首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The impact of physical activity on carcinogenesis has been demonstrated in many studies. Taking into account the discrepant results of physical exercise on the cell proliferation and apoptosis of breast cancer, we aimed to examine the impact of physical training on N-methyl-N-nitrosourea-(MNU)-induced mammary carcinogenesis. Fifty female rats were divided into four groups according to the intensity of physical activity they undertook. The number of developed tumors, tumor volume, and histopathological diagnoses were noted. Apoptosis and cell proliferation were studied by the number of TUNEL-positive and Ki-67-expressing cells. We demonstrated a statistically significant decrease in the tumor number between all trained groups and the control group. The results were most pronounced in the group with a moderate intensity of training. Moreover, we showed a decrease in tumor volume as training intensity increased, though the differences were not statistically significant. The mean number of TUNEL-positive cancer cells was significantly higher in the training groups than in the control group. These data suggest that physical training, especially of moderate intensity, may alleviate MNU-induced mammary carcinogenesis. The results could suggest that physical exercise-induced apoptosis may be a protective mechanism.  相似文献   

2.
Cadmium (Cd) is widely distributed in the environment and easy adsorbed by living organisms with adverse effects. Exposure to Cd-contaminated food may disrupt lipid metabolism and increase human health risk. To study the perturbation effect of Cd on lipid metabolism in vivo, 24 male Sprague–Dawley (SD) rats were randomly assigned four groups and treated by Cd chloride solution (0, 1.375 mg/kg, 5.5 mg/kg, 22 mg/kg) for 14 days. The characteristic indexes of serum lipid metabolism were analyzed. Afterwards, untargeted metabolomics analysis was applied to explore the adverse effects of Cd on rats by liquid chromatography coupled with mass spectrometry (LC-MS). The results revealed that Cd exposure obviously decreased the average serum of triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) and caused an imbalance of endogenous compounds in the 22 mg/kg Cd-exposed group. Compared with the control group, 30 metabolites with significant differences were identified in the serum. Our results indicated that Cd caused lipid metabolic disorders in rats by disrupting linoleic acid and glycerophospholipid metabolism pathways. Furthermore, there were three kinds of remarkable differential metabolites—9Z,12Z-octadecadienoic acid, PC(20:4(8Z,11Z,14Z,17Z)/0:0), and PC(15:0/18:2(9Z,12Z)), which enriched the two significant metabolism pathways and could be the potential biomarkers.  相似文献   

3.
Genome-wide miRNA expression profile has identified microRNA (miR)-96 as one of upregulated miRNAs in clinical bladder cancer (BC) tissues compared to normal bladder tissues. The aim of this study was to confirm the expression pattern of miR-96 in BC tissues and to investigate its involvement in carcinogenesis. Quantitative real-time PCR was performed to detect the expression levels of miR-96 in 60 BC and 40 normal control tissues. Bioinformatics prediction combined with luciferase reporter assay were used to verify whether the cyclin-dependent kinase inhibitor CDKN1A was a potential target gene of miR-96. Cell counting kit-8 and apoptosis assays were further performed to evaluate the effects of miR-96-CDKN1A axis on cell proliferation and apoptosis of BC cell lines. We validated that miR-96 was significantly increased in both human BC tissues and cell lines. According to the data of miRTarBase, CDKN1A might be a candidate target gene of miR-96. In addition, luciferase reporter and Western blot assays respectively demonstrated that miR-96 could bind to the putative seed region in CDKN1A mRNA 3′UTR, and significantly reduce the expression level of CDKN1A protein. Moreover, we found that the inhibition of miR-96 expression remarkably decreased cell proliferation and promoted cell apoptosis of BC cell lines, which was consistent with the findings observed following the introduction of CDKN1A cDNA without 3′UTR restored miR-96. Our data reveal that miR-96 may function as an onco-miRNA in BC. Upregulation of miR-96 may contribute to aggressive malignancy partly through suppressing CDKN1A protein expression in BC cells.  相似文献   

