5 mm-dithiothreitol, 2.5 mm-EDTA (pH 7.5), and to resolve their components electrophoretically. Sodium dodecyl sulfate gel electrophoresis studies indicate that there are at least four polypeptides, with molecular weights of 87,000, 113,000, 158,000, and 175,000, localized in the isolated Z-disc. The Z-disc backbone contains no significant quantity of lipid as earlier reports have suggested. Total lipid extracted from Z-disc preparations with chloroform/ methanol comprises less than 1% of the Z-disc protein.  相似文献   

5.
6.
The nebulin family of actin-binding proteins plays an important role in actin filament dynamics in a variety of cells including striated muscle. We report here the identification of a new striated muscle Z-disc associated protein: lasp-2 (LIM and SH3 domain protein-2). Lasp-2 is the most recently identified member of the nebulin family. To evaluate the role of lasp-2 in striated muscle, lasp-2 gene expression and localization were studied in chick and mouse tissue, as well as in primary cultures of chick cardiac and skeletal myocytes. Lasp-2 mRNA was detected as early as chick embryonic stage 25 and lasp-2 protein was associated with developing premyofibril structures, Z-discs of mature myofibrils, focal adhesions, and intercalated discs of cultured cardiomyocytes. Expression of GFP-tagged lasp-2 deletion constructs showed that the C-terminal region of lasp-2 is important for its localization in striated muscle cells. Lasp-2 organizes actin filaments into bundles and interacts directly with the Z-disc protein alpha-actinin. These results are consistent with a function of lasp-2 as a scaffolding and actin filament organizing protein within striated muscle Z-discs.  相似文献   

7.
We have investigated the molecular bases of muscle abnormalities in four Drosophila melanogaster heldup mutants. We find that the heldup gene encodes troponin-I, one of the principal regulatory proteins associated with skeletal muscle thin filaments. heldup3, heldup4, and heldup5 mutants, all of which have grossly abnormal flight muscle myofibrils, lack mRNAs encoding one or more troponin-I isoforms. In contrast, heldup2, an especially interesting mutant wherein flight muscles are atrophic, synthesizes the complete mRNA complement. By sequencing mutant troponin-I cDNAs we demonstrate that the molecular basis for muscle degeneration in heldup2 is conversion of an invariant alanine residue to valine. We finally show that degeneration of heldup2 thin filament/Z-disc networks can be prevented by eliminating thick filaments from flight muscles using a null allele of the sarcomeric myosin heavy chain gene. This latter observation suggests that actomyosin interactions exacerbate the structural or functional defect resulting from the troponin-I mutation.  相似文献   

8.
Fine structure of the honeybee Z-disc   总被引:1,自引:0,他引:1  
Z-discs from the dorsal longitudinal indirect flight muscles of the honeybee (Apis mellifera) are perforated with hundreds of triangular-shaped tubes ordered into an hexagonal array. Each tube is surrounded by 80 Å thick rims which incorporate six thin filaments, three from each bordering sarcomere. Although the triangular rims of the tubes are oriented identically in any plane perpendicular to the fibril axis, this orientation changes as the tubes cross the Z-line. The tubes rotate approximately 60 ° about an axis parallel to that of the fibril in passing from one I-Z junction to another.On the basis of filament counting in the A (overlap zone) and I bands of stretched myofibrils, it is concluded that the primary filaments are physically continuous with the Z-lines by material which appears to participate both in the formation of Z-rim substance and the surrounding matrix.Finally, evidence is presented to support the view that filament lattices of adjacent sarcomeres are displaced from one another, so that each thick filament faces the trigonal position of three thick filaments on the other side of the Z-disc.  相似文献   

9.
Antibodies specific for the novel 86 kd protein purified from chicken pectoralis myofibrils stained by indirect immunofluorescence the middle third of each half A-band of isolated myofibrils and myotubes. Pectoralis muscle 86 kd protein, like pectoralis C-protein, displayed a fibre-type specific distribution by being restricted to fast twitch fibres and absent in slow tonic and heart muscle fibres. This was demonstrated by immunoblotting experiments with tissue extracts and by immunofluorescence labelling of cryosections. In primary cell cultures prepared from embryonic chicken breast muscle, 86 kd protein, C-protein and myomesin were all detected in post-mitotic myoblasts where fluorescence was found in a cross-striated pattern along strands of nascent myofibrils. Fluorescence due to the 86 kd protein was restricted to myofibrils within myotubes and no significant labelling of the sarcoplasm was evident. Glycerinated fast twitch muscle fibres, after incubation with antibodies to 86 kd protein, revealed in each half of the A-band nine distinctly labelled stripes, spaced about 43 nm apart. Simultaneous incubation of fibres with antibodies against 86 kd protein and C-protein showed a co-localization of the seven C-protein stripes (stripes 5 to 11), with seven stripes of 86 kd protein. The two additional stripes (stripes 3 and 4) labelled by anti-86 kd antibody continued towards the M-band at the same periodicity from the last C-protein stripe (stripe 5). Thus, partial co-localization of two different thick filament proteins is demonstrated and the identity of transverse stripes at positions 3 and 4 attributed in part to the presence of the new 86 kd protein.  相似文献   

