首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteoglycans are a family of extracellular macromolecules comprised of glycosaminoglycan chains of a repeated disaccharide linked to a central core protein. Proteoglycans have critical roles in chondrogenesis and skeletal development. The glycosaminoglycan chains found in cartilage proteoglycans are primarily composed of chondroitin sulfate. The integrity of chondroitin sulfate chains is important to cartilage proteoglycan function; however, chondroitin sulfate metabolism in mammals remains poorly understood. The solute carrier-35 D1 (SLC35D1) gene (SLC35D1) encodes an endoplasmic reticulum nucleotide-sugar transporter (NST) that might transport substrates needed for chondroitin sulfate biosynthesis. Here we created Slc35d1-deficient mice that develop a lethal form of skeletal dysplasia with severe shortening of limbs and facial structures. Epiphyseal cartilage in homozygous mutant mice showed a decreased proliferating zone with round chondrocytes, scarce matrices and reduced proteoglycan aggregates. These mice had short, sparse chondroitin sulfate chains caused by a defect in chondroitin sulfate biosynthesis. We also identified that loss-of-function mutations in human SLC35D1 cause Schneckenbecken dysplasia, a severe skeletal dysplasia. Our findings highlight the crucial role of NSTs in proteoglycan function and cartilage metabolism, thus revealing a new paradigm for skeletal disease and glycobiology.  相似文献   

2.
We delineated a syndromic recessive preaxial brachydactyly with partial duplication of proximal phalanges to 16.8 Mb over 4 chromosomes. High-throughput sequencing of all 177 candidate genes detected a truncating frameshift mutation in the gene CHSY1 encoding a chondroitin synthase with a Fringe domain. CHSY1 was secreted from patients' fibroblasts and was required for synthesis of chondroitin sulfate moieties. Noticeably, its absence triggered massive production of JAG1 and subsequent NOTCH activation, which could only be reversed with a wild-type but not a Fringe catalytically dead CHSY1 construct. In vitro, depletion of CHSY1 by RNAi knockdown resulted in enhanced osteogenesis in fetal osteoblasts and remarkable upregulation of JAG2 in glioblastoma cells. In vivo, chsy1 knockdown in zebrafish embryos partially phenocopied the human disorder; it increased NOTCH output and impaired skeletal, pectoral-fin, and retinal development. We conclude that CHSY1 is a secreted FRINGE enzyme required for adjustment of NOTCH signaling throughout human and fish embryogenesis and particularly during limb patterning.  相似文献   

3.
Altered Bone Morphogenetic Protein (BMP) signaling leads to multiple developmental defects, including brachydactyly and deafness. Here we identify chondroitin synthase 1 (CHSY1) as a potential mediator of BMP effects. We show that loss of human CHSY1 function causes autosomal-recessive Temtamy preaxial brachydactyly syndrome (TPBS), mainly characterized by limb malformations, short stature, and hearing loss. After mapping the TPBS locus to chromosome 15q26-qterm, we identified causative mutations in five consanguineous TPBS families. In zebrafish, antisense-mediated chsy1 knockdown causes defects in multiple developmental processes, some of which are likely to also be causative in the etiology of TPBS. In the inner ears of zebrafish larvae, chsy1 is expressed similarly to the BMP inhibitor dan and in a complementary fashion to bmp2b. Furthermore, unrestricted Bmp2b signaling or loss of Dan activity leads to reduced chsy1 expression and, during epithelial morphogenesis, defects similar to those that occur upon Chsy1 inactivation, indicating that Bmp signaling affects inner-ear development by repressing chsy1. In addition, we obtained strikingly similar zebrafish phenotypes after chsy1 overexpression, which might explain why, in humans, brachydactyly can be caused by mutations leading either to loss or to gain of BMP signaling.  相似文献   