4.
The influence of citalopram on regional 5-hydroxytryptamine (serotonin, 5-HT) synthesis, one of the most important presynaptic parameters of serotonergic neurotransmission, was studied. Sprague–Dawley (SPD) rats were used as the controls, and Flinders Resistant Line (FRL) rats were used as auxiliary controls, to hopefully obtain a better understanding of the effects of citalopram on Flinders Sensitive Line (FSL; “depressed”) rats. Regional 5-HT synthesis was evaluated using a radiographic method with a labelled tryptophan analog tracer. In each strain of rats, the animals were treated with citalopram (10 mg/(kg day)) or saline for 14 days. The groups consisted of between fourteen and twenty rats. There were six groups of rats with citalopram (CIT) and saline (SAL) groups in each of the strains (SPD–SAL, SPD–CIT, FRL–SAL, FRL–CIT, FSL–SAL and FSL–CIT). A two-factor analysis of variance was used to evaluate the effect of the treatment c., SPD-SAL relative to SPD-CIT) followed by planned comparisons to evaluate the effect in each brain region. In addition, the planned comparison with appropriate contrast was used to evaluate a relative effects in SPD relative to FSL and FRL, and FSL relative to FRL groups. A statistical analysis was first performed in the a priori selected regions, because we had learned, from previous work, that it was possible to select the brain regions in which neurochemical variables had been altered by the disorder and subsequent antidepressant treatments. The results clearly show that citalopram treatment does not have an overall effect on synthesis in the control SPD rats; there was no significant (p > 0.05) difference between the SPD–SAL and SPD–CIT rats. In “depressed” FSL rats, citalopram produced a significant (p < 0.05) elevation of synthesis in seventeen out of thirty-four regions, with a significant (p < 0.05) reduction in the dorsal and median raphe. In the FRL rats, there was a significant (p < 0.05) elevation in the synthesis in twenty-two out of thirty-four brain regions, with a reduction in the dorsal raphe. In addition to these regions magnus raphe was different in the SPD and FSL groups, but it was on the statistical grounds identified as an outlier. There were significant changes produced in the FSL and FRL rats in thirteen out of seventeen a priori selected brain regions, while in the SPD rats, citalopram produced significant changes in only four out of seventeen a priori selected regions. The statistical evaluation also revealed that changes produced by citalopram in the FSL and FRL rats were significantly greater than those in the SPD rats and that there was no significant difference between the effect produced in the FSL and FRL rats. The presented results suggest that in “depressed” FSL rats, the antidepressant citalopram elevates 5-HT synthesis, which probably in part relates to the reported improved in behaviour with citalopram.  相似文献   

5.
Ma  Yun  Maruta  Hitomi  Sun  Baojun  Wang  Chengduo  Isono  Chiaki  Yamashita  Hiromi 《Amino acids》2021,53(2):159-170

Taurine (2-aminoethanesulfonic acid) is a free amino acid found abundantly in mammalian tissues. Increasing evidence suggests that taurine plays a role in the maintenance of skeletal muscle function and increase of exercise capacity. Most energy drinks contain this amino acid; however, there is insufficient research on the effects of long-term, low-dose supplementation of taurine. In this study, we investigated the effects of long-term administration of taurine at low doses on aging in rodents. In Experiment 1, we examined age-related changes in aging Sprague–Dawley (SD) rats (32–92 weeks old) that O2 consumption and spontaneous activity decreased significantly with aging. In Experiment 2, we examined the effects of long-term (21-week) administration of taurine on healthy aging SD rats. SD rats were stabilized for 32–34 weeks and divided into three groups, administrated water (control), 0.5% taurine (25 mg/kg  body weight (BW)/day), or 1% taurine (50 mg/kg  BW/day) from age 34 to 56 weeks (5 days/week, 5 mL/kg BW). Our findings suggest that long-term administration of taurine at relatively low dose could attenuate the age-related decline in O2 consumption and spontaneous locomotor activity. Upon intestinal absorption, taurine might modulate age-related changes in respiratory metabolism and skeletal muscle function via peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), succinate dehydrogenase (SDH), cytochrome c (Cycs), myocyte enhancer factor 2A (MEF2A), glucose transporter 4 (GLUT4), and myoglobin, which are regulated by the activation of AMP-activated protein kinase (AMPK). This article examines the mechanism underlying the effects of taurine on age-related changes, which may have potential clinical implications.

