首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parvovirus B19 (B19V) can cause infection in humans. To date, three genotypes of B19V, with subtypes, are known, of which genotype 1a is the most prevalent genotype in the Western world. We sequenced the genome of B19V strains of 65 asymptomatic, recently infected Dutch blood donors, to investigate the spatio-temporal distribution of B19V strains, in the years 2003-2009. The sequences were compared to B19V sequences from Dutch patients with fifth disease, and to global B19V sequences as available from GenBank. All Dutch B19V strains belonged to genotype 1a. Phylogenetic analysis of the strains from Dutch blood donors showed that two groups of genotype 1a co-exist. A clear-cut division into the two groups was also found among the B19V strains from Dutch patients, and among the B19V sequences in GenBank. The two groups of genotype 1a co-exist around the world and do not appear to differ in their ability to cause disease. Strikingly, the two groups of B19V predominantly differ in synonymous mutations, distributed throughout the entire genome of B19V. We propose to call the two groups of B19V genotype 1a respectively subtype 1a1 and 1a2.  相似文献   

2.
Human parvovirus B19 (B19V) from the erythrovirus genus is known to be a pathogenic virus in humans. Prevalence of B19V infection has been reported worldwide in all seasons, with a high incidence in the spring. B19V is responsible for erythema infectiosum (fifth disease) commonly seen in children. Its other clinical presentations include arthralgia, arthritis, transient aplastic crisis, chronic anemia, congenital anemia, and hydrops fetalis. In addition, B19V infection has been reported to trigger autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. However, the mechanisms of B19V participation in autoimmunity are not fully understood. B19V induced chronic disease and persistent infection suggests B19V can serve as a model for viral host interactions and the role of viruses in the pathogenesis of autoimmune diseases. Here we investigate the involvement of B19V in the breakdown of immune tolerance. Previously, we demonstrated that the non-structural protein 1 (NS 1) of B19V induces apoptosis in non-permissive cells lines and that this protein can cleave host DNA as well as form NS1-DNA adducts. Here we provide evidence that through programmed cell death, apoptotic bodies (ApoBods) are generated by B19V NS1 expression in a non-permissive cell line. Characterization of purified ApoBods identified potential self-antigens within them. In particular, signature self-antigens such as Smith, ApoH, DNA, histone H4 and phosphatidylserine associated with autoimmunity were present in these ApoBods. In addition, when purified ApoBods were introduced to differentiated macrophages, recognition, engulfment and uptake occurred. This suggests that B19V can produce a source of self-antigens for immune cell processing. The results support our hypothesis that B19V NS1-DNA adducts, and nucleosomal and lysosomal antigens present in ApoBods created in non-permissive cell lines, are a source of self-antigens.  相似文献   

3.
Human parvovirus B19 (B19V) infection has a unique tropism to human erythroid progenitor cells (EPCs) in human bone marrow and the fetal liver. It has been reported that both B19V infection and expression of the large nonstructural protein NS1 arrested EPCs at a cell cycle status with a 4 N DNA content, which was previously claimed to be “G2/M arrest.” However, a B19V mutant infectious DNA (M20mTAD2) replicated well in B19V-semipermissive UT7/Epo-S1 cells but did not induce G2/M arrest (S. Lou, Y. Luo, F. Cheng, Q. Huang, W. Shen, S. Kleiboeker, J. F. Tisdale, Z. Liu, and J. Qiu, J. Virol. 86:10748–10758, 2012). To further characterize cell cycle arrest during B19V infection of EPCs, we analyzed the cell cycle change using 5-bromo-2′-deoxyuridine (BrdU) pulse-labeling and DAPI (4′,6-diamidino-2-phenylindole) staining, which precisely establishes the cell cycle pattern based on both cellular DNA replication and nuclear DNA content. We found that although both B19V NS1 transduction and infection immediately arrested cells at a status of 4 N DNA content, B19V-infected 4 N cells still incorporated BrdU, indicating active DNA synthesis. Notably, the BrdU incorporation was caused neither by viral DNA replication nor by cellular DNA repair that could be initiated by B19V infection-induced cellular DNA damage. Moreover, several S phase regulators were abundantly expressed and colocalized within the B19V replication centers. More importantly, replication of the B19V wild-type infectious DNA, as well as the M20mTAD2 mutant, arrested cells at S phase. Taken together, our results confirmed that B19V infection triggers late S phase arrest, which presumably provides cellular S phase factors for viral DNA replication.  相似文献   

