首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present study investigated whether genistein, a broad-spectrum tyrosine kinase inhibitor, could increase the myofilament Ca(2+) sensitivity and partially reverse postischemic depressed myocardial function. Left ventricular papillary muscles were isolated from adult Wistar rats and loaded with the Ca2+ indicator, aequorin. The use of fluorocarbon immersion with hypoxia simulated a model of ischemia. Myofilament responsiveness to Ca2+ was evaluated from force-[Ca2+]i relationship recorded during tetani in papillary muscles. Protein levels of troponin I (TnI) were measured in postischemic papillary muscles with the Western blot technique. Isometric contraction was depressed during the period of ischemia and remained low after 60 min of reoxygenation without a corresponding significant change of peak [Ca2+]i in the control group (n = 7). In contrast, the depression of isometric contraction was ameliorated during ischemia in muscle preparations in the presence of genistein (2 micro M; n = 8), and postischemic depressed myocardial contractility partially recovered after a 60-min reperfusion. The myofilament Ca2+ responsiveness was significantly increased in papillary muscles in the presence of genistein. Protein levels of TnI were reduced in postischemic papillary muscles, whereas genistein partially restored decreased protein levels of TnI. Our results reveal that genistein produces an effective attenuation of postischemic depressed myocardial function and improves myofibrillar Ca2+ responsiveness in rat myocardium.  相似文献   

2.
3.
A new method for preparing permeabilized smooth muscle fibers from rabbit mesenteric artery has been developed using alpha-toxin, a transmembrane pore-making exo-protein produced by Staphylococcus aureus. After alpha-toxin treatment the fibers developed tension as a function of Ca2+ concentration (EC50 = 890 nM). But they could not contract without added ATP, indicating ATP is permeable. When the sarcoplasmic reticulum was loaded with 5 X 10(-7) M Ca2+ solution, NE induced a transient contraction in 2 mM EGTA 0 M Ca2+ solution and a transient and maintained contraction in 5 X 10(-7) M Ca2+ solution. GTP-gamma-S, a non-hydrolyzable analogue of GTP, substituted for NE in producing these contractile effects. The analysis of the relationship between Ca2+ and maintained tension revealed that NE and GTP-gamma-S cause increases in Ca2+ sensitivity of myofilament shifting the EC50 to 280 nM and 160 nM, respectively. We conclude that NE or GTP-gamma-S causes an increase in myofilament Ca2+ sensitivity and that G protein may be involved in receptor signal transduction system. alpha-Toxin is a useful tool to permeabilize the smooth muscle tissue to ions and small molecules without any damage of receptor and signal transduction system.  相似文献   

4.
5.
Myofilament Ca2+ sensitivity and maximal Ca2+-activated force are fundamental properties of the contractile proteins in the heart. Although these properties can be evaluated directly in skinned preparations, they have remained elusive in intact tissue. A novel approach is described that allows maximal Ca2+-activated force to be measured and myofilament Ca2+ sensitivity to be deduced from isovolumic pressure in intact perfused ferret hearts. Phosphorus nuclear magnetic resonance spectra are obtained sequentially to measure the intracellular inorganic phosphate (Pi) and hydrogen ion (H+) concentrations. After a period of perfusion with oxygenated, HEPES-buffered Tyrode solution, hypoxia is induced as a means of elevating [Pi]. The decline in twitch pressure can then be related to the measured increase in [Pi]. After recovery, hearts are perfused with ryanodine to enable tetanization and the measurement of maximal Ca2+-activated pressure. Hypoxia is induced once again, and maximal pressure is correlated with [Pi]. We then compare the relations between [Pi] and maximal pressure on the one hand, and [Pi] and twitch pressure on the other. If the two relations differ only by a constant scaling factor, then the decline in twitch pressure can be attributed solely to a decline in maximal pressure, with no change in myofilament sensitivity. We obtained such a result during hypoxia, which indicated that Pi accumulation decreases maximal force but does not change myofilament sensitivity. We compared these results with acidosis (induced by bubbling with 5% CO2). In contrast with Pi, the accumulation of H+ decreases twitch force primarily by shifting myofilament Ca2+ sensitivity. This approach in intact tissue has strengths and limitations complementary to those of skinned muscle experiments.  相似文献   