4.
As a neurotropic virus, human immunodeficiency virus type 1 (HIV-1) invades the brain and causes severe neuronal, astrocyte, and myelin damage in AIDS patients. To gain access to the brain, HIV-1 must migrate through brain microvascular endothelial cells (BMECs), which compose the blood-brain barrier (BBB). Given that BMECs lack the entry receptor CD4, HIV-1 must use receptors distinct from CD4 to enter these cells. We previously reported that cell surface proteoglycans serve as major HIV-1 receptors on primary human endothelial cells. In this study, we examined whether proteoglycans also impact cell-free HIV-1 invasion of the brain. Using an artificial BBB transmigration assay, we found that both heparan and chondroitin sulfate proteoglycans (HSPGs and CSPGs, respectively) are abundantly expressed on primary BMECs and promote HIV-1 attachment and entry. In contrast, the classical entry receptors, CXCR4 and CCR5, only moderately enhanced these processes. HSPGs and CSPGs captured HIV-1 in a gp120-dependent manner. However, no correlation between coreceptor usage and transmigration was identified. Furthermore, brain-derived viruses did not transmigrate more efficiently than lymphoid-derived viruses, suggesting that the ability of HIV-1 to replicate in the brain does not correlate with its capacity to migrate through the BBB as cell-free virus. Given that HIV-1-proteoglycan interactions are based on electrostatic contacts between basic residues in gp120 and sulfate groups in proteoglycans, HIV-1 may exploit these interactions to rapidly enter and migrate through the BBB to invade the brain.  相似文献   

5.
The structures of the bovine corneal chondroitin sulfate (CS) chains and the nature of core proteins to which these chains are attached have not been studied in detail. In this study, we show that structurally diverse CS chains are present in bovine cornea and that they are mainly linked to decorin core protein. DEAE-Sephacel chromatography fractionated the corneal chondroitin sulfate proteoglycans (CSPGs) into three distinct fractions, CSPG-I, CSPG-II, and CSPG-III. These CSPGs markedly differ in their CS and dermatan sulfate (DS) contents, and in particular the CS structure-the overall sulfate content and 4- to 6-sulfate ratio. In general, the CS chains of the corneal CSPGs have low to moderate levels (15-64%) of sulfated disaccharides and 0-30% DS content. Structural analysis indicated that the DS disaccharide units in the CS chains are segregated as large blocks. We have also assessed the suitability of the corneal CSPGs as an alternative to placental CSPG or the widely used bovine tracheal chondroitin sulfate A (CSA) for studying the structural interactions involved in the adherence of Plasmodium falciparum-infected red blood cells (IRBCs) to chondroitin 4-sulfate. The data demonstrate that the corneal CSPGs efficiently bind IRBCs, and that the binding strength is either comparable or significantly higher than the placental CSPG. In contrast, the IRBC binding strength of bovine tracheal CSA is markedly lower than the human placental and bovine corneal CSPGs. Thus, our data demonstrate that the bovine corneal CSPG but not tracheal CSA is suitable for studying structural interactions involved in IRBC-C4S binding.  相似文献   

6.
The proteoglycans synthesized by primary chick skeletal muscle during in vitro myogenesis were compared with those of muscle-specific fibroblasts. Cultures of skeletal muscle cells and muscle fibroblasts were separately labeled using [35S] sulfate as a precursor. The proteoglycans of the cell layer and medium were separately extracted and isolated by ion-exchange chromatography on DEAE-Sephacel followed by gel filtration chromatography on Sepharose CL-2B. Two cell layer-associated proteoglycans synthesized both by skeletal muscle cells and muscle fibroblasts were identified. The first, a high molecular weight proteoglycan, eluted from Sepharose CL-2B with a Kav of 0.07 and contained exclusively chondroitin sulfate chains with an average molecular weight greater than 50,000. The second, a relatively smaller proteoglycan, eluted from Sepharose CL-2B with a Kav of 0.61 and contained primarily heparan sulfate chains with an average molecular weight of 16,000. Two labeled proteoglycans were also found in the medium of both skeletal muscle and muscle fibroblasts. A high molecular weight proteoglycan was found with virtually identical properties to that of the high molecular weight chondroitin sulfate proteoglycan of the cell layer. A second, smaller proteoglycan had a similar monomer size (Kav of 0.63) to the cell layer heparan sulfate proteoglycan, but differed from it in that this molecule contained primarily chondroitin sulfate chains with an average molecular weight of 32,000. Studies on the distribution of these proteoglycans in muscle cells during in vitro myogenesis demonstrated that a parallel increase in the relative amounts of the smaller proteoglycans occurred in both the cell layer and medium compared to the large chondroitin sulfate proteoglycan in each compartment. In contrast, muscle-derived fibroblasts displayed a constant ratio of the small proteoglycans of the cell layer and medium fractions, compared to the larger chondroitin sulfate proteoglycan of the respective fraction as a function of cell density. Our results support the concept that proteoglycan synthesis is under developmental regulation during skeletal myogenesis.  相似文献   