10.
The myofibrillar and cytoskeletal alterations observed in delayed onset muscle soreness (DOMS) caused by eccentric exercise are generally considered to represent damage. By contrast our recent immunohistochemical studies suggested that the alterations reflect myofibrillar remodeling (Yu and Thornell 2002; Yu et al. 2003). In the present study the same human muscle biopsies were further analyzed with transmission electron microscopy and immunoelectron microscopy. We show that the ultrastructural hallmarks of DOMS, Z-disc streaming, Z-disc smearing, and Z-disc disruption were present in the biopsies and were significantly more frequent in biopsies taken 2–3 days and 7–8 days after exercise than in those from controls and 1 h after exercise. Four main types of changes were observed: amorphous widened Z-discs, amorphous sarcomeres, double Z-discs, and supernumerary sarcomeres. We confirm by immunoelectron microscopy that the main Z-disc protein alpha-actinin is not present in Z-disc alterations or in the links of electron-dense material between Z-discs in longitudinal register. These alterations were related to an increase of F-actin and desmin, where F-actin was present within the strands of amorphous material. Desmin, on the other hand, was seen in less dense regions of the alterations. Our results strongly support that the myofibrillar and cytoskeletal alterations, considered to be the hallmarks of DOMS, reflect an adaptive remodeling of the myofibrils.  相似文献   

11.
The core of skeletal muscle Z-discs consists of actin filaments from adjacent sarcomeres that are cross-linked by α-actinin homodimers. Z-disc-associated, alternatively spliced, PDZ motif-containing protein (ZASP)/Cypher interacts with α-actinin, myotilin, and other Z-disc proteins via the PDZ domain. However, these interactions are not sufficient to maintain the Z-disc structure. We show that ZASP directly interacts with skeletal actin filaments. The actin-binding domain is between the modular PDZ and LIM domains. This ZASP region is alternatively spliced so that each isoform has unique actin-binding domains. All ZASP isoforms contain the exon 6-encoded ZASP-like motif that is mutated in zaspopathy, a myofibrillar myopathy (MFM), whereas the exon 8–11 junction-encoded peptide is exclusive to the postnatal long ZASP isoform (ZASP-LΔex10). MFM is characterized by disruption of skeletal muscle Z-discs and accumulation of myofibrillar degradation products. Wild-type and mutant ZASP interact with α-actin, α-actinin, and myotilin. Expression of mutant, but not wild-type, ZASP leads to Z-disc disruption and F-actin accumulation in mouse skeletal muscle, as in MFM. Mutations in the actin-binding domain of ZASP-LΔex10, but not other isoforms, cause disruption of the actin cytoskeleton in muscle cells. These isoform-specific mutation effects highlight the essential role of the ZASP-LΔex10 isoform in F-actin organization. Our results show that MFM-associated ZASP mutations in the actin-binding domain have deleterious effects on the core structure of the Z-discs in skeletal muscle.  相似文献   