6.
Alloxan is widely used to induce diabetes mellitus in experimental animals. Recent studies have provided evidence that alloxan has direct actions on cardiac muscle contraction. The aim of this study was to further investigate the mechanisms underlying the effects of alloxan on ventricular myocyte shortening and intracellular Ca2+ transport. Amplitude of myocyte shortening was reduced in a dose-dependent manner as the concentration of alloxan was increased in the range 10?7–10?4 M. Amplitude of shortening was reduced (56.8 ± 6.6%, n = 27) by 10?6 M alloxan and was partially reversed during a 10 min washout. Amplitude of the Ca2+ transient was also reduced (79.7 ± 2.9%, n = 29) by 10?6 M alloxan. Caffeine-evoked sarcoplasmic reticulum Ca2+ release, fractional release of Ca2+, assessed by comparing the amplitude of electrically evoked with that of caffeine-evoked Ca2+ transients, and fura-2-cell length trajectory during the late stages of relaxation of myocyte twitch contraction were not significantly altered by alloxan. The amplitude of L-type Ca2+ current was not altered by alloxan. Alterations in sarcoplasmic reticulum Ca2+ transport, myofilament sensitivity to Ca2+, and L-type Ca2+ current do not appear to underlie the negative inotropic effects of alloxan.  相似文献   

7.
The differential scanning microcalorimetry and fluorescence methods, using probes ANS and pyrene, have been employed to study thermotropic behaviour of rat liver microsomes in the presence and absence of Mg2+. Addition of Mg2+ yields three partially reversible phase transitions at 18, 27 and 32 degrees C, respectively. A character of Mg2+-induced rearrangements in a membrane and their relation to a catalytic function of a cytochrome P-450-dependent enzymatic system is discussed.  相似文献   

8.
We have shown that intermittent interruption of immediate reflow at reperfusion (i.e., postconditioning) reduces infarct size in in vivo models after ischemia. Cardioprotection of postconditioning has been associated with attenuation of neutrophil-related events. However, it is unknown whether postconditioning before reoxygenation after hypoxia in cultured cardiomyocytes in the absence of neutrophils confers protection. This study tested the hypothesis that prevention of cardiomyocyte damage by hypoxic postconditioning (Postcon) is associated with a reduction in the generation of reactive oxygen species (ROS) and intracellular Ca(2+) overload. Primary cultured neonatal rat cardiomyocytes were exposed to 3 h of hypoxia followed by 6 h of reoxygenation. Cardiomyocytes were postconditioned after the 3-h index hypoxia by three cycles of 5 min of reoxygenation and 5 min of rehypoxia applied before 6 h of reoxygenation. Relative to sham control and hypoxia alone, the generation of ROS (increased lucigenin-enhanced chemiluminescence, SOD-inhibitable cytochrome c reduction, and generation of hydrogen peroxide) was significantly augmented after immediate reoxygenation as was the production of malondialdehyde, a product of lipid peroxidation. Concomitant with these changes, intracellular and mitochondrial Ca(2+) concentrations, which were detected by fluorescent fluo-4 AM and X-rhod-1 AM staining, respectively, were elevated. Cell viability assessed by propidium iodide staining was decreased consistent with increased levels of lactate dehydrogenase after reoxygenation. Postcon treatment at the onset of reoxygenation reduced ROS generation and malondialdehyde concentration in media and attenuated cardiomyocyte death assessed by propidium iodide and lactate dehydrogenase. Postcon treatment was associated with a decrease in intracellular and mitochondrial Ca(2+) concentrations. These data suggest that Postcon treatment reduces reoxygenation-induced injury in cardiomyocytes and is potentially mediated by attenuation of ROS generation, lipid peroxidation, and intracellular and mitochondrial Ca(2+) overload.  相似文献   