7.
The orderly development of the nervous system is characterized by phases of cell proliferation and differentiation, neural migration, axonal outgrowth and synapse formation, and stabilization. Each of these processes is a result of the modulation of genetic programs by extracellular cues. In particular, chondroitin sulfate proteoglycans (CSPGs) have been found to be involved in almost every aspect of this well-orchestrated yet delicate process. The evidence of their involvement is complex, often contradictory, and lacking in mechanistic clarity; however, it remains obvious that CSPGs are key cogs in building a functional brain. This review focuses on current knowledge of the role of CSPGs in each of the major stages of neural development with emphasis on areas requiring further investigation:  相似文献   

8.
Infection with Plasmodium falciparum during pregnancy leads to the selective adherence of infected red blood cells (IRBCs) in the placenta causing placental malaria. The IRBC adherence is mediated through the chondroitin 4-sulfate (C4S) chains of unusually low-sulfated chondroitin sulfate proteoglycans (CSPGs) in the placenta. To study the structural interactions involved in C4S-IRBC adherence, various investigators have used CSPGs from different sources. Since the structural characteristics of the polysaccharide chains in CSPGs from various sources differ substantially, the CSPGs are likely to differentially bind IRBCs. In this study, the CSPG purified from bovine trachea, a CSPG form of human recombinant thrombomodulin (TM-CSPG), two CSPG fractions from bovine cornea, and the CSPGs of human placenta, the natural receptor, were studied in parallel for their IRBC binding characteristics. The TM-CSPG and corneal CSPG fractions could bind IRBCs at significantly higher density compared to the placental CSPGs. However, the avidity of IRBC binding by TM-CSPG was considerably low compared to placental CSPGs. The corneal CSPGs have substantially higher binding strengths. The bovine tracheal CSPG bound IRBCs at much lower density and exhibited significantly lower avidity than the placental CSPGs. These data demonstrated that the bovine tracheal CSPG and TM-CSPG are not ideal for studying the fine structural interactions involved in the IRBC adherence to the placental C4S, whereas the bovine corneal CSPGs are better alternatives to the placental CSPGs for determining these interactions.  相似文献   

9.
Glycosaminoglycans in the form of heparan sulfate proteoglycans (HSPG) and chondroitin sulfate proteoglycans (CSPG) are required for normal kidney organogenesis. The specific roles of HSPGs and CSPGs on ureteric bud (UB) branching morphogenesis are unclear, and past reports have obtained differing results. Here we employ in vitro systems, including isolated UB culture, to clarify the roles of HSPGs and CSPGs on this process. Microarray analysis revealed that many proteoglycan core proteins change during kidney development (syndecan-1,2,4, glypican-1,2,3, versican, decorin, biglycan). Moreover, syndecan-1, syndecan-4, glypican-3, and versican are differentially expressed during isolated UB culture, while decorin is dynamically regulated in cultured isolated metanephric mesenchyme (MM). Biochemical analysis indicated that while both heparan sulfate (HS) and chondroitin sulfate (CS) are present, CS accounts for approximately 75% of the glycosaminoglycans (GAG) in the embryonic kidney. Selective perturbation of HS in whole kidney rudiments and in the isolated UB resulted in a significant reduction in the number of UB branch tips, while CS perturbation has much less impressive effects on branching morphogenesis. Disruption of endogenous HS sulfation with chlorate resulted in diminished FGF2 binding and proliferation, which markedly altered kidney area but did not have a statistically significant effect on patterning of the ureteric tree. Furthermore, perturbation of GAGs did not have a detectable effect on FGFR2 expression or epithelial marker localization, suggesting the expression of these molecules is largely independent of HS function. Taken together, the data suggests that nonselective perturbation of HSPG function results in a general proliferation defect; selective perturbation of specific core proteins and/or GAG microstructure may result in branching pattern defects. Despite CS being the major GAG synthesized in the whole developing kidney, it appears to play a lesser role in UB branching; however, CS is likely to be integral to other developmental processes during nephrogenesis, possibly involving the MM. A model is presented of how, together with growth factors, heterogeneity of proteoglycan core proteins and glycosaminoglycan sulfation act as a switching mechanism to regulate different stages of the branching process. In this model, specific growth factor-HSPG combinations play key roles in the transitioning between stages and their maintenance.  相似文献   

