首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper catalyzed azide-alkyne cycloaddition (CuAAC) chemistry is reported for the construction of previously unknown 5-(1H-1,2,3-triazol-1-yl)-4,5'-bithiazoles from 2-bromo-1-(thiazol-5-yl)ethanones. These novel triazolobithiazoles are shown to have cystic fibrosis (CF) corrector activity and, compared to the benchmark bithiazole CF corrector corr-4a, improved logP values (4.5 vs 5.96).  相似文献   

2.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-dependent Cl(-) channel located in the plasma membrane, and its malfunction results in cystic fibrosis (CF), the most common lethal genetic disease in Caucasians. Most CF patients carry the deletion of Phe508 (ΔF508 mutation); this mutation prevents the delivery of the CFTR to its correct cellular location, the apical (lumen-facing) membrane of epithelial cells. Molecular chaperones play a central role in determining the fate of ΔF508-CFTR. In this report, we show that the Matrine, a quinolizidine alkaloid, downregulates the expression of the molecular chaperone HSC70 and increases the protein levels of ΔF508-CFTR in human alveolar basal epithelial cells (A549 cell line), stably transfected with a ΔF508-CFTR-expressing construct. Moreover, Matrine induced ΔF508-CFTR release from endoplasmic reticulum to cell cytosol and its localization on the cell membrane. Interestingly, downregulation of HSC70 resulted in increased levels of ΔF508-CFTR complexes with the co-chaperone BAG3 that in addition appeared to co-localize with the mutated protein on the cell surface. These results shed new light on ΔF508-CFTR interactions with proteins of the chaperones/co-chaperones system and could be useful in strategies for future medical treatments for CF.  相似文献   

3.
The most common mutation causing cystic fibrosis (CF) is deletion of phenylalanine residue 508 in the cystic fibrosis transmembrane regulator conductance (CFTR) protein. Small molecules that are able to correct the misfolding of defective ΔF508-CFTR have considerable promise for therapy. Reported here are the design, preparation, and evaluation of five more hydrophilic bisazole analogs of previously identified bithiazole CF corrector 1. Interestingly, bisazole ΔF508-CFTR corrector activity was not increased by incorporation of more H-bond acceptors (O or N), but correlated best with the overall bisazole molecular geometry. The structure activity data, together with molecular modeling, suggested that active bisazole correctors adopt a U-shaped conformation, and that corrector activity depends on the molecule’s ability to access this molecular geometry.  相似文献   

4.
Nucleotide-dependent gating of ΔF508-CFTR was evaluated in membrane patches excised from HEK 293 and mouse L-cells and compared to observations on wt-CFTR channels recorded in the same expression systems. ΔF508-CFTR exhibited PKA activated, ATP-dependent channel gating. When compared to wt-CFTR, the K m for ATP was increased by ninefold (260 μm vs. 28 μm) and maximal open probability (P o ) was reduced by 49% (0.21 ± 0.06 vs. 0.41 ± 0.02). Additionally, in the absence of PKA, ΔF508-CFTR inactivated over a 1 to 5 min period whereas wt-CFTR remained active. Time-dependent inactivation could be mimicked in wt-CFTR by the intermittent absence of ATP in the cytosolic solution. The effects of 3-isobutyl-1-methyl xanthine (IBMX), a compound reported to stimulate ΔF508-CFTR, were evaluated on wt- and ΔF508-CFTR channels. At concentrations up to 5 mm, IBMX caused a concentration dependent reduction in the observed single channel amplitude (i) of wt-CFTR (maximal observed reduction 35 ± 3%). However, IBMX failed to significantly alter total patch current because of a concomitant 30% increase in P o . The effects of IBMX on ΔF508-CFTR were similar to effects on wt-CFTR in that i was reduced and P o was increased by similar magnitudes. Additionally, ΔF508-CFTR channel inactivation was dramatically slowed by IBMX. These results suggest that IBMX interacts with the ATP-bound open state of CFTR to introduce a short-lived nonconducting state which prolongs burst duration and reduces apparent single channel amplitude. A secondary effect observed in ΔF508-CFTR, which may result from this interaction, is a prolongation of the activated state. In light of previously proposed linear kinetic models of CFTR gating, these results suggest that IBMX traps CFTR in an ATP-bound state which may preclude inactivation of ΔF508-CFTR. Received: 5 February 1999/Revised: 25 March 1999  相似文献   

