首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fused in sarcoma (FUS) is a nuclear protein that carries a proline‐tyrosine nuclear localization signal (PY‐NLS) and is imported into the nucleus via Transportin (TRN). Defects in nuclear import of FUS have been implicated in neurodegeneration, since mutations in the PY‐NLS of FUS cause amyotrophic lateral sclerosis (ALS). Moreover, FUS is deposited in the cytosol in a subset of frontotemporal lobar degeneration (FTLD) patients. Here, we show that arginine methylation modulates nuclear import of FUS via a novel TRN‐binding epitope. Chemical or genetic inhibition of arginine methylation restores TRN‐mediated nuclear import of ALS‐associated FUS mutants. The unmethylated arginine–glycine–glycine domain preceding the PY‐NLS interacts with TRN and arginine methylation in this domain reduces TRN binding. Inclusions in ALS‐FUS patients contain methylated FUS, while inclusions in FTLD‐FUS patients are not methylated. Together with recent findings that FUS co‐aggregates with two related proteins of the FET family and TRN in FTLD‐FUS but not in ALS‐FUS, our study provides evidence that these two diseases may be initiated by distinct pathomechanisms and implicates alterations in arginine methylation in pathogenesis.  相似文献   

2.
Two structurally different poly(A)-binding proteins (PABP) bind the poly(A) tract of mRNAs in most mammalian cells: PABPC in the cytoplasm and PABP2/PABPN1 in the nucleus. Whereas yeast orthologs of the cytoplasmic PABP are characterized, a gene product homologous to mammalian PABP2 has not been identified in yeast. We report here the identification of a homolog of PABP2 as an arginine methyltransferase 1 (RMT1)-associated protein in fission yeast. The product of the Schizosaccharomyces pombe pab2 gene encodes a nonessential nuclear protein and demonstrates specific poly(A) binding in vitro. Consistent with a functional role in poly(A) tail metabolism, mRNAs from pab2-null cells displayed hyperadenylated 3'-ends. We also show that arginine residues within the C-terminal arginine-rich domain of Pab2 are modified by RMT1-dependent methylation. Whereas the arginine methylated and unmethylated forms of Pab2 behaved similarly in terms of subcellular localization, poly(A) binding, and poly(A) tail length control; Pab2 oligomerization levels were markedly increased when Pab2 was not methylated. Significantly, Pab2 overexpression reduced growth rate, and this growth inhibitory effect was exacerbated in rmt1-null cells. Our results indicate that the main cellular function of Pab2 is in poly(A) tail length control and support a biological role for arginine methylation in the regulation of Pab2 oligomerization.  相似文献   

3.
The mammalian nuclear poly(A)-binding protein, PABPN1, carries 13 asymmetrically dimethylated arginine residues in its C-terminal domain. By fractionation of cell extracts, we found that protein-arginine methyltransferases (PRMTs)-1, -3, and -6 are responsible for the modification of PABPN1. Recombinant PRMT1, -3, and -6 also methylated PABPN1. Our data suggest that these enzymes act on their own, and additional polypeptides are not involved in recognizing PABPN1 as a substrate. PRMT1 is the predominant methyltransferase acting on PABPN1. Nevertheless, PABPN1 was almost fully methylated in a Prmt1(-/-) cell line; thus, PRMT3 and -6 suffice for methylation. In contrast to PABPN1, the heterogeneous nuclear ribonucleoprotein (hnRNP) K is selectively methylated only by PRMT1. Efficient methylation of synthetic peptides derived from PABPN1 or hnRNP K suggested that PRMT1, -3, and -6 recognize their substrates by interacting with local amino acid sequences and not with additional domains of the substrates. However, the use of fusion proteins suggested that the inability of PRMT3 and -6 to modify hnRNP K is because of structural masking of the methyl-accepting amino acid sequences by neighboring domains. Mutations leading to intracellular aggregation of PABPN1 cause the disease oculopharyngeal muscular dystrophy. The C-terminal domain containing the methylated arginine residues is known to promote PAPBN1 self-association, and arginine methylation has been reported to inhibit self-association of an orthologous protein. Thus, arginine methylation might be relevant for oculopharyngeal muscular dystrophy. However, in two different types of assays we have been unable to detect any effect of arginine methylation on the aggregation of bovine PABPN1.  相似文献   

