首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The goal of the present work was to evaluate the correlation of glucose transporter 1 (GLUT1) and carbonic anhydrase IX (CAIX) with the monocarboxylate transporters 1 (MCT1) and 4 (MCT4) and their chaperone, CD147, in breast cancer. The clinico-pathological value of GLUT1 and CAIX was also evaluated. For that, we analysed the immunohistochemical expression of GLUT1 and CAIX, in a large series of invasive breast carcinoma samples (n=124), previously characterized for MCT1, MCT4 and CD147 expression. GLUT1 expression was found in 46% of the cases (57/124), while CAIX was found in 18% of the cases (22/122). Importantly, both MCT1 and CD147, but not MCT4, were associated with GLUT1 and CAIX expression. Also, GLUT1 and CAIX correlated with each other. Concerning the clinico-pathological values, GLUT1 was associated with high grade tumours, basal-like subtype, absence of progesterone receptor, presence of vimentin and high proliferative index as measured by Ki-67. Additionally, CAIX was associated with large tumour size, high histological grade, basal-like subtype, absence of estrogen and progesterone receptors and presence of basal cytokeratins and vimentin expression. Finally, patients with CAIX positive tumours had a significantly shorter disease-free survival. The association between MCT1 and both GLUT1 and CAIX may result from hypoxia-mediated metabolic adaptations, which confer a glycolytic, acid-resistant and more aggressive phenotype to cancer cells.  相似文献   

2.
The expression of monocarboxylate transporters MCT1, MCT2 and MCT4 in the rumen, small intestine and liver was examined in free-ranging and captive reindeer. In addition, expression of chaperone protein CD147, which is needed for the activity of MCT1 and MCT4, was studied in the rumen of suckling calves. Immunoblotting of cell membrane proteins showed the expression of MCT1 and MCT4, but not that of MCT2 in the rumen of reindeer. In free-ranging reindeer the amount of MCT1 was higher than in the captive ones (P<0.01). Developing rumen of suckling calves expressed MCT1 and MCT4 and positive correlation was found between MCT1 and CD147. Both MCT1 and CD147 correlated also with age in calves less than 10 days. In the small intestine all the isoforms studied were expressed, but the amounts were lower than in the rumen (P<0.05). In the liver MCT1 and MCT2 were found while MCT4 was nearly undetectable. The expression of MCT isoforms in the rumen and small intestine reflects the site of absorption and concentrations of short chain fatty acids (SCFA). In the liver the expression of high affinity transporters, MCT1 and MCT2, is in accordance with almost complete uptake of propionate from portal blood.  相似文献   

3.
Translocation of monocarboxylate transporters MCT1 and MCT4 to the plasma membrane requires CD147 (basigin) with which they remain tightly associated. However, the importance of CD147 for MCT activity is unclear. MCT1 and MCT4 are both inhibited by the cell-impermeant organomercurial reagent p-chloromercuribenzene sulfonate (pCMBS). Here we demonstrate by site-directed mutagenesis that removal of all accessible cysteine residues on MCT4 does not prevent this inhibition. pCMBS treatment of cells abolished co-immunoprecipitation of MCT1 and MCT4 with CD147 and enhanced labeling of CD147 with a biotinylated-thiol reagent. This suggested that CD147 might be the target of pCMBS, and further evidence for this was obtained by treatment of cells with the bifunctional organomercurial reagent fluorescein dimercury acetate that caused oligomerization of CD147. Site-directed mutagenesis of CD147 implicated the disulfide bridge in the Ig-like C2 domain of CD147 as the target of pCMBS attack. MCT2, which is pCMBS-insensitive, was found to co-immunoprecipitate with gp70 rather than CD147. The interaction between gp70 and MCT2 was confirmed using fluorescence resonance energy transfer between the cyan fluorescent protein- and yellow fluorescent protein-tagged MCT2 and gp70. pCMBS strongly inhibited lactate transport into rabbit erythrocytes, where MCT1 interacts with CD147, but not into rat erythrocytes where it interacts with gp70. These data imply that inhibition of MCT1 and MCT4 activity by pCMBS is mediated through its binding to CD147, whereas MCT2, which associates with gp70, is insensitive to pCMBS. We conclude that ancillary proteins are required to maintain the catalytic activity of MCTs as well as for their translocation to the plasma membrane.  相似文献   

4.
We have developed a new heterologous expression system for monocarboxylate transporters. The system is based on a Saccharomyces cerevisiae pyk1 mae1 jen1 triple-deletion strain that is auxotrophic for pyruvate and deficient in monocarboxylate uptake. Growth of the yeast cells on ethanol medium supplemented with pyruvate or lactate was dependent on the expression of a suitable monocarboxylate transporter. We have used the system to characterize the functional significance of interactions between the rat MCT1 transporter and its ancillary protein CD147. CD147 was shown to improve trafficking of MCT1 to the plasma membrane and its uptake activity. Our results demonstrate a new strategy for the production of properly folded and correctly targeted membrane proteins in a microbial expression system by co-expression of appropriate accessory proteins.  相似文献   