5.
We recently discovered that hyaluronan was exported from fibroblasts by MRP5 and from epithelial cells by cystic fibrosis (CF) transmembrane conductance regulator (CFTR) that was known as a chloride channel. On this basis we developed membrane permeable analogs of hyaluronan disaccharide as new class of compounds to modify their efflux. We found substances that activated hyaluronan export from human breast cancer cells. The most active compound 2-(2-acetamido-3,5-dihydroxyphenoxy)-5-aminobenzoic acid (Hylout4) was tested for its influence on the activity of epithelial cells. It activated the ion efflux by normal and defective ΔF508-CFTR. It also enhanced the plasma membrane concentration of the ΔF508-CFTR protein and reduced the transepithelial resistance of epithelial cells. In human trials of healthy persons, it caused an opening of CFTR in the nasal epithelium. Thus compound Hylout4 is a corrector that recovered ΔF508-CFTR from intracellular degradation and activated its export function.  相似文献   

6.
CFTR is a cAMP-activated chloride channel responsible for agonist stimulated chloride and fluid transport across epithelial surfaces.1 Mutations in the CFTR gene lead to cystic fibrosis (CF) which affects the function of secretory organs like the intestine, the pancreas, the airways and the sweat glands. Most of the morbidity and mortality in CF has been linked to a decrease in airway function.2 The ΔF508 mutation is the most common CF-related mutation in the Caucasian population and represents 90% of CF alleles. Homozygote carriers of this mutation present with a severe CF phenotype.3 The ΔF508 mutation causes misfolding of the nascent CFTR polypeptide, which leads to inefficient export from the endoplasmic reticulum (ER) and rapid degradation by the proteasome.4  相似文献   

7.
Protein homeostasis (proteostasis) generates and maintains individual proteins in their folded and functional-competent states. The components of the cellular proteostasis machinery also dictate the functional lifetime of a protein by constantly regulating its conformation, concentration and subcellular location. The autosomal recessive disease cystic fibrosis (CF) is caused by a proteostasis-defect in CF transmembrane conductance regulator (CFTR). The most common CF mutation leading to this proteostasis-defect is the deletion of a phenylalanine residue at position 508 (ΔF508) of the CFTR protein. This ΔF508-CFTR protein is prone to aberrant folding, increased ER-associated degradation, atypical intracellular trafficking and reduced stability at the apical membrane. This ΔF508-CF proteostasis-defect leads to an obstructive lung disease characterized by impaired ion transport in airway epithelial cells, mucus buildup in air space and chronic airway inflammation. We assess here whether correcting the underlying defect in ΔF508-CFTR protein processing using therapeutic proteostasis regulators can treat chronic CF lung disease. As a proof of concept, recent studies support that the selective modulation of mutant-CFTR proteostasis may offer promising therapies to reverse chronic CF lung disease.  相似文献   

8.
Gee HY  Noh SH  Tang BL  Kim KH  Lee MG 《Cell》2011,146(5):746-760
The most prevalent disease-causing mutation of CFTR is the deletion of Phe508 (ΔF508), which leads to defects in conventional Golgi-mediated exocytosis and cell surface expression. We report that ΔF508-CFTR surface expression can be rescued in vitro and in vivo by directing it to an unconventional GRASP-dependent secretion pathway. An integrated molecular and physiological analysis indicates that mechanisms associated with ER stress induce cell surface trafficking of the ER core-glycosylated wild-type and ΔF508-CFTR via the GRASP-dependent pathway. Phosphorylation of a specific site of GRASP and the PDZ-based interaction between GRASP and CFTR are critical for this unconventional surface trafficking. Remarkably, transgenic expression of GRASP in ΔF508-CFTR mice restores CFTR function and rescues mouse survival without apparent toxicity. These findings provide insight into how unconventional protein secretion is activated, and offer a potential therapeutic strategy for the treatment of cystic fibrosis and perhaps diseases stemming from other misfolded proteins.  相似文献   