10.
Because cartilage lacks nerves, blood vessels, and lymphatic vessels, it is thought to contain factors that inhibit the growth and development of those tissues. Chondroitin sulfate proteoglycans (CSPGs) are a major extracellular component in cartilage. CSPGs contribute to joint flexibility and regulate extracellular signaling via their attached glycosaminoglycan, chondroitin sulfate (CS). CS and CSPG inhibit axonal regeneration; however, their role in blood vessel formation is largely unknown. To clarify the function of CSPG in blood vessel formation, we tested salmon nasal cartilage proteoglycan (PG), a member of the aggrecan family of CSPG, for endothelial capillary-like tube formation. Treatment with salmon PG inhibited endothelial cell adhesion and in vitro tube formation. The anti-angiogenic activity was derived from CS in the salmon PG but not the core protein. Salmon PG also reduced matrix metalloproteinase expression and inhibited angiogenesis in the chick chorioallantoic membrane. All of these data support an anti-angiogenic role for CSPG in cartilage.  相似文献   

11.
Summary Human platelet-derived transforming growth factor-beta (TGF-beta) is a cell-type specific promotor of proteoglycan synthesis in human adult arterial cells. Cultured human adult arterial smooth muscle cells synthesized chondroitin sulfate, dermatan sulfate, and heparan sulfate proteoglycans, and the percent composition of these three proteoglycan subclasses varied to some extent from cell strain to cell strain. However, TGF-beta consistently stimulated the synthesis of chondroitin sulfate proteoglycan. Both chondroitin 4- and chondroitin 6-sulfate were stimulated by TGF-beta to the same extent. TGF-beta had no stimulatory effect on either class of [35S]sulfate-labeled proteoglycans which appeared in an approximately 1:1 and 2:1 ratio of heparan sulfate to dermatan sulfate of the medium and cell layers, respectively, of arterial endothelial cells. Human adult arterial endothelial cells synthesized little or no chondroitin sulfate proteoglycan. Pulse-chase labeling revealed that the appearance of smooth muscle cell proteoglycans into the medium over a 36-h period equaled the disappearance of labeled proteoglycans from the cell layer, independent of TGF-beta. Inhibitors of RNA synthesis blocked TGF-beta-stimulated proteoglycan synthesis in the smooth muscle cells. The incorporation of [35S]methionine into chondroitin sulfate proteoglycan core proteins was stimulated by TGF-beta. Taken together, the results presented indicate that TGF-beta stimulates chondroitin sulfate proteoglycan synthesis in human adult arterial smooth muscle cells by promoting the core protein synthesis. Supported in part by grants from the Public Health Service, U.S. Department of Health and Human Services, Washington, DC (CA 37589 and HL 33842), RJR Nabisco, Inc., and Chang Gung Biomedical Research Foundation (CMRP 291).  相似文献   