9.
Diabetic cardiomyopathy is characterized by delayed cardiac relaxation. Delayed relaxation is suggested to be associated with sarcoplasmic reticulum (SR) dysfunction and/or increase in myofilament sensitivity to Ca2+. Although MCC-135, an intracellular Ca2+-handling modulator, accelerates the delayed relaxation without inotropic effect in the ventricular muscle isolated from rats with diabetic cardiomyopathy, the underlying mechanism has not been fully understood. We tested the hypotheses that MCC-135 modulates Ca2+ uptake by SR and myofilament sensitivity to Ca2+. Wistar rats were made diabetic by a single injection of streptozotocin (40 mg/kg i.v.). Seven months later, the left ventricular papillary muscle was isolated and skinned fibers with and without functional SR were prepared by treatment of the papillary muscle with saponin to study SR Ca2+ uptake and myofilament sensitivity to Ca2+, respectively. In diabetic rats, SR Ca2+ uptake was decreased, which was related to decrease in protein level of SR Ca2+-ATPase determined by western blot analysis. MCC-135 enhanced SR Ca2+ uptake in diabetic rats, but not in normal rats. In diabetic rats, maximum force was decreased but force at diastolic level of Ca2+ was increased, without significant change in myofilament sensitivity to Ca2+ compared with normal rats. MCC-135 decreased force at any pCa tested (pCa 7.0-4.4), but had no significant effect on myofilament sensitivity to Ca2+ in diabetic rats. These results suggest that MCC-135 enhances SR Ca2+ uptake and shifts force-pCa curve downward without modulating myofilament sensitivity to Ca2+. These effects may contribute to positive lusitropic effect without inotropic effect of MCC-135 observed in the ventricular muscle of diabetic cardiomyopathy.  相似文献   

10.
Altered calcium homeostasis and increased cytosolic calcium concentrations ([Ca(2+)](c)) are linked to neuronal apoptosis in epilepsy and in cerebral ischemia, respectively. Apoptotic programmed cell death is regulated by the antiapoptotic Bcl2 family of proteins. Here, we investigated the role of Bcl2 on calcium (Ca(2+)) homeostasis in PC12 cells, focusing on L-type voltage-dependent calcium channels (VDCC). Cytosolic Ca(2+) transients ([Ca(2+)](c)) and changes of mitochondrial Ca(2+) concentrations ([Ca(2+)](m)) were monitored using cytosolic and mitochondrially targeted aequorins of control PC12 cells and PC12 cells stably overexpressing Bcl2. We found that: (i) the [Ca(2+)](c) and [Ca(2+)](m) elevations elicited by K(+) pulses were markedly depressed in Bcl2 cells, with respect to control cells; (ii) such depression of [Ca(2+)](m) was not seen either in digitonin-permeabilized cells or in intact cells treated with ionomycin; (iii) the [Ca(2+)](c) transient depression seen in Bcl2 cells was reversed by shRNA transfection, as well as by the Bcl2 inhibitor HA14-1; (iv) the L-type Ca(2+) channel agonist Bay K 8644 enhanced K(+)-evoked [Ca(2+)](m) peak fourfold in Bcl2, and twofold in control cells; (v) in current-clamped cells the depolarization evoked by K(+) generated a more hyperpolarized voltage step in Bcl2, as compared to control cells. Taken together, our experiments suggest that the reduction of the [Ca(2+)](c) and [Ca(2+)](m) transients elicited by K(+), in PC12 cells overexpressing Bcl2, is related to the reduction of Ca(2+) entry through L-type Ca(2+) channels. This may be due to the fact that Bcl2 mitigates cell depolarization, thus diminishing the recruitment of L-type Ca(2+) channels, the subsequent Ca(2+) entry, and mitochondrial Ca(2+) overload.  相似文献   

11.
Inhibitors of phosphodiesterase type III (PDE III) enhance cardiac contractile force by elevating the intracellular calcium concentration [Ca2+]i by impairing cAMP degradation thus increasing cAMP levels. The drugs are more effective in healthy than in failing hearts since basal cAMP production is diminished in the latter. However, long term treatment with PDE-III inhibitors does not appear to be beneficial due to increased risk of potentially lethal arrhythmias caused by augmentation of [Ca2+]i[1). This risk should be absent in Ca2+ sensitizers. Recently, thiadiazinone derivatives have been synthetized in which the potency for Ca2+ sensitization is many-fold larger than the potency for PDE-III inhibition. The Ca2+-sensitizing action resides in the [+]-enantiomers, while the [–]-enantiomers show weak PDE-III inhibition. In the enantiomer pair [+]-EMD 60263 and [–]-EMD 60264, only the former concentration-dependently increased force of contraction in isolated cardiac preparations and myocytes. In the Langendorff-perfused guinea-pig heart, force was reversibly increased, whereas [–]-EMD 60264 even produced a negative inotropic response despite of its PDE inhibitory activity. Heart rate, however, was reduced by both enantiomers. Perfusion pressure remained unaffected. The effects were fully reversible upon wash-out of the enantiomers. [+]-EMD 60263 also enhanced cell shortening of human myocytes from both normal and failing hearts. In contrast to the opposite effects on contractility, both enantiomers prolong the action potential duration by blocking the rapidly activating component of the delayed rectifier K+ current. Thus they also possess class III antiarrhythmic activity. The therapeutic potential of these agents has yet to be assessed in clinical studies.  相似文献   