  相似文献   

6.
7.
In this study, we present an integrated strategy to deconvolute the metabolic signatures associated with the cholesterol lowering effect of berberine in the livers of Sprague?CDawley rats. The rats were dosed with berberine at 50?mg/kg. Urine samples and liver tissues were collected for the analysis of metabolite contents, while livers and kidneys were collected for histopathology. Metabolites such as fatty acids, cholesterol, glucose and others in liver were analyzed by gas chromatography/mass spectrometry. The urinary metabolites were analyzed using targeted profiling with liquid chromatography/tandem mass spectrometry and non-targeted profiling with proton nuclear magnetic resonance (1H NMR). Our results demonstrated that analysis of metabolites in rat urine samples using liquid chromatography/mass spectrometry (LC/MS) and 1H NMR produced complementary, consistent and reliable results. The administration of berberine resulted in a reduction of glucose, maltose, fatty acids (saturated and unsaturated) and cholesterol in the rat liver samples. The analysis of urinary metabolic profiles on different days showed that before the cholesterol reduction in the rat livers, a high rate of carbohydrate usage was found to be an early event (day 2). The results suggested that the animals utilized alternative energy sources by altering the synthesis and consumption of amino acids and fatty acids. In addition, changes in the level of glutamine for the treated animals on day 2 suggested that glutamine and glutamate metabolism could be affected. Since glutamine is a precursor for nucleotides synthesis and nucleotides are required for cell growth and replication, the results are consistent with the observed cholesterol lowering effect and weight reduction. Finally, our results demonstrated that the combination of LC/MS and 1H NMR provided a unique metabolic profile associated with the cholesterol lowering effect of berberine in rat livers.  相似文献   

8.
Although leptin has been shown to increase blood pressure (BP), it is however unclear if this increase can be prevented by exercise. This study therefore investigated the effect of leptin treatment with concurrent exercise on blood pressure (BP), sodium output, and endothelin-1 (ET-1) levels in normotensive rats. Male Sprague–Dawley rats weighing 250–270 g were divided into four groups consisting of a control group (n?=?6), leptin-treated (n?=?8), non-leptin-treated exercise group (n?=?8), and a leptin-treated exercise group (n?=?8). Leptin was given subcutaneously daily for 14 days (60 μg/kg/day). Animals were exercised on a treadmill for 30 min at a speed of 0.5 m/s and at 5° incline four times per week. Measurement of systolic blood pressure (SBP) and collection of urine samples for estimation of sodium and creatinine was done once a week. Serum samples were collected at the end of the experiment for determination of sodium, creatinine and ET-1. At day 14, mean SBP and serum ET-1 level in the leptin-treated group was significantly higher than that in the control group whereas mean SBP and serum ET-1 level was significantly lower in the leptin-treated exercise group than those in leptin-treated and control groups. Creatinine clearance, urinary sodium excretion, and urine output were not different between the four groups. Regular treadmill exercise prevents leptin-induced increases in SBP in rats, which might in part result from increased urinary sodium excretion and preventing the leptin-induced increases in serum ET-1 concentration.  相似文献   