5.
6.
Increased use of the glycolytic pathway, even in the presence of oxygen, has recently been recognized as a key characteristic of malignant cells. However, the glycolytic phenotype results in increased lactic acid production and, in order to prevent cellular acidosis, tumor cells must increase proton efflux via upregulation of pH regulators such as proton-pumps, sodium-proton exchangers, and/or monocarboxylate transporters (MCT) (e.g., MCT1, MCT4). Interestingly, expression of MCT1 and MCT4 has been previously shown to be dependent upon expression of the transmembrane glycoprotein CD147. Recently, we demonstrated that primary patient multiple myeloma (MM) cells and human MM cell lines (HMCLs) overexpress CD147. Therefore, the goal of the current study was to specifically determine if MCT1 and MCT4 were also overexpressed in MM cells. RT-PCR analysis demonstrated both primary patient MM cells and HMCLs overexpress MCT1 and MCT4 mRNA. Notably, primary MM cells or HMCLs were found to express variable levels of MCT1 and/or MCT4 at the protein level despite CD147 expression. In those HMCLs positive for MCT1 and/or MCT4 protein expression, MCT1 and/or MCT4 were found to be associated with CD147. Specific siRNA-mediated downregulation of MCT1 but not MCT4 resulted in decreased HMCL proliferation, decreased lactate export, and increased cellular media pH. However, western blot analysis revealed that downregulation of MCT1 also downregulated CD147 and vice versa despite no effect on mRNA levels. Taken together, these data demonstrate the association between MCT1 and CD147 proteins in MM cells and importance of their association for lactate export and proliferation in MM cells.  相似文献   

7.
Results of previous studies suggested a role of mitochondria in intracellular and cell-cell lactate shuttles. Therefore, by using a rat-derived L6 skeletal muscle cell line and confocal laser-scanning microscopy (CLSM), we examined the cellular locations of mitochondria, lactate dehydrogenase (LDH), the lactate-pyruvate transporter MCT1, and CD147, a purported chaperone protein for MCT1. CLSM showed that LDH, MCT1, and CD147 are colocalized with the mitochondrial reticulum. Western blots showed that cytochrome oxidase (COX), NADH dehydrogenase, LDH, MCT1, and CD147 are abundant in mitochondrial fractions of L6 cells. Interactions among COX, MCT1, and CD147 in mitochondria were confirmed by immunoblotting after immunoprecipitation. These findings support the presence of a mitochondrial lactate oxidation complex associated with the COX end of the electron transport chain that might explain the oxidative catabolism of lactate and, hence, mechanism of the intracellular lactate shuttle.  相似文献   

8.
CD147 is a broadly expressed plasma membrane glycoprotein containing two immunoglobulin-like domains and a single charge-containing transmembrane domain. Here we use co-immunoprecipitation and chemical cross-linking to demonstrate that CD147 specifically interacts with MCT1 and MCT4, two members of the proton-linked monocarboxylate (lactate) transporter family that play a fundamental role in metabolism, but not with MCT2. Studies with a CD2-CD147 chimera implicate the transmembrane and cytoplasmic domains of CD147 in this interaction. In heart cells, CD147 and MCT1 co-localize, concentrating at the t-tubular and intercalated disk regions. In mammalian cell lines, expression is uniform but cross-linking with anti-CD147 antibodies caused MCT1, MCT4 and CD147, but not GLUT1 or MCT2, to redistribute together into 'caps'. In MCT-transfected cells, expressed protein accumulated in a perinuclear compartment, whereas co-transfection with CD147 enabled expression of active MCT1 or MCT4, but not MCT2, in the plasma membrane. We conclude that CD147 facilitates proper expression of MCT1 and MCT4 at the cell surface, where they remain tightly bound to each other. This association may also be important in determining their activity and location.  相似文献   

9.
MCT1 confirmed in rat striated muscle mitochondria.   总被引:3,自引:0,他引:3  
We sought to test the hypothesis that monocarboxylate transporter isoform 1 (MCT1) is the inner mitochondrial membrane lactate/pyruvate transporter, and, as such, contributes to functioning of the intracellular lactate shuttle. However, presence of a mammalian mitochondrially localized MCT1 (mMCT1) has been contested. We sought to confirm by Western blotting the mitochondrial localization of MCT1 in rat cardiac, soleus, and extensor digitorum longus muscles utilizing three different cell fractionation methods and three different antibodies. We performed Western blotting using antibodies to cell membrane glucose transporter isoform GLUT1, inner mitochondrial constituent cytochrome oxidase, the monocarboxylate transporter protein chaperone CD147, as well as custom and commercially available MCT1 antibodies. Western blots demonstrated similar results with each MCT1 antibody and two of three methods of fractionation. MCT1 was found in the mitochondria, as well as in the sarcolemmal membrane and whole muscle homogenates. Probing with GLUT1 and CD147 demonstrated that mitochondrial fractions were not contaminated with sarcolemmal remnants. Probing with cytochrome oxidase showed mitochondrial localization of MCT1. Comparison of these results to the findings of others indicates that the most likely source of discrepancy is the cell fractionation procedure utilized.  相似文献   