4.
B19 virus is a human virus belonging to the genus Erythrovirus: The genetic diversity among B19 virus isolates has been reported to be very low, with less than 2% nucleotide divergence in the whole genome sequence. We have previously reported the isolation of a human erythrovirus isolate, termed V9, whose sequence was markedly distinct (>11% nucleotide divergence) from that of B19 virus. To date, the V9 isolate remains the unique representative of a new variant in the genus Erythrovirus, and its taxonomic position is unclear. We report here the isolation of 11 V9-related viruses. A prospective study conducted in France between 1999 and 2001 indicates that V9-related viruses actually circulate at a significant frequency (11.4%) along with B19 viruses. Analysis of the nearly full-length genome sequence of one V9-related isolate (D91.1) indicates that the D91.1 sequence clusters together with but is notably distant from the V9 sequence (5.3% divergence) and is distantly related to B19 virus sequences (13.8 to 14.2% divergence). Additional phylogenetic analysis of partial sequences from the V9-related isolates combined with erythrovirus sequences available in GenBank indicates that the erythrovirus group is more diverse than thought previously and can be divided into three well-individualized genotypes, with B19 viruses corresponding to genotype 1 and V9-related viruses being distributed into genotypes 2 and 3.  相似文献   

5.
Hepatitis C virus (HCV) shows a great geographical diversity reflected in the high number of circulating genotypes and subtypes. The response to HCV treatment is genotype specific, with the predominant genotype 1 showing the lowest rate of sustained virological response. Virally encoded enzymes are candidate targets for intervention. In particular, promising antiviral molecules are being developed to target the viral NS3/4A protease and NS5B polymerase. Most of the studies with the NS5B polymerase have been done with genotypes 1b and 2a, whilst information about other genotypes is scarce. Here, we have characterized the de novo activity of NS5B from genotypes 1 to 5, with emphasis on conditions for optimum activity and kinetic constants. Polymerase cooperativity was determined by calculating the Hill coefficient and oligomerization through a new FRET-based method. The V(max)/K(m) ratios were statistically different between genotype 1 and the other genotypes (p<0.001), mainly due to differences in V(max) values, but differences in the Hill coefficient and NS5B oligomerization were noted. Analysis of sequence changes among the studied polymerases and crystal structures show the αF helix as a structural component probably involved in NS5B-NS5B interactions. The viability of the interaction of αF and αT helixes was confirmed by docking studies and calculation of electrostatic surface potentials for genotype 1 and point mutants corresponding to mutations from different genotypes. Results presented in this study reveal the existence of genotypic differences in NS5B de novo activity and oligomerization. Furthermore, these results allow us to define two regions, one consisting of residues Glu128, Asp129, and Glu248, and the other consisting of residues of αT helix possibly involved in NS5B-NS5B interactions.  相似文献   

6.

Background

SEN virus is a blood-borne, circular ssDNA virus and possessing nine genotypes (A to I). Among nine genotypes, SENV-D and SENV-H genotypes have the strong link with patients with unknown (none-A to E) hepatitis infections. Infection with blood-borne viruses is the second important cause of death in thalassemic patients. The aim of this study was to determine the frequency of SENV-D and SENV-H genotypes viremia by performing nested-PCR in 120 and 100 sera from healthy blood donors and thalassemic patients in Guilan Province, North of Iran respectively. Also, to explicate a possible role of SEN virus in liver disease and established changes in blood factors, the serum aminotransferases (ALT and AST) and some of the blood factors were measured.

Results

Frequency of SENV-D, SENV (SENV-H or SENV-D) and co-infection (both SENV-D and SENV-H) viremia was significantly higher among thalassemic patients than healthy individuals. Frequency of SENV-H viremia was significantly higher than SENV-D among healthy individuals. In comparison to SENV-D negative patients, the mean of mean corpuscular hemoglobin was significantly higher in SENV-D positive and co-infection cases (P < 0.05). The means of AST and ALT were significantly higher in thalassemic patients than healthy blood donors, but there were not any significant differences in the means of the liver levels between SENV-positive and -negative individuals in healthy blood donors and thalassemic patients. High nucleotide homology observed among PCR amplicon's sequences in healthy blood donors and thalassemic patients.