9.
The liver has powerful capability to proliferate in response to various injuries, but little is known as to liver proliferation after irradiation (IR) injury. This study investigated whether liver proliferation could be stimulated in low-dose irradiated liver by partial liver IR injury with high dose radiation. Sprague–Dawley rats were irradiated by 6-MV X-ray with single dose of 25 Gy to the right-half liver, while the left-half liver was shielded (0.7 Gy) or irradiated with single doses of 3.2, 5.6, and 8.0 Gy, respectively. Hepatic proliferation in the shielded and low-dose irradiated left-half liver was evaluated by serum hepatic growth factor (HGF), proliferating cell nuclei antigen (PCNA), liver proliferation index (PI), hepatocyte mitosis index (MI). The observation time was 0 day (before IR), 30, 60, 90, and 120 days after IR. Our results showed that serum HGF and hepatocyte HGF mRNA increased after IR with HGF mRNA peak on day 30 in the shielded and low-dose irradiated left-half livers, and their values increased as the dose increased to the left-half liver. Liver PI and PCNA mRNA peaked on day 60 with stronger expressions in higher doses-irradiated livers. MI increased after IR, with the peak noted on day 60 in the shielded and on day 90 in the low-dose irradiated left-half livers. There was a 30 day delay between MI peaks in the shielded and low-dose irradiated livers. In conclusion, 25 Gy partial liver IR injury could stimulate the shielded liver and low-dose irradiated liver to proliferate. In the livers receiving a dose range of 3.2–8.0 Gy, the proliferation was stronger in higher doses-irradiated liver than the low-dose irradiated. However, IR delayed hepatocyte mitosis.  相似文献   

10.
ABSTRACT

Benign prostatic hyperplasia (BPH) is commonly observed in men > 50 years worldwide. Phytotherapy is one of the many treatment options. Sorghum (Sorghum bicolor L.) contains various health-improving phytochemicals with antioxidant and inhibitory activities on cell proliferation, both in vitro and in vivo. To confirm the effects of Donganme sorghum ethyl-acetate extract (DSEE) on BPH, we induced BPH in Spragye–Dawley rats using exogenous testosterone. We measured prostate weight, examined prostrates histopathologically, and analyzed mRNAs associated with male hormones and proteins associated with cell proliferation in the prostate. DSEE inhibited weight gain of the prostate; decreased mRNA expressions of androgen receptor and 5α-reductase II; and improved histopathological symptoms, the protein-expressed ratio of Bax/Bcl-2, and the oxidative status of BPH induced by testosterone in SD rats. Therefore, DSEE may have potential as a preventive or therapeutic agent against BPH.  相似文献   

11.
1. Intraperitoneal injection of beta-sitosterol (5mg./rat/day for 25 days) into 1-year-old male Wistar rats fed on a low-fat diet supplemented with 10% of coconut oil resulted in a lowering of cholesterol and lipid concentrations in the tissues. 2. beta-Sitosterol increased the rate of biosynthesis of cholesterol and lipids in the tissues, but to an even greater extent enhanced their oxidative degradation. 3. The present results are similar to those previously obtained on a low-fat diet, indicating that the presence of fat had no marked effect on the action of beta-sitosterol.  相似文献   

12.
Green tea polyphenols (GTPs) were found to boost mammal energy conversion by modulating gut-microbial community structure, gene orthologs and metabolic pathways. Here we examined the metabolites present in the gut-microbiota-dependent mitochondrial tricarboxylic acid (TCA) cycle and urea cycle using hydrophilic interaction liquid chromatography (HILIC)-heated electrospray ionization (HESI)-tandem liquid chromatogram mass spectrometry (LC–MS). Six groups (n=12) of Sprague–Dawley rats (6-mo, ~250 g) were administered with water containing 0%, 0.5%, and 1.5% GTPs (wt/vol or g/dL). Gut-content samples were collected at 3- and 6-mo. Untargeted metabolomics detected 2177 features, with 91 features demonstrating significant dose- and time-dependencies on the GTPs treatment. Targeted metabolomics analysis revealed remarkable changes of 39 metabolites in the mitochondrial TCA cycle and urea cycle, including argininosuccunic acid (0.9-fold vs control), dihydrouracil (1.14-fold vs control), fumaric acid (1.19-fold vs control), malic acid (2.17-fold vs control), citrulline (1.86-fold vs control), and succinic acid (0.4-fold vs control). The untargeted metabolomics data were mined using bioinformatics approaches, such as analysis of variance-simultaneous component analysis (ASCA), enrichment pathway analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway mapping analysis. The results of 16S rRNA survey, metagenomics analysis, and metabolomics analysis were extrapolated and integrated using databases of Integrated Microbial Genomes and Microbiomes (IMG/M) and KEGG. Our analysis demonstrates that GTPs enhance energy conversion by boosting mitochondrial TCA cycle and urea cycle of gut-microbiota in rats. This metabolic modulation is achieved by enriching many gene orthologs, following the increase of beneficial microbials in families C. Ruminococcaceae, C. Lachnospiraceae and B. Bacteroidaceae.  相似文献   