4.
Nuclear poly(A)‐binding proteins (PABPs) are evolutionarily conserved proteins that play key roles in eukaryotic gene expression. In the fission yeast Schizosaccharomyces pombe, the major nuclear PABP, Pab2, functions in the maturation of small nucleolar RNAs as well as in nuclear RNA decay. Despite knowledge about its nuclear functions, nothing is known about how Pab2 is imported into the nucleus. Here, we show that Pab2 contains a proline‐tyrosine nuclear localization signal (PY‐NLS) that is necessary and sufficient for its nuclear localization and function. Consistent with the role of karyopherin β2 (Kapβ2)‐type receptors in the import of PY‐NLS cargoes, we show that the fission yeast ortholog of human Kapβ2, Kap104, binds to recombinant Pab2 and is required for Pab2 nuclear localization. The absence of arginine methylation in a basic region N‐terminal to the PY‐core motif of Pab2 did not affect its nuclear localization. However, in the context of a sub‐optimal PY‐NLS, we found that Pab2 was more efficiently targeted to the nucleus in the absence of arginine methylation, suggesting that this modification can affect the import kinetics of a PY‐NLS cargo. Although a sequence resembling a PY‐NLS motif can be found in the human Pab2 ortholog, PABPN1, our results indicate that neither a functional PY‐NLS nor Kapβ2 activity are required to promote entry of PABPN1 into the nucleus of human cells. Our findings describe the mechanism by which Pab2 is imported into the nucleus, providing the first example of a PY‐NLS import system in fission yeast. In addition, this study suggests the existence of alternative or redundant nuclear import pathways for human PABPN1.  相似文献   

5.
6.
Mammalian serine and arginine-rich (SR) proteins play important roles in both constitutive and regulated splicing, and SR protein-specific kinases (SRPKs) are conserved from humans to yeast. Here, we demonstrate a novel function of the single conserved SR protein kinase Sky1p in nuclear import in budding yeast. The yeast SR-like protein Npl3p is known to enter the nucleus through a composite nuclear localization signal (NLS) consisting of a repetitive arginine- glycine-glycine (RGG) motif and a nonrepetitive sequence. We found that the latter is the site for phosphorylation by Sky1p and that this phosphorylation regulates nuclear import of Npl3p by modulating the interaction of the RGG motif with its nuclear import receptor Mtr10p. The RGG motif is also methylated on arginine residues, but methylation does not affect the Npl3p-Mtr10p interaction in vitro. Remarkably, arginine methylation interferes with Sky1p-mediated phosphorylation, thereby indirectly influencing the Npl3p-Mtr10p interaction in vivo and negatively regulating nuclear import of Npl3p. These results suggest that nuclear import of Npl3p is coordinately influenced by methylation and phosphorylation in budding yeast, which may represent conserved components in the dynamic regulation of RNA processing in higher eukaryotic cells.  相似文献   

7.
Many nuclear proteins are imported into the cell nucleus by the “classical” nuclear localization signal (NLS)-mediated import pathway. In this pathway, a sequence rich in basic residues in the protein interacts with a heterodimeric complex termed importin and this, along with the GTPase Ran, mediates nuclear import of the NLS-bearing protein. The heterogeneous nuclear ribonucleoprotein (hnRNP) A1 protein contains a novel nuclear localization sequence, termed M9, that does not contain any clusters of basic residues. Very recently, we showed that M9 directs import into the nucleus by a novel protein import pathway distinct from the classical NLS pathway. A 90-kilodalton protein termed transportin was identified as a protein that specifically interacts with wild-type M9 but not transport-defective M9 mutants. Transportin and an ATP-regenerating system were found to be necessary and sufficient for import of M9-containing proteins in anin vitroimport assay. In this report, we provide additional evidence that transportin can interact directly with M9-containing proteins and also show that it can mediate import of full-length hnRNP A1. In addition, Ran, or a Ran-binding protein, is identified as a second protein component of this novel nuclear import pathway. Transportin relatives fromSaccharomyces cerevisiaewhich likely serve as additional nuclear transport receptors are described.  相似文献   

8.
Sam68 (Src substrate associated during mitosis) and its homologues, SLM-1 and SLM-2 (Sam68-like mammalian proteins), are RNA binding proteins and contain the arg-gly (RG) repeats, in which arginine residues are methylated by the protein arginine methyltransferase 1 (PRMT1). However, it remains unclear whether the arginine methylation affects an RNA binding. Here, we report that methylation of Sam68 and SLM proteins markedly reduced their poly(U) binding ability in vitro. The RG repeats of Sam68 bound poly(U), but arginine methylation of the RG repeats abrogated its poly(U) binding ability in vitro. Overexpression of PRMT1 increased arginine methylation of Sam68 and SLM proteins in cells, which resulted in a decrease of their poly(U) binding ability. The results suggest that the RG repeats conserved in Sam68 and SLM proteins may function as an auxiliary RNA binding domain and arginine methylation may eliminate or reduce an RNA binding ability of the proteins.  相似文献   