Conclusions

The high rate of co-infection shows that different genotypes of SENV have no negative effects on each other. The high frequency of SENV infection among thalassemic patients suggests blood transfusion as main route of transmission. High frequency of SENV infection in healthy individuals indicates that other routes rather than blood transfusion also are important. Frequency of 90.8% of SENV infection among healthy blood donors as well as high nucleotide homology of sequenced amplicons between two groups can probably suggest that healthy blood donors infected by SENV act partly as a source of SENV transmission to the thalassemic patients. In conclusion, SENV-D isolate in Guilan Province may be having a pathogenic agent for thalassemic patients.  相似文献   

7.
Parvovirus B19 infection is often associated with acute and chronic joint diseases thus suggesting an etiologic role for the virus in these pathologies. In this work, we looked for a possible correlation between Parvovirus B19 infection and certain types of chronic inflammatory rheumatisms. We therefore, screened a population of 100 patients with different chronic inflammatory rheumatismal affections for serological markers of Parvovirus B19 infection. All patients were Tunisians of both sexes, who presented at the service of Rheumatology of the Charles Nicolle Hospital, Tunis. One hundred blood donors were taken as controls. Specific Immunoenzyme Assays of the ELISA type (Biotrin International, France) were used to detect anti-Parvovirus IgG and IgM. On the other hand, viral DNA was sought by nested PCR in synovial fluid from 14 patients. The data obtained indicate that specific anti-Parvovirus B19 IgG was detectable in the sera of 80.7% of patients and 43% of controls. In contrast, none of the sera was found positive for specific IgM antibodies. Synovial fluid samples could be collected from 14 anti-Parvovirus B19 seropositive patients and were tested for the presence of viral DNA. None of the samples was found positive. The results of our serological study reinforce the hypothesis that Parvovirus B19 infection is associated with rheumatismal joint affections. However, the lack of detectable viral DNA in synovial fluid of the tested seropositive patients points to an indirect role of the virus in these joint disorders.  相似文献   

8.
The non-structural proteins (NS) of the parvovirus family are highly conserved multi-functional molecules that have been extensively characterized and shown to be integral to viral replication. Along with NTP-dependent helicase activity, these proteins carry within their sequences domains that allow them to bind DNA and act as nucleases in order to resolve the concatameric intermediates developed during viral replication. The parvovirus B19 NS1 protein contains sequence domains highly similar to those previously implicated in the above-described functions of NS proteins from adeno-associated virus (AAV), minute virus of mice (MVM) and other non-human parvoviruses. Previous studies have shown that transient transfection of B19 NS1 into human liver carcinoma (HepG2) cells initiates the intrinsic apoptotic cascade, ultimately resulting in cell death. In an effort to elucidate the mechanism of mammalian cell demise in the presence of B19 NS1, we undertook a mutagenesis analysis of the protein's endonuclease domain. Our studies have shown that, unlike wild-type NS1, which induces an accumulation of DNA damage, S phase arrest and apoptosis in HepG2 cells, disruptions in the metal coordination motif of the B19 NS1 protein reduce its ability to induce DNA damage and to trigger S phase arrest and subsequent apoptosis. These studies support our hypothesis that, in the absence of replicating B19 genomes, NS1-induced host cell DNA damage is responsible for apoptotic cell death observed in parvoviral infection of non-permissive mammalian cells.  相似文献   