12.
In pregnant women infected with Plasmodium falciparum, the infected red blood cells (IRBCs) selectively accumulate in the intervillous spaces of placenta, leading to poor fetal outcome and severe health complications in the mother. Although chondroitin 4-sulfate is known to mediate IRBC adherence to placenta, the natural receptor has not been identified. In the present study, the chondroitin sulfate proteoglycans (CSPGs) of human placenta were purified and structurally characterized, and adherence of IRBCs to these CSPGs investigated. The data indicate that the placenta contains three distinct types of CSPGs: significant quantities of uniquely low sulfated, extracellular CSPGs localized in the intervillous spaces, minor amounts of two cell-associated CSPGs, and major amounts of dermatan sulfate-like CSPGs of the fibrous tissue. Of the various CSPGs isolated from the placenta, the low sulfated CSPGs of the intervillous spaces most efficiently bind IRBCs. Based on IRBC adherence capacities and localization patterns of various CSPGs, we conclude that the CSPGs of the intervillous spaces are the receptors for placental IRBC adherence. The identification and characterization of these CSPGs provide a valuable tool for understanding the precise molecular interactions involved in placental IRBC adherence and for the development of therapeutic strategies for maternal malaria. In the accompanying paper (Alkhalil, A., Achur, R. N., Valiyaveettil, M., Ockenhouse, C. F., and Gowda, D. C. (2000) J. Biol. Chem. 275, 40357-40364), we report the structural requirements for the IRBC adherence.  相似文献   

13.
The behavior of cells is generally considered to be regulated by environmental factors, but the molecules in the milieu of neural stem cells have been little studied. We found by immunohistochemistry that chondroitin sulfate (CS) existed in the surroundings of nestin-positive cells or neural stem/progenitor cells in the rat ventricular zone of the telencephalon at embryonic day 14. Brain-specific chondroitin sulfate proteoglycans (CSPGs), including neurocan, phosphacan/receptor-type protein-tyrosine phosphatase beta, and neuroglycan C, were detected in the ventricular zone. Neurospheres formed by cells from the fetal telencephalon also expressed these CSPGs and NG2 proteoglycan. To examine the structural features and functions of CS polysaccharides in the milieu of neural stem cells, we isolated and purified CS from embryonic day 14 telencephalons. The CS preparation consisted of two fractions differing in size and extent of sulfation: small CS polysaccharides with low sulfation and large CS polysaccharides with high sulfation. Interestingly, both CS polysaccharides and commercial preparations of dermatan sulfate CS-B and an E-type of highly sulfated CS promoted the fibroblast growth factor-2-mediated proliferation of neural stem/progenitor cells. None of these CS preparations promoted the epidermal growth factor-mediated neural stem cell proliferation. These results suggest that these CSPGs are involved in the proliferation of neural stem cells as a group of cell microenvironmental factors.  相似文献   

14.
Plasmodium falciparum infection in pregnant women results in the chondroitin 4-sulfate-mediated adherence of the parasite-infected red blood cells (IRBCs) in the placenta, adversely affecting the health of the fetus and mother. We have previously shown that unusually low sulfated chondroitin sulfate proteoglycans (CSPGs) in the intervillous spaces of the placenta are the receptors for IRBC adhesion, which involves a chondroitin 4-sulfate motif consisting of six disaccharide moieties with approximately 30% 4-sulfated residues. However, it was puzzling how the placental CSPGs, which have only approximately 8% of the disaccharide 4-sulfated, could efficiently bind IRBCs. Thus, we undertook to determine the precise structural features of the CS chains of placental CSPGs that interact with IRBCs. We show that the placental CSPGs are a mixture of two major populations, which are similar by all criteria except differing in their sulfate contents; 2-3% and 9-14% of the disaccharide units of the CS chains are 4-sulfated, and the remainder are nonsulfated. The majority of the sulfate groups in the CSPGs are clustered in CS chain domains consisting of 6-14 repeating disaccharide units. While the sulfate-rich regions of the CS chains contain 20-28% 4-sulfated disaccharides, the other regions have little or no sulfate. Further, we find that the placental CSPGs are able to efficiently bind IRBCs due to the presence of 4-sulfated disaccharide clusters. The oligosaccharides corresponding to the sulfate-rich domains of the CS chains efficiently inhibited IRBC adhesion. Thus, our data demonstrate, for the first time, the unique distribution of sulfate groups in the CS chains of placental CSPGs and that these sulfate-clustered domains have the necessary structural elements for the efficient adhesion of IRBCs, although the CS chains have an overall low degree of sulfation.  相似文献   