9.
The nuclear poly(A)-binding protein (PABPN1) is involved in the synthesis of the mRNA poly(A) tails in most eukaryotes. We report that the protein contains two RNA binding domains, a ribonucleoprotein-type RNA binding domain (RNP domain) located approximately in the middle of the protein sequence and an arginine-rich C-terminal domain. The C-terminal domain also promotes self-association of PABPN1 and moderately cooperative binding to RNA. Whereas the isolated RNP domain binds specifically to poly(A), the isolated C-terminal domain binds non-specifically to RNA and other polyanions. Despite this nonspecific RNA binding by the C-terminal domain, selection experiments show that adenosine residues throughout the entire minimal binding site of approximately 11 nucleotides are recognized specifically. UV-induced cross-links with oligo(A) carrying photoactivatable nucleotides at different positions all map to the RNP domain, suggesting that most or all of the base-specific contacts are made by the RNP domain, whereas the C-terminal domain may contribute nonspecific contacts, conceivably to the same nucleotides. Asymmetric dimethylation of 13 arginine residues in the C-terminal domain has no detectable influence on the interaction of the protein with RNA. The N-terminal domain of PABPN1 is not required for RNA binding but is essential for the stimulation of poly(A) polymerase.  相似文献   

10.
The Rev protein of human immunodeficiency virus type 1 is an RNA-binding protein that is required for nuclear export of unspliced and partially spliced viral mRNAs. Nuclear import of human immunodeficiency virus type 1 Rev has been suggested to depend on the classic nuclear transport receptor importin beta, but not on the adapter protein importin alpha. We now show that, similar to importin alpha, Rev is able to dissociate RanGTP from recycling importin beta, a reaction that leads to the formation of a novel import complex. Besides importin beta, the transport receptors transportin, importin 5, and importin 7 specifically interact with Rev and promote its nuclear import in digitonin-permeabilized cells. A single arginine-rich nuclear localization sequence of Rev is required for interaction with all importins tested so far. In contrast to the importin beta-binding domain of importin alpha, Rev interacts with an N-terminal fragment of importin beta. Transportin contains two independent binding sites for Rev. Hence, the mode of interaction of importin beta and transportin with Rev is clearly distinct from that with their classic import cargoes. Taken together, the viral protein takes advantage of multiple cellular transport pathways for its nuclear accumulation.  相似文献   

11.
The low cytoplasmic and high nuclear concentration of the GTP-bound form of Ran provides directionality for both nuclear protein import and export. Both import and export factors bind RanGTP directly, yet this interaction produces opposite effects; in the former case, RanGTP binding induces nuclear cargo release, whereas in the latter, RanGTP binding induces nuclear cargo assembly. Therefore, nuclear import and export receptors and their protein recognition sites are predicted to be distinct. Nevertheless, the approximately 38-amino acid M9 sequence present in heterogeneous nuclear ribonucleoprotein A1 has been reported to serve as both a nuclear localization signal and a nuclear export signal, even though only one protein, the nuclear import factor transportin, has been shown to bind M9 directly. We have used a combination of mutational randomization followed by selection for transportin binding to exhaustively define amino acids in M9 that are critical for transportin binding in vivo. As expected, the resultant approximately 12-amino acid transportin-binding consensus sequence is also predictive of nuclear localization signal activity. Surprisingly, however, this extensive mutational analysis failed to dissect M9 nuclear localization signal and nuclear export signal function. Nevertheless, transportin appears unlikely to be the M9 export receptor, as RanGTP can be shown to block M9 binding by transportin not only in vitro, but also in the nucleus in vivo. This analysis therefore predicts the existence of a nuclear export receptor distinct from transportin that nevertheless shares a common protein-binding site on heterogeneous nuclear ribonucleoprotein A1.  相似文献   

12.
During polyadenylation of mRNA precursors in metazoan cells, poly(A) polymerase is stimulated by the nuclear poly(A) binding protein PABPN1. We report that stimulation depends on binding of PABPN1 to the substrate RNA directly adjacent to poly(A) polymerase and results in an approximately 80-fold increase in the apparent affinity of poly(A) polymerase for RNA without significant effect on catalytic efficiency. PABPN1 associates directly with poly(A) polymerase either upon allosteric activation by oligo(A) or, in the absence of RNA, upon deletion of its N-terminal domain. The N-terminal domain of PABPN1 may function to inhibit undesirable interactions of the protein; the inhibition is relieved upon RNA binding. Tethering of poly(A) polymerase is mediated largely by the C-terminal domain of PABPN1 and is necessary but not sufficient for stimulation of the enzyme; an additional interaction dependent on a coiled-coil structure located within the N-terminal domain of PABPN1 is required for a productive interaction.  相似文献   