12.
The mutation raised (rsd, 3-95.4) of Drosophila melanogaster causes flightlessness as a consequence of abnormalities in the fibrillar flight muscles (FFMs). In this muscle type actin III is neither synthesized nor accumulated while adult tubular muscles of rsd flies are indistinguishable from wildtype. This paper demonstrates ultrastructural defects in rds FFMs and extends the biochemical comparison of adult wildtype and rsd muscles to larval muscles and to embryo cells differentiating in culture. The FFMs of mature rsd flies contain thick filaments in irregular bundles, but no thin filaments. Normal Z-discs are virtually absent. Instead, a large number of Z-disc residues are present in stacks attached to short filaments on either side. In newly emerged rsd flies the disorganization is less pronounced. The adult tubular muscles and the supercontracting muscles of third-instar larvae of rsd can ultrastructurally not be distinguished from wildtype. The present biochemical results indicate that not only FFMs of mature and newly emerged adults are affected by the rsd genotype. Synthesis of actin III is not detectable in rsd FFMs which corresponds to the heavy structural defects. In addition to the lack of actin III synthesis in rsd FFMs, three unidentified proteins (52 kDa, 80 kDa, 90 kDa) which are specific for wildtype FFMs are also not synthesized in rsd flies. Among all other muscle types studied, all of which are morphologically unaffected, only adult tubular muscle of rsd genotype showed no biochemical effect. Larval supercontracting muscle as well as embryo cells differentiating in culture failed to synthesize actin III in the case of rsd cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The presence and distribution of alpha-actinin, an actin-bundling protein, was investigated at sites where frog skeletal muscle forms junctions with tendon collagen fibers. These sites, called myotendinous junctions, are regions where myofibrils terminate and where the force of muscular contraction is transmitted from muscle cells to the substratum. An antibody manufactured to chicken smooth muscle alpha-actinin was used as a probe for alpha-actinin localization in this study. The cross-reactivity of this antibody with frog skeletal muscle alpha-actinin is demonstrated in immunoblots of one-dimensional (1D) electrophoretic separations of muscle proteins. Immunofluorescent localization of anti-alpha-actinin and electron microscopic immunolabelling confirms that the antibody binds to Z-discs with high affinity. However, in sections treated for electron microscopy with affinity-purified anti-alpha-actinin and a ferritin-conjugated, second antibody, there was no significant difference between experimental or control preparations in the number of ferritin grains overlying dense, subsarcolemmal material at junctional or non-junctional regions. Furthermore, Z-discs near myotendinous junctions displayed less binding of anti-alpha-actinin than Z-discs located several micrometers or more from the cells' termini. These findings indicate that thin filaments are not bundled by alpha-actinin near the sarcolemma. The results also provide evidence for molecular heterogeneity between Z-discs at the ends of muscle cells compared with other regions of the cell in that the terminal Z-discs of myofibrils contain very little or no alpha-actinin relative to non-terminal Z-discs.  相似文献   

14.
15.
Kettin is a high molecular mass protein of insect muscle that in the sarcomeres binds to actin and alpha-actinin. To investigate kettin's functional role, we combined immunolabeling experiments with mechanical and biochemical studies on indirect flight muscle (IFM) myofibrils of Drosophila melanogaster. Micrographs of stretched IFM sarcomeres labeled with kettin antibodies revealed staining of the Z-disc periphery. After extraction of the kettin-associated actin, the A-band edges were also stained. In contrast, the staining pattern of projectin, another IFM-I-band protein, was not altered by actin removal. Force measurements were performed on single IFM myofibrils to establish the passive length-tension relationship and record passive stiffness. Stiffness decreased within seconds during gelsolin incubation and to a similar degree upon kettin digestion with mu-calpain. Immunoblotting demonstrated the presence of kettin isoforms in normal Drosophila IFM myofibrils and in myofibrils from an actin-null mutant. Dotblot analysis revealed binding of COOH-terminal kettin domains to myosin. We conclude that kettin is attached not only to actin but also to the end of the thick filament. Kettin along with projectin may constitute the elastic filament system of insect IFM and determine the muscle's high stiffness necessary for stretch activation. Possibly, the two proteins modulate myofibrillar stiffness by expressing different size isoforms.  相似文献   

16.
Plectin (M(r) > 500,000) is a versatile and widely expressed cytolinker protein. In striated muscle it is predominantly found at the Z-disc level where it colocalizes with the intermediate filament protein desmin. Both proteins show altered labeling patterns in tissues of muscular dystrophy patients. Moreover, mutations in the plectin gene lead to the autosomal recessive human disorder epidermolysis bullosa simplex with muscular dystrophy, and defects in the desmin gene have been shown to cause familiar cardiac and skeletal myopathy. Since intermediate filaments (IFs) in striated muscle tissue have been found to be intimately associated with mitochondria, we investigated whether plectin is involved in this association. Using postembedding immunogold labeling of Lowicryl sections and immunogold labeling of ultrathin cryosections, we show that plectin is associated with desmin IFs linking myofibrils to mitochondria at the level of the Z-disc and along the entire length of the sarcomere. The localization of plectin label at the mitochondrial membrane itself was consistent with a putative linker function of plectin between desmin IFs and the mitochondrial surface. In mitochondrion-rich muscle fibers, both plectin and desmin were part of an ordered arrangement of mitochondrial side branches, which wound around myofibrils adjacent to the Z-discs and were anchored into a filamentous network transversing from one fibril to the other. The association of mitochondria with plectin and IFs was seen also in tissues without regular distribution patterns of mitochondria, such as heart muscle and neonatal skeletal muscle tissues. These data were supplemented with in vitro binding assays showing direct interaction of plectin with desmin via its carboxy-terminal IF-binding domain. As a cytolinker protein associated with mitochondria and desmin IFs, plectin could play an important role in the positioning and shape formation, in particular branching, of mitochondrial organelles in striated muscle tissues.  相似文献   