9.
Cystic Fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene encoding the Cystic fibrosis transmembrane conductance regulator (CFTR). ΔF508-CFTR, the most common disease-causing CF mutant, exhibits folding and trafficking defects and is retained in the endoplasmic reticulum, where it is targeted for proteasomal degradation. To identify signaling pathways involved in ΔF508-CFTR rescue, we screened a library of endoribonuclease-prepared short interfering RNAs (esiRNAs) that target ∼750 different kinases and associated signaling proteins. We identified 20 novel suppressors of ΔF508-CFTR maturation, including the FGFR1. These were subsequently validated by measuring channel activity by the YFP halide-sensitive assay following shRNA-mediated knockdown, immunoblotting for the mature (band C) ΔF508-CFTR and measuring the amount of surface ΔF508-CFTR by ELISA. The role of FGFR signaling on ΔF508-CFTR trafficking was further elucidated by knocking down FGFRs and their downstream signaling proteins: Erk1/2, Akt, PLCγ-1, and FRS2. Interestingly, inhibition of FGFR1 with SU5402 administered to intestinal organoids (mini-guts) generated from the ileum of ΔF508-CFTR homozygous mice resulted in a robust ΔF508-CFTR rescue. Moreover, combination of SU5402 and VX-809 treatments in cells led to an additive enhancement of ΔF508-CFTR rescue, suggesting these compounds operate by different mechanisms. Chaperone array analysis on human bronchial epithelial cells harvested from ΔF508/ΔF508-CFTR transplant patients treated with SU5402 identified altered expression of several chaperones, an effect validated by their overexpression or knockdown experiments. We propose that FGFR signaling regulates specific chaperones that control ΔF508-CFTR maturation, and suggest that FGFRs may serve as important targets for therapeutic intervention for the treatment of CF.Cystic fibrosis (CF)1 is a pleiotropic disease caused by an abnormal ion transport in the secretory epithelia lining the tubular organs of the body such as lungs, intestines, pancreas, liver, and male reproductive tract. In the airways of CF patients, reduced Cl and bicarbonate secretion caused by lack of functional Cystic fibrosis transmembrane conductance regulator (CFTR) on the apical surface, and hyper-absorption of Na+ because of elevated activity of ENaC (1), lead to a dehydration of the airway surface liquid (ASL). This reduces the viscosity of the mucus layer and the deposited layer of thickened mucus creates an environment that promotes bacterial colonization, which eventually leads to chronic infection of the lungs and death (2, 3).CFTR is a transmembrane protein that functions as a cAMP-regulated, ATP-dependent Cl channel that also allows passage of bicarbonate through its pore (4, 5). It also possesses ATPase activity important for Cl conductance (6, 7). The CFTR structure is predicted to consist of five domains: two membrane spanning domains (MSD1, MSD2), each composed of six putative transmembrane helices, two nucleotide binding domains (NBD1, NBD2), and a unique regulatory (R) region (8).More than 1900 CFTR mutations have been identified to date (www.genet.sickkids.on.ca/cftr). The most common mutation is a deletion of phenylalanine at position 508 (ΔF508 or ΔF508-CFTR) in NBD1 (9). The ΔF508 mutation causes severe defects in the processing and function of CFTR. The protein exhibits impaired trafficking from the endoplasmic reticulum (ER) to the plasma membrane (PM), impaired intramolecular interactions between NBD1 and the transmembrane domain, and cell surface instability (1015). Nevertheless, the ΔF508 defect can be corrected, because treating cells expressing ΔF508-CFTR with low temperature or chemical chaperones (e.g. glycerol) can restore some surface expression of the mutant (11, 16).Numerous small molecules that can at least partially correct (or potentiate) the ΔF508-CFTR defect have been identified to date (1727), and some were already tested in clinical trials (e.g. sildenafil, VX-809/Lumacaftor), or have made it to the clinic (VX-770/Kalydeco/Ivacaftor) (http://www.cff.org/research/DrugDevelopmentPipeline/). However, the need to identify new ΔF508-CFTR correctors remains immense as the most promising corrector, VX-809, has proven ineffective in alleviating lung disease of CF patients when administered alone (27). Thus, our group developed a high-content technology aimed at identifying proteins and small molecules that correct the trafficking and functional defects of ΔF508-CFTR (28). We successfully used this approach to carry out three separate high-content screens: a protein overexpression screen (28), a small-molecule kinase inhibitor screen (29) and a kinome RNA interference (RNAi) screen, described here.  相似文献   