9.
S Lou  Y Luo  F Cheng  Q Huang  W Shen  S Kleiboeker  JF Tisdale  Z Liu  J Qiu 《Journal of virology》2012,86(19):10748-10758
Human parvovirus B19 (B19V) infection is highly restricted to human erythroid progenitor cells, in which it induces a DNA damage response (DDR). The DDR signaling is mainly mediated by the ATR (ataxia telangiectasia-mutated and Rad3-related) pathway, which promotes replication of the viral genome; however, the exact mechanisms employed by B19V to take advantage of the DDR for virus replication remain unclear. In this study, we focused on the initiators of the DDR and the role of the DDR in cell cycle arrest during B19V infection. We examined the role of individual viral proteins, which were delivered by lentiviruses, in triggering a DDR in ex vivo-expanded primary human erythroid progenitor cells and the role of DNA replication of the B19V double-stranded DNA (dsDNA) genome in a human megakaryoblastoid cell line, UT7/Epo-S1 (S1). All the cells were cultured under hypoxic conditions. The results showed that none of the viral proteins induced phosphorylation of H2AX or replication protein A32 (RPA32), both hallmarks of a DDR. However, replication of the B19V dsDNA genome was capable of inducing the DDR. Moreover, the DDR per se did not arrest the cell cycle at the G(2)/M phase in cells with replicating B19V dsDNA genomes. Instead, the B19V nonstructural 1 (NS1) protein was the key factor in disrupting the cell cycle via a putative transactivation domain operating through a p53-independent pathway. Taken together, the results suggest that the replication of the B19V genome is largely responsible for triggering a DDR, which does not perturb cell cycle progression at G(2)/M significantly, during B19V infection.  相似文献   

10.
Parvovirus B19 (B19V) infects individuals worldwide and is associated with an ample range of pathologies and clinical manifestations. B19V is classified into three distinct genotypes, all identified in Brazil. Here, we report a complete sequence of a B19V genotype 1A that was obtained by high-throughput metagenomic sequencing. This genome provides information that will contribute to the studies on B19V epidemiology and evolution.  相似文献   

11.
12.
Human parvovirus B19 infection is associated with spontaneous abortion, hydrops foetalis, intrauterine foetal death, erythema infectiosum (5th disease), aplastic crisis and acute symmetric polyarthropathy. However, data concerning Nigerian patients with B19 infection have not been published yet. The purpose of this study was to establish the prevalence of B19 IgG and IgM antibodies, including correlates of infection, among pregnant women attending an antenatal clinic in Nigeria. Subsequent to clearance from an ethical committee, blood samples were collected between August-November 2008 from 273 pregnant women between the ages of 15-40 years who have given their informed consent and completed self-administered questionnaires. Recombinant IgG and IgM enzyme linked immunosorbent assay kits (Demeditec Diagnostics, Germany) were used for the assays. Out of the 273 participants, 111 (40.7%) had either IgG or IgM antibodies. Out of these, 75 (27.5%) had IgG antibodies whereas 36 (13.2%) had IgM antibodies, and those aged 36-40 years had the highest prevalence of IgG antibodies. Significant determinants of infection (p < 0.05) included the receipt of a blood transfusion, occupation and the presence of a large number of children in the household. Our findings have important implications for transfusion and foeto-maternal health policy in Nigeria. Routine screening for B19 IgM antibodies and accompanying clinical management of positive cases should be made mandatory for all Nigerian blood donors and women of childbearing age.  相似文献   

13.
Several EBV-transformed B cell lines (BCL) were obtained from two patients with chronic hepatitis C virus (HCV) infection that secreted IgG class antibodies to the HCV nonstructural Ag c100-3. Two cloned BCL, derived from the same parental line, generated stable cloned lines that secreted up to 20 mg/liter of specific IgG1(kappa). Supernatants from oligoclonal and cloned BCL were also analyzed by immunoblot and all strongly reacted with recombinant polypeptides derived from the putative NS4 region of HCV, c100-3 and 5-1-1 (a 42-amino acid fragment of c100-3), whereas no reaction with the viral nucleoprotein, the NS3 nonstructural protein or the superoxide dismutase moiety of the c100-3 fusion protein could be documented. The fine specificity of these antibodies was also evaluated using overlapping synthetic peptides (20-mers) covering the 5-1-1 sequence. All oligoclonal and clonal IgG displayed high affinity binding to peptides covering residues 120-137 of Chiron's c100-3 sequence at the aminoterminus of 5-1-1. In addition, a minimal B cell epitope, N-VLYREF-C, was defined by human oligoclonal and monoclonal antibodies corresponding to residues 132-137. Interestingly, predominant recognition of the N-terminus of 5-1-1 was also observed in more than 80% of sera from patients with HCV infection. In conclusion, we have successfully produced human B cell cloned lines that secrete abundant quantities of IgG1(kappa)-specific for a polypeptide encoded by the NS4 region of HCV. Such antibodies recognize an immunodominant epitope, relative to this region, located at the N-terminus of the 5-1-1 fragment.  相似文献   