13.
To investigate the possible mechanisms for biological effects of 1,800 MHz mobile radiofrequency radiation (RFR), the radiation-specific absorption rate was applied at 2 and 4 W/kg, and the exposure mode was 5 min on and 10 min off (conversation mode). Exposure time was 24 h short-term exposure. Following exposure, to detect cell DNA damage, cell apoptosis, and reactive oxygen species (ROS) generation, the Comet assay test, flow cytometry, DAPI (4′,6-diamidino-2-phenylindole dihydrochloride) staining, and a fluorescent probe were used, respectively. Our experiments revealed that mobile phone RFR did not cause DNA damage in marginal cells, and the rate of cell apoptosis did not increase (P > 0.05). However, the production of ROS in the 4 W/kg exposure group was greater than that in the control group (P < 0.05). In conclusion, these results suggest that mobile phone energy was insufficient to cause cell DNA damage and cell apoptosis following short-term exposure, but the cumulative effect of mobile phone radiation still requires further confirmation. Activation of the ROS system plays a significant role in the biological effects of RFR. Bioelectromagnetics. © 2020 The Authors. Bioelectromagnetics published by Wiley Periodicals, Inc.  相似文献   

14.
15.
Two hundred twenty-two nanometres ultraviolet (UV) light produced by a krypton–chlorine excimer lamp is harmful to bacterial cells but not skin. However, the effects of 222-nm UV light exposure to the eye are not fully known. We evaluated acute corneal damage induced by 222- and 254-nm UV light in albino rats. Under deep anaesthesia, 6-week-old Sprague–Dawley albino rats were exposed to UV light. The exposure levels of corneal radiation were 30, 150, and 600?mJ/cm2. Epithelial defects were detected by staining with fluorescein. Superficial punctate keratitis developed in corneas exposed to more than 150?mJ/cm2 of UV light, and erosion was observed in corneas exposed to 600?mJ/cm2 of UV light. Haematoxylin and eosin staining also showed corneal epithelial defects in eyes exposed to 254-nm UV light. However, no damage developed in corneas exposed to 222-nm UV light. Cyclobutane pyrimidine dimer-positive cells were observed only in normal corneas and those exposed to 254-nm UV light. Although some epithelial cells were stained weakly in normal corneas, squamous epithelial cells were stained moderately, and the epithelial layer that was detached from the cornea exposed to 600?mJ/cm2 of light was stained intensely in corneas exposed to 254-nm UV light. In the current study, no corneal damage was induced by 222-nm UV light, which suggested that 222-nm UV light may not harm rat eyes within the energy range and may be useful for sterilising or preventing infection in the future.  相似文献   