10.
The functional expression of the epithelial sodium channel (ENaC) appears elevated in cystic fibrosis (CF) airway epithelia, but the mechanism by which this occurs is not clear. We tested the hypothesis that the cystic fibrosis transmembrane conductance regulator (CFTR) alters the trafficking of endogenously expressed human ENaC in the CFBE41o? model of CF bronchial epithelia. Functional expression of ENaC, as defined by amiloride-inhibited short-circuit current (I(sc)) in Ussing chambers, was absent under control conditions but present in CFBE41o? parental and ΔF508-CFTR-overexpressing cells after treatment with 1 μM dexamethasone (Dex) for 24 h. The effect of Dex was mimicked by incubation with the glucocorticoid hydrocortisone but not with the mineralocorticoid aldosterone. Application of trypsin to the apical surface to activate uncleaved, "near-silent" ENaC caused an additional increase in amiloride-sensitive I(sc) in the Dex-treated cells and was without effect in the control cells, suggesting that Dex increased ENaC cell surface expression. In contrast, Dex treatment did not stimulate amiloride-sensitive I(sc) in CFBE41o? cells that stably express wild-type (wt) CFTR. CFBE41o? wt cells also had reduced expression of α- and γ-ENaC compared with parental and ΔF508-CFTR-overexpressing cells. Furthermore, application of trypsin to the apical surface of Dex-treated CFBE41o? wt cells did not stimulate amiloride-sensitive I(sc), suggesting that ENaC remained absent from the surface of these cells even after Dex treatment. We also tested the effect of trafficking-corrected ΔF508-CFTR on ENaC functional expression. Incubation with 1 mM 4-phenylbutyrate synergistically increased Dex-induced ENaC functional expression in ΔF508-CFTR-overexpressing cells. These data support the hypothesis that wt CFTR can regulate the whole cell, functional, and surface expression of endogenous ENaC in airway epithelial cells and that absence of this regulation may foster ENaC hyperactivity in CF airway epithelia.  相似文献   

11.
Correcting the processing of ΔF508-CFTR, the most common mutation in cystic fibrosis, is the major goal in the development of new therapies for this disease. Here, we determined whether ΔF508 could be rescued by a combination of small-molecule correctors, and identified the mechanism by which correctors rescue the trafficking mutant of cystic fibrosis transmembrane conductance regulator (CFTR). We transfected COS-7 cells with ΔF508, created HEK-293 stably expressing ΔF508, and utilized CFBE41o cell lines stably transduced with ΔF508. As shown previously, ΔF508 expressed less protein, was unstable at physiological temperature, and rapidly degraded. When the cells were treated with the combination C18 + C4 the mature C-band was expressed at the cell surface. After treatment with C18 + C4, we saw a lower rate of protein disappearance after translation was stopped with cycloheximide. To understand how this rescue occurs, we evaluated the change in the binding of proteins involved in endoplasmic reticulum-associated degradation, such as Hsp27 (HspB1) and Hsp40 (DnaJ). We saw a dramatic reduction in binding to heat shock proteins 27 and 40 following combined corrector therapy. siRNA experiments confirmed that a reduction in Hsp27 or Hsp40 rescued CFTR in the ΔF508 mutant, but the rescue was not additive or synergistic with C4 + 18 treatment, indicating these correctors shared a common pathway for rescue involving a network of endoplasmic reticulum-associated degradation proteins.  相似文献   

12.
CFTR is a chloride channel that is required for fluid secretion and salt absorption in many exocrine epithelia. Mutations in CFTR cause cystic fibrosis. CFTR expression influences some ion channels, but the range of channels influenced, the mechanism of the interaction and the significance for cystic fibrosis are not known. Possible interactions between CFTR and other ion channels were studied in C127 mouse mammary epithelial cell lines stably transfected with CFTR, ΔF508-CFTR, or vector. Cell lines were compared quantitatively using an 125I efflux assay and qualitatively using whole-cell patch-clamp recording. As expected, 125I efflux was significantly increased by forskolin only in the CFTR line, and forskolin-stimulated whole-cell currents were time- and voltage independent. All three lines responded to hypotonic challenge with large 125I efflux responses of equivalent magnitude, and whole-cell currents were outwardly rectified and inactivated at positive voltages. Unexpectedly, basal 125I efflux was significantly smaller in the ΔF508-CFTR cell line than in either the CFTR or control cell lines (P < 0.0001), and the magnitude of the efflux response to ionomycin was largest in the vector cell line and smallest in the cell line expressing ΔF508-CFTR (P < 0.01). Whole-cell responses to ionomycin had a linear instantaneous I-V relation and activated at depolarizing voltages. Forskolin responses showed simple summation with responses to ionomycin or hypotonic challenge. Thus, we found no evidence for interactions between CFTR and the channels responsible for swelling-mediated responses. Differences were found in basal and ionomycin-stimulated efflux, but these may arise from variations in the clonally selected cell lines that are unrelated to CFTR expression. Received: 15 November 1995/Revised: 16 February 1996  相似文献   