14.
15.
Globally, hepatitis C Virus (HCV) infection is responsible for a large proportion of persons with liver disease, including cancer. The infection is highly prevalent in sub-Saharan Africa. West Africa was identified as a geographic origin of two HCV genotypes. However, little is known about the genetic composition of HCV populations in many countries of the region. Using conventional and next-generation sequencing (NGS), we identified and genetically characterized 65 HCV strains circulating among HCV-positive blood donors in Kumasi, Ghana. Phylogenetic analysis using consensus sequences derived from 3 genomic regions of the HCV genome, 5''-untranslated region, hypervariable region 1 (HVR1) and NS5B gene, consistently classified the HCV variants (n = 65) into genotypes 1 (HCV-1, 15%) and genotype 2 (HCV-2, 85%). The Ghanaian and West African HCV-2 NS5B sequences were found completely intermixed in the phylogenetic tree, indicating a substantial genetic heterogeneity of HCV-2 in Ghana. Analysis of HVR1 sequences from intra-host HCV variants obtained by NGS showed that three donors were infected with >1 HCV strain, including infections with 2 genotypes. Two other donors share an HCV strain, indicating HCV transmission between them. The HCV-2 strain sampled from one donor was replaced with another HCV-2 strain after only 2 months of observation, indicating rapid strain switching. Bayesian analysis estimated that the HCV-2 strains in Ghana were expanding since the 16th century. The blood donors in Kumasi, Ghana, are infected with a very heterogeneous HCV population of HCV-1 and HCV-2, with HCV-2 being prevalent. The detection of three cases of co- or super-infections and transmission linkage between 2 cases suggests frequent opportunities for HCV exposure among the blood donors and is consistent with the reported high HCV prevalence. The conditions for effective HCV-2 transmission existed for ~ 3–4 centuries, indicating a long epidemic history of HCV-2 in Ghana.  相似文献   

16.
The genotype of Hepatitis C Virus (HCV) strains is an important determinant of the severity and aggressiveness of liver infection as well as patient response to antiviral therapy. Fast and accurate determination of viral genotype could provide direction in the clinical management of patients with chronic HCV infections. Using publicly available HCV nucleotide sequences, we built a global Position Weight Matrix (PWM) for the HCV genome. Based on the PWM, a set of genotype specific nucleotide sequence "signatures" were selected from the 5' NCR, CORE, E1, and NS5B regions of the HCV genome. We evaluated the predictive power of these signatures for predicting the most common HCV genotypes and subtypes. We observed that nucleotide sequence signatures selected from NS5B and E1 regions generally demonstrated stronger discriminant power in differentiating major HCV genotypes and subtypes than that from 5' NCR and CORE regions. Two discriminant methods were used to build predictive models. Through 10 fold cross validation, over 99% prediction accuracy was achieved using both support vector machine (SVM) and random forest based classification methods in a dataset of 1134 sequences for NS5B and 947 sequences for E1. Prediction accuracy for each genotype is also reported.  相似文献   

17.

Background

Both HCV genotypes and viral loads are predictors of therapeutic outcomes among patients treated with α-interferon plus ribavirin; however, such correlation has only been studied for genotypes 1, 2, and 3 but not for genotype 6.

Methodology/Findings

299 voluntary blood donors were recruited who were HCV viremic. Their mean age was 31.8; the male/female ratio was 3.82 (225/59). The viral loads of HCV were measured using the COBAS AmpliPrep/COBAS TaqMan test (CAP/CTM) while HCV genotypes were determined by direct sequencing the partial NS5B region. HCV genotypes 1, 2, 3, and 6 were determined in 48.9%, 8.7%, 12.3%, and 30.1% of the donors, respectively, and the levels of mean viral loads in genotype 1 and 6 significantly higher than that of 2 and 3 (P<0.001). As a whole, the viral loads in male donors were higher than in female (P = 0.006). Moreover, the donors'' gender and HCV genotypes are independently correlated with the measured viral loads.