15.
Cultured human fetal lung fibroblasts produce some chondroitin sulfate proteoglycans that are extracted as an aggregate in chaotropic buffers containing 4 M guanidinium chloride. The aggregated proteoglycans are excluded from Sepharose CL4B and 2B, but become included, eluting with a Kav value of 0.53 from Sepharose CL4B, when Triton X-100 is included in the buffer. Conversely, some of the detergent-extractable chondroitin sulfate proteoglycans can be incorporated into liposomes, suggesting the existence of a hydrophobic membrane-intercalated chondroitin sulfate proteoglycan fraction. Purified preparations of hydrophobic chondroitin sulfate proteoglycans contain two major core protein forms of 90 and 52 kD. A monoclonal antibody (F58-7D8) obtained from the fusion of myeloma cells with spleen cells of BALB/c mice that were immunized with hydrophobic proteoglycans recognized the 90- but not the 52-kD core protein. The epitope that is recognized by the antibody is exposed at the surface of cultured human lung fibroblasts and at the surface of several stromal cells in vivo, but also at the surface of Kupffer cells and of epidermal cells. The core proteins of these small membrane-associated chondroitin sulfate proteoglycans are probably distinct from those previously identified in human fibroblasts by biochemical, immunological, and molecular biological approaches.  相似文献   

16.
Studies have been initiated to identify various cell surface and matrix components of normal human skin through the production and characterization of murine monoclonal antibodies. One such antibody, termed PG-4, identifies both cell surface and matrix antigens in extracts of human foetal and adult skin as the dermatan sulfate proteoglycans, decorin and biglycan, and the chondroitin sulfate proteoglycan versican. Treatment of proteoglycans with chondroitinases completely abolishes immunoreactivity for all of these antigens which suggests that the epitope resides within their glycosaminoglycan chains. Further evidence for the carbohydrate nature of the epitope derives from competition studies where protein-free chondroitin sulfate chains from shark cartilage react strongly; however, chondroitin sulfate chains from bovine tracheal cartilage fail to exhibit a significant reactivity, an indication that the epitope, although present in some chondroitin sulfate chains, does not consist of random chondroitin 4- or 6-sulfate disaccharides. The presence of the epitope on dermatan sulfate chains and on decorin was also demonstrated using competition assays. Thus, PG-4 belongs to a class of antibodies that recognize native epitopes located within glycosaminoglycan chains. It differs from previously described antibodies in this class in that it identifies both chondroitin sulfate and dermatan sulfate proteoglycans. These characteristics make PG-4 a useful monoclonal antibody probe to identify the total population of proteoglycans in human skin.  相似文献   

17.
After injury to the central nervous system, a glial scar develops that physically and biochemically inhibits axon growth. In the scar, activated astrocytes secrete inhibitory extracellular matrix, of which chondroitin sulfate proteoglycans (CSPGs) are considered the major inhibitory component. An inhibitory interface of CSPGs forms around the lesion and prevents axons from traversing the injury, and decreasing CSPGs can enhance axon growth. In this report, we established an in vitro interface model of activated astrocytes and subsequently investigated gene delivery as a means to reduce CSPG levels and enhance axon growth. In the model, a continuous interface of CSPG producing astrocytes was created with neurons seeded opposite the astrocytes, and neurite crossing, stopping, and turning were evaluated as they approached the interface. We investigated the efficacy of lentiviral delivery to degrade or prevent the synthesis of CSPGs, thereby removing CSPG inhibition of neurite growth. Lentiviral delivery of RNAi targeting two key CSPG synthesis enzymes, chondroitin polymerizing factor and chondroitin synthase‐1, decreased CSPGs, and reduced inhibition by the interface. Degradation of CSPGs by lentiviral delivery of chondroitinase also resulted in less inhibition and more neurites crossing the interface. These results indicate that the interface model provides a tool to investigate interventions that reduce inhibition by CSPGs, and that gene delivery can be effective in promoting neurite growth across an interface of CSPG producing astrocytes. Biotechnol. Bioeng. 2013; 110: 947–957. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
We have isolated and characterized the cell-associated and secreted proteoglycans synthesized by a clonal line of rat adrenal medullary PC12 pheochromocytoma cells, which have been extensively employed for the study of a wide variety of neurobiological processes. Chondroitin sulfate accounts for 70-80% of the [35S] sulfate-labeled proteoglycans present in PC12 cells and secreted into the medium. Two major chondroitin sulfate proteoglycans were detected with molecular sizes of 45,000-100,000 and 120,000-190,000, comprising 14- and 105-kDa core proteins and one or two chondroitin sulfate chains with an average molecular size of 34 kDa. In contrast to the chondroitin sulfate proteoglycans, one major heparan sulfate proteoglycan accounts for most of the remaining 20-30% of the [35S] sulfate-labeled proteoglycans present in the PC12 cells and medium. It has a molecular size of 95,000-170,000, comprising a 65-kDa core protein and two to six 16-kDa heparan sulfate chains. Both the chondroitin sulfate and heparan sulfate proteoglycans also contain O-glycosidically linked oligosaccharides (25-28% of the total oligosaccharides) and predominantly tri- and tetraantennary N-glycosidic oligosaccharides. Proteoglycans produced by the original clone of PC12 cells were compared with those of two other PC12 cell lines (B2 and F3) that differ from the original clone in morphology, adhesive properties, and response to nerve growth factor. Although the F3 cells (a mutant line derived from B2 and reported to lack a cell surface heparan sulfate proteoglycan) do not contain a large molecular size heparan sulfate proteoglycan species, there was no significant difference between the B2 and F3 cells in the percentage of total heparan sulfate released by mild trypsinization, and both the B2 and F3 cells synthesized cell-associated and secreted chondroitin sulfate and heparan sulfate proteoglycans having properties very similar to those of the original PC12 cell line but with a reversed ratio (35:65) of chondroitin sulfate to heparan sulfate.  相似文献   