13.
14.
We previously reported the identification and structure-activity analysis of bithiazole-based correctors of defective cellular processing of the cystic fibrosis-causing CFTR mutant, ΔF508-CFTR. Here, we report the synthesis and uptake of a functional, fluorescently labeled bithiazole corrector. Following synthesis and functional analysis of four bithiazole-fluorophore conjugates, we found that 5, a bithazole-based BODIPY conjugate, had low micromolar potency for correction of defective ΔF508-CFTR cellular misprocessing, with comparable efficacy to benchmark corrector corr-4a. Intravenous administration of 5 to mice established its stability in extrahepatic tissues for tens of minutes. By fluorescence imaging of whole-body frozen slices, fluorescent corrector 5 was visualized strongly in gastrointestinal organs, with less in lung and liver. Our results provide proof-of-concept for mapping the biodistribution of a ΔF508-CFTR corrector by fluorophore labeling and fluorescence imaging of whole-body slices.  相似文献   

15.
A developing therapy of cystic fibrosis caused by the ΔF508 mutation in CFTR employs correction of defective CFTR chloride channel gating by a ‘potentiator’ and of defective CFTR protein folding by a ‘corrector’. Based on SAR data for phenylglycine-type potentiators and bithiazole correctors, we designed a hybrid molecule incorporating an enzymatic hydrolysable linker to deliver the potentiator (PG01) fragment 2 and the corrector (Corr-4a) fragment 13. The hybrid molecule 14 contained PG01-OH and Corr-4a–linker–CO2H moieties, linked with an ethylene glycol spacer through an ester bond. The potentiator 2 and corrector 13 fragments (after cleavage) had low micromolar potency for restoration of ΔF508-CFTR channel gating and cellular processing, respectively. Cleavage of hybrid molecule 14 by intestinal enzymes under physiological conditions produced the active potentiator 2 and corrector fragments 13, providing proof-of-concept for small-molecule potentiator–corrector hybrids as a single drug therapy for CF caused by the ΔF508 mutation.  相似文献   

16.
Channel activators (potentiators) of cystic fibrosis (CF) transmembrane conductance regulator (CFTR), can be used for the treatment of the small subset of CF patients that carry plasma membrane-resident CFTR mutants. However, approximately 90% of CF patients carry the misfolded ΔF508-CFTR and are poorly responsive to potentiators, because ΔF508-CFTR is intrinsically unstable at the plasma membrane (PM) even if rescued by pharmacological correctors. We have demonstrated that human and mouse CF airways are autophagy deficient due to functional sequestration of BECN1 and that the tissue transglutaminase-2 inhibitor, cystamine, or antioxidants restore BECN1-dependent autophagy and reduce SQSTM1/p62 levels, thus favoring ΔF508-CFTR trafficking to the epithelial surface. Here, we investigated whether these treatments could facilitate the beneficial action of potentiators on ΔF508-CFTR homozygous airways. Cystamine or the superoxide dismutase (SOD)/catalase-mimetic EUK-134 stabilized ΔF508-CFTR at the plasma membrane of airway epithelial cells and sustained the expression of CFTR at the epithelial surface well beyond drug withdrawal, overexpressing BECN1 and depleting SQSTM1. This facilitates the beneficial action of potentiators in controlling inflammation in ex vivo ΔF508-CFTR homozygous human nasal biopsies and in vivo in mouse ΔF508-CFTR lungs. Direct depletion of Sqstm1 by shRNAs in vivo in ΔF508-CFTR mice synergized with potentiators in sustaining surface CFTR expression and suppressing inflammation. Cystamine pre-treatment restored ΔF508-CFTR response to the CFTR potentiators genistein, Vrx-532 or Vrx-770 in freshly isolated brushed nasal epithelial cells from ΔF508-CFTR homozygous patients. These findings delineate a novel therapeutic strategy for the treatment of CF patients with the ΔF508-CFTR mutation in which patients are first treated with cystamine and subsequently pulsed with CFTR potentiators.  相似文献   