12.
This study tested whether sarcoplasmic-endoplasmic reticulum Ca(2+)-ATPase regulates the ability of endothelin receptor antagonist to inhibit the endothelin-1 constriction. The endothelin A receptor antagonist BQ-123 (1 microM) completely relaxed constriction to 10 nM endothelin-1 in endothelium-denuded rat aorta. Challenge with cyclopiazonic acid (10 microM), a sarcoplasmic-endoplasmic reticulum Ca(2+)-ATPase inhibitor, during the plateau of endothelin-1 constriction enhanced the constriction by approximately 30%. BQ-123 relaxed the endothelin-1 plus cyclopiazonic acid constriction by only approximately 10%. In contrast, prazosin (1 microM), an alpha-adrenergic receptor antagonist, still completely relaxed the 0.3 muM phenylephrine constriction in the presence of cyclopiazonic acid. Verapamil relaxed the endothelin-1 plus cyclopiazonic acid constriction by approximately 30%, whereas Ni(2+) and 2-aminoethoxydiphenyl borate, nonselective cation channel and store-operated channel blockers, respectively, completely relaxed the constriction. These results suggest that lowered sarcoplasmic-endoplasmic reticulum Ca(2+)-ATPase activity selectively decreases the ability of endothelin receptor antagonist to inhibit the endothelin A receptor. The decreased antagonism may be related to the opening of store-operated channels and subsequent greater internalization of endothelin A receptor.  相似文献   

13.
Myocardial ischemia-reperfusion (I/R) injury is associated with contractile dysfunction, arrhythmias, and myocyte death. Intracellular Ca(2+) overload with reduced activity of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) is a critical mechanism of this injury. Although upregulation of SERCA function is well documented to improve postischemic cardiac function, there are conflicting reports where pharmacological inhibition of SERCA improved postischemic function. SERCA2a is the primary cardiac isoform regulating intracellular Ca(2+) homeostasis; however, SERCA1a has been shown to substitute SERCA2a with faster Ca(2+) transport kinetics. Therefore, to further address this issue and to evaluate whether SERCA1a expression could improve postischemic cardiac function and myocardial salvage, in vitro and in vivo myocardial I/R studies were performed on SERCA1a transgenic (SERCA1a(+/+)) and nontransgenic (NTG) mice. Langendorff-perfused hearts were subjected to 30 min of global ischemia followed by reperfusion. Baseline preischemic coronary flow and left ventricular developed pressure were significantly greater in SERCA1a(+/+) mice compared with NTG mice. Independent of reperfusion-induced oxidative stress, SERCA1a(+/+) hearts demonstrated greatly improved postischemic (45 min) contractile recovery with less persistent arrhythmias compared with NTG hearts. Morphometry showed better-preserved myocardial structure with less infarction, and electron microscopy demonstrated better-preserved myofibrillar and mitochondrial ultrastructure in SERCA1a(+/+) hearts. Importantly, intraischemic Ca(2+) levels were significantly lower in SERCA1a(+/+) hearts. The cardioprotective effect of SERCA1a was also observed during in vivo regional I/R with reduced myocardial infarct size after 24 h of reperfusion. Thus SERCA1a(+/+) hearts were markedly protected against I/R injury, suggesting that expression of SERCA 1a isoform reduces postischemic Ca(2+) overload and thus provides potent myocardial protection.  相似文献   