19.
Chondrodysplasias due to proteoglycan defects   总被引:7,自引:0,他引:7  
The proteoglycans, especially the large chondroitin sulfate proteoglycan aggrecan, have long been viewed as important components of the extracellular matrix of cartilage. The drastic change in expression during differentiation from mesenchyme to cartilage, the loss of tissue integrity associated with proteoglycan degradation in several disease processes and, most important, the demonstration of abnormalities in proteoglycan production concomitant with the aberrant growth patterns exhibited by the brachymorphic mouse, the cartilage matrix deficient mouse, and the nanomelic chick provide the strongest evidence that the proteoglycan aggrecan is essential during differentiation and for maintenance of the skeletal elements. More recently, mutations associated with proteoglycans other than aggrecan, especially the heparan sulfate proteoglycans, glypican and perlecan, suggest an important role for these molecules in skeletal development as well. This review focuses on the molecular bases of the hereditary proteoglycan defects in animal models, as well as of some human chondrodysplasias, that collectively are providing a better understanding of the role of proteoglycans in the development and maintenance of the skeletal elements.  相似文献   

20.
Chondroitin sulfate proteoglycans (CSPGs) are the major class of proteoglycans synthesized by mouse uterine stroma in vitro (Jacobs, A. L., and Carson, D. D. (1991). J. Biol. Chem. 266, 15,464-15,473). In the present study, stromal CSPGs were isolated and examined with regard to their ability to bind to specific extracellular matrix (ECM) components. Of a variety of ECM components tested, only collagen type I formed stable complexes with stromal CSPGs in both solid phase and solution binding assays. Proteolytic digestion of the CSPGs did not affect binding and suggested that the protein cores did not participate directly in binding. Furthermore, free chondroitin sulfate polysaccharides do not compete effectively in the binding assays. Therefore, interactions with multiple CS chains and/or the higher charge density afforded by intact CSPGs appear to be required for retention by collagen type I. Intact CSPGs were examined for their ability to modulate embryo attachment and outgrowth in vitro on fibronectin- or collagen type I-coated surfaces. In both cases, intact CSPGs, but not their constituent protein cores or polysaccharides, inhibited both the rate and the extent of outgrowth formation. In addition, embryo outgrowth on stromal ECM was enhanced by predigestion with chondroitinase. Addition of exogenous CSPG markedly retarded embryo outgrowth on stromal matrix. Collectively, these data indicate that stromal cell-derived CSPGs are retained by collagen type I in the stromal interstitial ECM where these molecules may attenuate trophoblast invasive behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号