17.
《Autophagy》2013,9(11):1657-1672
Channel activators (potentiators) of cystic fibrosis (CF) transmembrane conductance regulator (CFTR), can be used for the treatment of the small subset of CF patients that carry plasma membrane-resident CFTR mutants. However, approximately 90% of CF patients carry the misfolded ΔF508-CFTR and are poorly responsive to potentiators, because ΔF508-CFTR is intrinsically unstable at the plasma membrane (PM) even if rescued by pharmacological correctors. We have demonstrated that human and mouse CF airways are autophagy deficient due to functional sequestration of BECN1 and that the tissue transglutaminase-2 inhibitor, cystamine, or antioxidants restore BECN1-dependent autophagy and reduce SQSTM1/p62 levels, thus favoring ΔF508-CFTR trafficking to the epithelial surface. Here, we investigated whether these treatments could facilitate the beneficial action of potentiators on ΔF508-CFTR homozygous airways. Cystamine or the superoxide dismutase (SOD)/catalase-mimetic EUK-134 stabilized ΔF508-CFTR at the plasma membrane of airway epithelial cells and sustained the expression of CFTR at the epithelial surface well beyond drug withdrawal, overexpressing BECN1 and depleting SQSTM1. This facilitates the beneficial action of potentiators in controlling inflammation in ex vivo ΔF508-CFTR homozygous human nasal biopsies and in vivo in mouse ΔF508-CFTR lungs. Direct depletion of Sqstm1 by shRNAs in vivo in ΔF508-CFTR mice synergized with potentiators in sustaining surface CFTR expression and suppressing inflammation. Cystamine pre-treatment restored ΔF508-CFTR response to the CFTR potentiators genistein, Vrx-532 or Vrx-770 in freshly isolated brushed nasal epithelial cells from ΔF508-CFTR homozygous patients. These findings delineate a novel therapeutic strategy for the treatment of CF patients with the ΔF508-CFTR mutation in which patients are first treated with cystamine and subsequently pulsed with CFTR potentiators.  相似文献   

18.

Background

Rescue or correction of CFTR function in native epithelia is the ultimate goal of CF therapeutics development. Wild-type (WT) CFTR introduction and replacement is also of particular interest. Such therapies may be complicated by possible CFTR self-assembly into an oligomer or multimer.

Results

Surprisingly, functional CFTR assays in native airway epithelia showed that the most common CFTR mutant, ??F508-CFTR (??F-CFTR), inhibits WT-CFTR when both forms are co-expressed. To examine more mechanistically, both forms of CFTR were transfected transiently in varying amounts into IB3-1 CF human airway epithelial cells and HEK-293 human embryonic kidney cells null for endogenous CFTR protein expression. Increasing amounts of ??F-CFTR inhibited WT-CFTR protein processing and function in CF human airway epithelial cells but not in heterologous HEK-293 cells. Stably expressed ??F-CFTR in clones of the non-CF human airway epithelial cell line, CALU-3, also showed reduction in cAMP-stimulated anion secretion and in WT-CFTR processing. An ultimate test of this dominant negative-like effect of ??F-CFTR on WT-CFTR was the parallel study of two different CF mouse models: the ??F-CFTR mouse and the bitransgenic CFTR mouse corrected in the gut but null in the lung and airways. WT/??F heterozygotes had an intermediate phenotype with regard to CFTR agonist responses in in vivo nasal potential difference (NPD) recordings and in Ussing chamber recordings of short-circuit current (ISC) in vitro on primary tracheal epithelial cells isolated from the same mice. In contrast, CFTR bitransgenic +/? heterozygotes had no difference in their responses versus +/+ wild-type mice.

Conclusions

Taken altogether, these data suggest that ??F-CFTR and WT-CFTR co-assemble into an oligomeric macromolecular complex in native epithelia and share protein processing machinery and regulation at the level of the endoplasmic reticulum (ER). As a consequence, ??F-CFTR slows WT-CFTR protein processing and limits its expression and function in the apical membrane of native airway epithelia. Implications of these data for the relative health of CF heterozygous carriers, for CFTR protein processing in native airway epithelia, and for the relative efficacy of different CF therapeutic approaches is significant and is discussed.  相似文献   

19.
Objectives: To provide a simple method to make a stable ΔF508-CFTR-expressing T84 cell line that can be used as an efficient screening model system for ΔF508-CFTR rescue. Results: CFTR knockout cell lines were generated by Cas9 with a single-guide RNA (sgRNA) targeting exon 1 of the CFTR genome, which produced indels that abolished CFTR protein expressions. Next, stable ΔF508-CFTR expression was achieved by genome integration of ΔF508-CFTR via the lentivirus infection system. Finally, we showed functional rescue of ΔF508-CFTR not only by growing the cells at a low temperature, but also incubating with VX-809, a ΔF508-CFTR corrector, in the established T84 cells expressing ΔF508-CFTR. Conclusions: This cell system provides an appropriate screening platform for rescue of ΔF508-CFTR, especially related to protein folding, escaped from endoplasmic-reticulum-associated protein degradation, and membrane transport.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号