17.
The release of alanine by rat diaphragm muscle in vitro.   总被引:13,自引:10,他引:3       下载免费PDF全文
Z discs were isolated from Lethocerus flight muscle by removing the contractile proteins from myofibrils with a solution of high ionic strength. The protein composition of the Z discs was analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis; the major proteins were alpha-actinin, actin and tropomyosin. Z lines were selectively removed from intact myofibrils by digestion with crude lipase and chymotrypsin, but not by purified lipase.  相似文献   

18.
Arthrin: a new actin-like protein in insect flight muscle   总被引:8,自引:0,他引:8  
There are one or more proteins of 50,000 to 60,000 Mr in the thin filaments of insect flight muscle. A protein of 55,000 Mr has been isolated from insect fibrillar flight muscle and called arthrin. Despite its higher molecular weight, arthrin is in many ways like actin. The amino acid composition of arthrin was similar to that of actin. There were similarities in the peptides produced by digesting the denatured proteins and mild digestion of polymerized proteins cleaved similar-sized fragments from arthrin and actin. Polymerized arthrin activated the Mg2+ ATPase of myosin to the same extent as actin and the ATPase was regulated by rabbit or Lethocerus troponin and tropomyosin. Arthrin did not itself act as troponin-T. Electron microscopy of negatively stained specimens showed that arthrin and actin filaments were similar in structure and that arthrin could be decorated by rabbit subfragment-1 to form normal-looking arrowheads. Arthrin formed paracrystals at an optimum concentration of MgCl2 (25 mM) that was somewhat lower than the optimum for actin paracrystals. Optical diffraction showed that the structure of the paracrystals was similar to those formed from actin. The mass of arthrin and actin filaments relative to phage fd was measured by scanning transmission electron microscopy; the relative mass of arthrin and actin was 1.33, in agreement with molecular weight estimations. Therefore arthrin has the properties of a heavy form of actin. The proportion of actin, arthrin and troponin-T in Lethocerus myofibrils was six moles of actin to one mole of arthrin and one mole of troponin-T. The function of arthrin is not known.  相似文献   

19.
Role of desmin filaments in chicken cardiac myofibrillogenesis   总被引:3,自引:0,他引:3  
Desmin filaments are muscle-specific intermediate filaments located at the periphery of the Z-discs, and they have been postulated to play a critical role in the lateral registration of myofibrils. Previous studies suggest that intermediate filaments may be involved in titin assembly during the early stages of myofibrillogenesis. In order to investigate the putative function of desmin filaments in myofibrillogenesis, rabbit anti-desmin antibodies were introduced into cultured cardiomyocytes by electroporation to perturb the normal function of desmin filaments. Changes in the assembly of several sarcomeric proteins were examined by immunofluorescence. In cardiomyocytes incorporated with normal rabbit serum, staining for alpha-actinin and muscle actin displayed the typical Z-line and I-band patterns, respectively, while staining for titin with monoclonal anti-titin A12 antibody, which labels a titin epitope at the A-I junction, showed the periodic doublet staining pattern. Staining for C-protein gave an amorphous pattern in early cultures and identified A-band doublets in older cultures. In contrast, in cardiomyocytes incorporated with anti-desmin antibodies, alpha-actinin was found in disoriented Z-discs and the myofibrils became fragmented, forming mini-sarcomeres. In addition, titin was not organized into the typical A-band doublet, but appeared to be aggregated. Muscle actin staining was especially weak and appeared in tiny clusters. Moreover, in all ages of cardiomyocytes tested, C-protein remained in the disassembled form. The present data suggest the essential role of desmin in myofibril assembly.  相似文献   

20.
Electron microscopy was used to study the positional stability of thick filaments in isometrically contracting skinned rabbit psoas muscle as a function of sarcomere length at 7 degrees C. After calcium activation at a sarcomere length of 2.6 micron, where resting stiffness is low, sarcomeres become nonuniform in length. The dispersion in sarcomere length is complete by the time maximum tension is reached. A-bands generally move from their central position and continue moving toward one of the Z-discs after tension has reached a plateau at its maximum level. The lengths of the thick and thin filaments remain constant during this movement. The extent of A-band movement during contraction depends on the final length of the individual sarcomere. After prolonged activation, all sarcomeres between 1.9 and 2.5 micron long exhibit A-bands that are adjacent to a Z-disc, with no intervening I-band. Sarcomeres 2.6 or 2.7 micron long exhibit a partial movement of A-bands. At longer sarcomere lengths, where the resting stiffness exceeds the slope of the active tension-length relation, the A-bands remain perfectly centered during contraction. Sarcomere symmetry and length uniformity are restored upon relaxation. These results indicate that the central position of the thick filaments in the resting sarcomere becomes unstable upon activation. In addition, they provide evidence that the elastic titin filaments, which join thick filaments to Z-discs, produce almost all of the resting tension in skinned rabbit psoas fibers and act to resist the movement of thick filaments away from the center of the sarcomere during contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号