14.
After myocardial infarction (MI), the left ventricle (LV) undergoes ventricular remodeling characterized by progressive global dilation, infarct expansion, and compensatory hypertrophy of the noninfarcted myocardium. Little attention has been given to the response of remodeling myocardium to additional hemodynamic overload. Studies have indicated that gender may influence remodeling and the response to both MI and hemodynamic overload. We therefore determined 1) structural and function consequences of superimposing hemodynamic overload (systemic hypertension) on remodeling myocardium after a MI and 2) the potential influence of gender on this remodeling response. Male and female Dahl salt-sensitive and salt-resistant rats underwent coronary ligation, resulting in similar degrees of MI. One week post-MI, all rats were placed on a high-salt diet. Four groups were then studied 4 wk after initiation of high-salt feeding: MI female, MI female + hypertension, MI male, and MI male + hypertension. Hypertension-induced pressure overload resulted in additional comparable degrees of myocardial hypertrophy in both females and males. In females, hypertension post-MI resulted in concentric hypertrophy with no additional cavity dilation and no measurable scar thinning. In contrast, in males, hypertension post-MI resulted in eccentric hypertrophy, further LV cavity dilation, and scar thinning. Physiologically, concentric hypertrophy in post-MI hypertensive females resulted in elevated contractile function, whereas eccentrically hypertrophied males had no such increase. Female gender influences favorably the remodeling and physiological response to hemodynamic overload after large MI.  相似文献   

15.
This study evaluated the effects of angiotensin-converting enzyme (ACE) inhibition after myocardial infarction (MI) on cardiac remodeling and gene expression and localization of components (ligands, receptors, and binding proteins) of the cardiac insulin-like growth factor (IGF) system. After ligation of the coronary artery, rats were randomized to vehicle or ACE inhibitor (Captopril, 50 mg/kg/day) for 4 weeks. Blood pressure, cardiac remodeling, and components of the IGF system were localized in the heart using in situ hybridization (ISH) and immunohistochemistry (IHC). The average infarct size was 42%. There were regional differences in the expression of the IGF system after MI, with increased IGF-I mRNA abundance in the border (24-fold) and infarct (12-fold) and increased IGF-binding protein (IGFBP)-3 mRNA in all areas of the failing left ventricle (threefold). Captopril reduced blood pressure, attenuated cardiac remodeling, and caused a threefold increase in IGF-I receptor mRNA and protein in infarct, border zone, and viable myocardium (p<0.01). Captopril had no effect on IGF-I mRNA but further increased IGFBP-3 mRNA and protein in the border zone, (p<0.05). The changes in the cardiac IGF system following MI are highly localized, persist for at least 4 weeks, and can be modulated by ACE inhibition. These data suggest that the benefits of ACE inhibitors in attenuation of cardiac remodeling may be mediated in part through increased expression of the IGF-I receptor sensitizing the myocardium to the positive effects of endogenous IGF-I.  相似文献   

16.
We investigated the role of the mitochondrial ATP-sensitive K(+) (K(ATP)) channel, the mitochondrial big-conductance Ca(2+)-activated K(+) (BK(Ca)) channel, and the mitochondrial permeability transition pore (MPTP) in the ouabain-induced increase of mitochondrial Ca(2+) in native rat ventricular myocytes by loading cells with rhod 2-AM. To overload mitochondrial Ca(2+), we pretreated cells with ouabain before applying mitochondrial K(ATP) or BK(Ca) channel and/or MPTP opener. Ouabain (1 mM) increased the rhod 2-sensitive fluorescence intensity (160 +/- 5.0% of control), which was dramatically decreased to the control level on application of diazoxide and NS-1619 in a dose-dependent manner (half-inhibition concentrations of 78.3 and 7.78 muM for diazoxide and NS-1619, respectively). This effect was reversed by selective inhibition of the mitochondrial K(ATP) channel by 5-hydroxydecanoate, the mitochondrial BK(Ca) channel by paxilline, and the MPTP by cyclosporin A. Although diazoxide did not efficiently reduce mitochondrial Ca(2+) during prolonged exposure to ouabain, NS-1619 reduced mitochondrial Ca(2+). These results suggest that although mitochondrial BK(Ca) and K(ATP) channels contribute to reduction of ouabain-induced mitochondrial Ca(2+) overload, activation of the mitochondrial BK(Ca) channel more efficiently reduces ouabain-induced mitochondrial Ca(2+) overload in our experimental model.  相似文献   

17.
Highly purified vesicles of rabbit myocardium sarcolemma with predominant inside-out orientation possess the Ca2+-calmodulin-dependent protein kinase activity. At optimal concentrations of calmodulin (0.5 microM) and Ca2+ (0.1 mM), the activity of protein kinase is 0.21 nmol 32P X min X mg of protein. The Km(app) value for ATP is 3.0 X 10(-6) M, V = 0.27 nmol 32P X mg of protein X min. Endogenous Ca2+-calmodulin-dependent protein kinase phosphorylates four protein substrates in sarcolemmal vesicles (Mr = 145, 22, 11.5, and 6-8 KD). Studies with passive efflux of Ca2+ from the SL vesicles showed that the Ca2+-calmodulin-dependent phosphorylation of protein components of sarcolemma inhibits this reaction.  相似文献   