16.
Our recent metagenomics analysis has uncovered remarkable modifying effects of green tea polyphenols (GTP) on gut-microbiota community structure and energy conversion related gene orthologs in rats. How these genomic changes could further influence host health is still unclear. In this work, the alterations of gut-microbiota dependent metabolites were studied in the GTP-treated rats. Six groups of female SD rats (n=12/group) were administered drinking water containing 0%, 0.5%, and 1.5% GTP (wt/vol). Their gut contents were collected at 3 and 6 months and were analyzed via high performance liquid chromatography (HPLC) and gas chromatography (GC)-mass spectrometry (MS). GC–MS based metabolomics analysis captured 2668 feature, and 57 metabolites were imputatively from top 200 differential features identified via NIST fragmentation database. A group of key metabolites were quantitated using standard calibration methods. Compared with control, the elevated components in the GTP-treated groups include niacin (8.61-fold), 3-phenyllactic acid (2.20-fold), galactose (3.13-fold), mannose (2.05-fold), pentadecanoic acid (2.15-fold), lactic acid (2.70-fold), and proline (2.15-fold); the reduced components include cholesterol (0.29-fold), cholic acid (0.62-fold), deoxycholic acid (0.41-fold), trehalose (0.14-fold), glucose (0.46-fold), fructose (0.12-fold), and alanine (0.61-fold). These results were in line with the genomic alterations of gut-microbiome previously discovered by metagenomics analysis. The alterations of these metabolites suggested the reduction of calorific carbohydrates, elevation of vitamin production, decreases of bile constituents, and modified metabolic pattern of amino acids in the GTP-treated animals. Changes in gut-microbiota associated metabolism may be a major contributor to the anti-obesity function of GTP.  相似文献   

17.
Dairy foods and dietary calcium (Ca) are potential regulators of body weight and insulin sensitivity. The specific components of dairy responsible for these actions are not known but may include leucine. Our objective was to determine the effect of dietary protein (casein, skim milk or leucine) and Ca level [low, 0.67% (LC) or high, 2.4% (HC)] on adiposity and insulin sensitivity. Obesity was induced in Sprague–Dawley rats with a 6-week period of high-fat/high-sucrose (HFHS) diet intake. Rats were randomly assigned to one of six HFHS diets for 8 weeks where dietary protein was provided as casein, skim milk or casein enriched with leucine, and contained either LC or HC. Body composition via dual-energy x-ray absorptiometry and insulin sensitivity via euglycemic–hyperinsulinemic clamp were measured. Microarray was used to assess gene expression in liver and skeletal muscle. Rats fed leucine had greater insulin sensitivity than those fed casein or skim milk (P<.05). Dietary protein differentially regulated hepatic and skeletal muscle genes associated with insulin, peroxisome proliferator-activated receptor and mammalian target of rapamycin pathways. Specifically, two key genes responsible for insulin sensitivity, hepatic insulin receptor substrate (IRS) and protein kinase B (Akt), were altered in hepatic tissue in response to leucine. Rats fed skim milk and leucine diets had lower body weight compared to those fed casein (P<.05). HC reduced fat mass compared to LC (P<.05). While skim milk and leucine both reduced fat mass, only leucine improved insulin sensitivity compared to casein. Differential expression of genes such as IRS and Akt may be responsible for changes in insulin sensitivity in obese rats.  相似文献   

18.
19.
20.
We previously reported that Yulangsan polysaccharide (YLSP), which was isolated from the root of Millettia pulchra Kurz, attenuates withdrawal symptoms of morphine dependence by regulating the nitric oxide pathway and modulating monoaminergic neurotransmitters. In this study, we investigated the effects and mechanism of YLSP on the reinstatement of morphine-induced conditioned place preference (CPP) in rats. A CPP procedure was employed to assess the behavior of rats, and indicators of serum and four brain regions (nucleus accumbens, ventral tegmental area, hippocampus and prefrontal cortex) were determined to explore its underlying mechanism. YLSP inhibited priming morphine-induced reinstatement of CPP in a dose-dependent manner. YLSP markedly reduced nitric oxide and nitric oxide synthase levels in the brain. Moreover, YLSP significantly decreased the dopamine and norepinephrine levels in the serum and brain. Furthermore, YLSP significantly decreased cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) concentrations, inhibited the expression of dopamine D1 receptors and cAMP response element binding protein mRNA, and improved the expression of dopamine D2 receptor mRNA in the four brain regions. Our findings indicated that YLSP could inhibit the reinstatement of morphine-induced CPP possibly by modulating the NO-cGMP and D1R-cAMP signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号