Conclusion

HCV genotype 1 and 6 had significantly higher viral loads than genotype 2 and 3.  相似文献   

18.
The nucleotide sequences of the putative envelope region (E1) and the junction between the E1 and envelope 2/nonstructural 1 (E2/NS1) region of the hepatitis C virus (HCV) genome are divergent among different genotypes. To characterize them, we introduced a set of nested primers that are conserved among four different genotypes (types I–IV) of HCV for polymerase chain reaction (PCR) amplification. The amplified products include the variable full-length E1 region, and the 5 end of the E2/NS1 region, the so-called hypervariable region-1 (HVR-1). Of 53 patients with histologically confirmed chronic liver disease and HCV viremia, type II virus was the most dominant strain as detected by the PCR genotyping method and the envelope region could be amplified in more than half of them irrespective of their genotypes. The specificity was confirmed by subsequent nucleotide sequence analysis. The positivity of envelope region PCR was not correlated with histologic diagnosis and hepatitis activities in these patients. Our results suggest that the nested primers can amplify the variable E1 and hypervariable 5 end of E2/NS1 of the HCV genome with moderate efficiency, and thus will be useful in future studies of HCV infections.  相似文献   

19.
An infectious parvovirus B19 (B19V) genotype 2 variant was identified as a high-titer contaminant in a human plasma donation. Genome analysis revealed a 138-bp insertion within the p6 promoter. The inserted sequence was represented by an additional 30 bp from the end of the inverted terminal repeat adjacent to a 108-bp element found also, in inverted orientation, at the extreme right end of the unique sequence of the genome. However, despite the profound variations in the promoter region, the pattern of gene expression and DNA replication did not differ between genotype 1 and genotype 2 in permissive erythroid KU812Ep6 cells. Capsid proteins of both genotypes differ in their amino acid sequences. However, equivalent kinetics of virus inactivation at 56 degrees C or pH 4 indicated a comparable physicochemical stability of virus capsids. Sera from six individuals infected by B19V genotype 1 were investigated on cross-neutralization of B19V genotype 2 in vitro. Similar neutralization of both B19V genotypes was observed in sera from three individuals, while the sera from three other individuals showed weaker cross-neutralization for genotype 2. In conclusion, the in vitro replication characteristics and physical stability of B19V capsids are very similar between human parvovirus B19 genotypes 1 and 2, and cross-neutralization indicates a close antigenic relation of genotypes 1 and 2.  相似文献   

20.
BackgroundCharacterising dengue virus (DENV) infection history at the point of care is challenging as it relies on intensive laboratory techniques. We investigated how combining different rapid diagnostic tests (RDTs) can be used to accurately determine the primary and post-primary DENV immune status of reporting patients during diagnosis.Methods and findingsSerum from cross-sectional surveys of acute suspected dengue patients in Indonesia (N:200) and Vietnam (N: 1,217) were assayed using dengue laboratory assays and RDTs. Using logistic regression modelling, we determined the probability of being DENV NS1, IgM and IgG RDT positive according to corresponding laboratory viremia, IgM and IgG ELISA metrics. Laboratory test thresholds for RDT positivity/negativity were calculated using Youden’s J index and were utilized to estimate the RDT outcomes in patients from the Philippines, where only data for viremia, IgM and IgG were available (N:28,326). Lastly, the probabilities of being primary or post-primary according to every outcome using all RDTs, by day of fever, were calculated. Combining NS1, IgM and IgG RDTs captured 94.6% (52/55) and 95.4% (104/109) of laboratory-confirmed primary and post-primary DENV cases, respectively, during the first 5 days of fever. Laboratory test predicted, and actual, RDT outcomes had high agreement (79.5% (159/200)). Among patients from the Philippines, different combinations of estimated RDT outcomes were indicative of post-primary and primary immune status. Overall, IgG RDT positive results were confirmatory of post-primary infections. In contrast, IgG RDT negative results were suggestive of both primary and post-primary infections on days 1–2 of fever, yet were confirmatory of primary infections on days 3–5 of fever.ConclusionWe demonstrate how the primary and post-primary DENV immune status of reporting patients can be estimated at the point of care by combining NS1, IgM and IgG RDTs and considering the days since symptoms onset. This framework has the potential to strengthen surveillance operations and dengue prognosis, particularly in low resource settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号