13.
Inhibition of nuclear import by the proapoptotic protein CC3   总被引:4,自引:0,他引:4       下载免费PDF全文
We report here that the normal cellular protein CC3/TIP30, when in excess, inhibits nuclear import in vitro and in vivo. CC3 binds directly to the karyopherins of the importin beta family in a RanGTP-insensitive manner and associates with nucleoporins in vivo. CC3 inhibits the nuclear import of proteins possessing either the classical nuclear localization signal or the M9 signal recognized by transportin. CC3 also inhibits nuclear translocation of transportin itself. Cells modified to express higher levels of CC3 have a slower rate of nuclear import and, as described earlier, show an increased sensitivity to death signals. A mutant CC3 protein lacking proapoptotic activity has a lower affinity for transportin, is displaced from it by RanGTP, and fails to inhibit nuclear import in vitro and in vivo. Together, our results support a correlation between the ability of CC3 to form a RanGTP-resistant complex with importins, inhibit nuclear import, and induce apoptosis. Significantly, a dominant-negative form of importin beta1 shown previously to inhibit multiple transport pathways induces rapid cell death, strongly indicating that inhibition of nuclear transport serves as a potent apoptotic signal.  相似文献   

14.
Axo-glial interactions regulate the localization of axonal paranodal proteins   总被引:10,自引:0,他引:10  
The SR proteins, a group of abundant arginine/serine (RS)-rich proteins, are essential pre-mRNA splicing factors that are localized in the nucleus. The RS domain of these proteins serves as a nuclear localization signal. We found that RS domain-bearing proteins do not utilize any of the known nuclear import receptors and identified a novel nuclear import receptor specific for SR proteins. The SR protein import receptor, termed transportin-SR (TRN-SR), binds specifically and directly to the RS domains of ASF/SF2 and SC35 as well as several other SR proteins. The nuclear transport regulator RanGTP abolishes this interaction. Recombinant TRN-SR mediates nuclear import of RS domain- bearing proteins in vitro. TRN-SR has amino acid sequence similarity to several members of the importin beta/transportin family. These findings strongly suggest that TRN-SR is a nuclear import receptor for the SR protein family.  相似文献   

15.
16.
17.
18.
19.
The human Tap protein mediates the sequence-specific nuclear export of RNAs containing the constitutive transport element and is likely also critical for general mRNA export. Here, we demonstrate that a previously defined arginine-rich nuclear localization signal (NLS) present in Tap acts exclusively via the transportin import factor. Previously, transportin has been shown to mediate the nuclear import of several heterogeneous nuclear ribonucleoproteins, including heterogeneous nuclear ribonucleoprotein (hnRNP) A1, by binding to a sequence element termed M9. Although the Tap NLS and the hnRNP A1 M9 element are shown to compete for transportin binding, they show no sequence homology, and the Tap NLS does not conform to the recently defined M9 consensus. The Tap NLS also differs from M9 in that only the latter is able to act as a nuclear export signal. The Tap NLS is therefore the first member of a novel class of transportin-specific NLSs that lack nuclear export signal function.  相似文献   

20.
PEDF (Pigment epithelium-derived factor) is a non-inhibitory member of the serpin gene family (serpinF1) that displays neurotrophic and anti-angiogenic properties. PEDF contains a secretion signal sequence, but although originally regarded as a secreted extracellular protein, endogenous PEDF is found in the cytoplasm and nucleus of several mammalian cell types. In this study we employed a yeast two-hybrid interaction trap screen to identify transportin-SR2, a member of the importin-β family of nuclear transport karyopherins, as a putative PEDF binding partner. The interaction was supported in vitro by GST-pulldown and co-immunoprecipitation. Following transfection of HEK293 cells with GFP-tagged PEDF the protein was predominantly localised to the nucleus, suggesting that active import of PEDF occurs. A motif (YxxYRVRS) shared by PEDF and the unrelated transportin-SR2 substrate, RNA binding motif protein 4b, was identified and we investigated its potential as a nuclear localization signal (NLS) sequence. Site-directed mutagenesis of this helix A motif in PEDF resulted in a GFP-tagged mutant protein being excluded from the nucleus, and mutation of two arginine residues (R67, R69) was sufficient to abolish nuclear import and PEDF interaction with transportin-SR2. These results suggest a novel NLS and mechanism for serpinF1 nuclear import, which may be critical for anti-angiogenic and neurotrophic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号