18.
The Ca2+ sensitivity of liver gelactin-induced actin gelation was reinvestigated by low-shear viscosity using the falling-ball technique. By this technique, we demonstrate that the gelatin of actin by gelactin can be influenced by the presence of calcium ions depending on the concentrations of both proteins, actin and gelactin. At low concentrations of gelactin, the gelatin of actin exhibits a bell-shaped dependency on free calcium ion concentration, being stimulated between pCa 8 and 6 and inhibited at pCa below 5.5, while at high gelactin concentrations the calcium sensitivity of actin gelation is apparently abolished. Although the sensitivity observed in the physiological range of calcium concentrations may be of importance in vivo, the sensitivity observed at higher calcium concentrations more probably reflects the state of actin polymerization in different ionic conditions. These results confirm our previous conclusions on the peculiarity of gelactin as an F-actin cross-linker.  相似文献   

19.
Ca(2+) acts as a fundamental signal transduction element in inner ear, delivering information about sound, acceleration and gravity through a small number of mechanotransduction channels in the hair cell stereocilia and voltage activated Ca(2+) channels at the ribbon synapse, where it drives neurotransmission. The mechanotransduction process relies on the endocochlear potential, an electrical potential difference between endolymph and perilymph, the two fluids bathing respectively the apical and basolateral membrane of the cells in the organ of Corti. In mouse models, deafness and lack or reduction of the endocochlear potential correlate with ablation of connexin (Cx) 26 or 30. These Cxs form heteromeric channels assembled in a network of gap junction plaques connecting the supporting and epithelial cells of the organ of Corti presumably for K(+) recycle and transfer of key metabolites, for example, the Ca(2+) -mobilizing second messenger IP(3) . Ca(2+) signaling in these cells could play a crucial role in regulating Cx expression and function. Another district where Ca(2+) signaling alterations link to hearing loss is hair cell apex, where ablation or missense mutations of the PMCA2 Ca(2+) -pump of the stereocilia cause deafness and loss of balance. If less Ca(2+) is exported from the stereocilia, as in the PMCA2 mouse mutants, Ca(2+) concentration in endolymph is expected to fall causing an alteration of the mechanotransduction process. This may provide a clue as to why, in some cases, PMCA2 mutations potentiated the deafness phenotype induced by coexisting mutations of cadherin-23 (Usher syndrome type 1D), a single pass membrane Ca(2+) binding protein that is abundantly expressed in the stereocilia.  相似文献   

20.
The giant protein titin, a major contributor to myocardial mechanics, is expressed in two main cardiac isoforms: stiff N2B (3.0 MDa) and more compliant N2BA (>3.2 MDa). Fetal hearts of mice, rats, and pigs express a unique N2BA isoform ( approximately 3.7 MDa) but no N2B. Around birth the fetal N2BA titin is replaced by smaller-size N2BA isoforms and N2B, which predominates in adult hearts, stiffening their sarcomeres. Here we show that perinatal titin-isoform switching and corresponding passive stiffness (STp) changes do not occur in the hearts of guinea pig and sheep. In these species the shift toward adult proportions of N2B isoform is almost completed by midgestation. The relative contributions of titin and collagen to STp were estimated in force measurements on skinned cardiac muscle strips by selective titin proteolysis, leaving the collagen matrix unaffected. Titin-based STp contributed between 42% and 58% to total STp in late-fetal and adult sheep/guinea pigs and adult rats. However, only approximately 20% of total STp was titin based in late-fetal rat. Titin-borne passive tension and the proportion of titin-based STp generally scaled with the N2B isoform percentage. The titin isoform transitions were correlated to a switch in troponin-I (TnI) isoform expression. In rats, fetal slow skeletal TnI (ssTnI) was replaced by adult carciac TnI (cTnI) shortly after birth, thereby reducing the Ca2+ sensitivity of force development. In contrast, guinea pig and sheep coexpressed ssTnI and cTnI in fetal hearts, and skinned fibers from guinea pig showed almost no perinatal shift in Ca2+ sensitivity. We conclude that TnI-isoform and titin-isoform switching and corresponding functional changes during heart development are not initiated by birth but are genetically programmed, species-specific regulated events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号