10.
11.
12.
Background: Head and neck squamous cell carcinoma (HNSCC) is the sixth most common type of cancer. The majority of patients present advanced stage disease and has poor survival. Therefore, it is imperative to search for new biomarkers and new alternative and effective treatment options. Most cancer cells rely on aerobic glycolysis to generate energy and metabolic intermediates. This phenotype is a hallmark of cancer, characterized by an increase in glucose consumption and production of high amounts of lactate. Consequently, cancer cells need to up-regulate many proteins and enzymes related with the glycolytic metabolism. Thus, the aim of this study was to characterize metabolic phenotype of oral cavity cancers (OCC) by assessing the expression pattern of monocarboxylate transporters (MCTs) 1, 2 and 4 and other proteins related with the glycolytic phenotype. Material and Methods: We evaluated the immunohistochemical expression of MCT1, MCT4, CD147, GLUT1 and CAIX in 135 human samples of OCC and investigated the correlation with clinicopathological parameters and the possible association with prognosis. Results: We observed that all proteins analyzed presented significantly higher plasma membrane expression in neoplastic compared to non-neoplastic samples. MCT4 was significantly associated with T-stage and advanced tumoral stage, while CD147 was significantly correlated with histologic differentiation. Interestingly, tumors expressing both MCT1 and MCT4 but negative for MCT2 were associated with shorter overall survival. Conclusion: Overexpression of MCT1/4, CD147, GLUT1 and CAIX, supports previous findings of metabolic reprograming in OCC, warranting future studies to explore the hyper-glycolytic phenotype of these tumors. Importantly, MCT expression revealed to have a prognostic value in OCC survival.  相似文献   

13.
Oncogenic mutations in gastrointestinal stromal tumors (GISTs) predict prognosis and therapeutic responses to imatinib. In wild-type GISTs, the tumor-initiating events are still unknown, and wild-type GISTs are resistant to imatinib therapy. We performed an association study between copy number alterations (CNAs) identified from array CGH and gene expression analyses results for four wild-type GISTs and an imatinib-resistant PDGFRA D842V mutant GIST, and compared the results to those obtained from 27 GISTs with KIT mutations. All wild-type GISTs had multiple CNAs, and CNAs in 1p and 22q that harbor the SDHB and GSTT1 genes, respectively, correlated well with expression levels of these genes. mRNA expression levels of all SDH gene subunits were significantly lower (P≤0.041), whereas mRNA expression levels of VEGF (P=0.025), IGF1R (P=0.026), and ZNFs (P<0.05) were significantly higher in GISTs with wild-type/PDGFRA D842V mutations than GISTs with KIT mutations. qRT-PCR validation of the GSTT1 results in this cohort and 11 additional malignant GISTs showed a significant increase in the frequency of GSTT1 CN gain and increased mRNA expression of GSTT1 in wild-type/PDGFRA D842V GISTs than KIT-mutant GISTs (P=0.033). Surprisingly, all four malignant GISTs with KIT exon 11 deletion mutations with primary resistance to imatinib had an increased GSTT1 CN and mRNA expression level of GSTT1. Increased mRNA expression of GSTT1 and ZNF could be predictors of a poor response to imatinib. Our integrative approach reveals that for patients with wild-type (or imatinib-resistant) GISTs, attempts to target VEGFRs and IGF1R may be reasonable options.  相似文献   

14.
目的探讨基质金属蛋白酶-13(Matrix metalloproteinases-13,MMP-13)和CD147的表达与胃肠道间质瘤(Gastrointestinals stromal tumors,GISTs)临床病理特征的关系。方法采用免疫组织化学检测69例GISTs组织中MMP-13及CD147的表达,分析MMP-13和CD147与各病理参数的关系。结果GISTs组织中MMP-13和CD147的表达率分别为95.7%和97.1%,MMP-13阳性表达程度与GISTs的生物学行为、CD147表达及肿瘤的大小呈正相关(P〈0.05);CD147阳性表达程度与肿瘤的大小呈正相关(P〈0.05)。结论MMP-13表达与GISTs生物学行为关系密切,可作为GISTs生物学行为的潜在评价指标。  相似文献   

15.
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. These tumors develop at any site but are most commonly reported in the stomach. They originate from the neoplastic transformation of the intestinal pacemaker cell, the interstitial cell of Cajal. GISTs strongly express the receptor tyrosine kinase KIT and have mutations in the KIT gene, most frequently in exon 11 encoding the intracellular juxtamembranous region. Expression of KIT is seen in almost all GISTs, regardless of the site of origin, histologic appearance, or biologic behavior, and is therefore regarded as one of the key diagnostic markers. Distinction from smooth muscle tumors, such as leiomyosarcomas, and other mesenchymal tumors is very important because of prognostic differences and therapeutic strategies. Predicting the biologic behavior of GISTs is often difficult by conventional pathologic examination; tumor size and mitotic rate are the most important prognostic indicators. The prognostic significance of KIT mutations is controversial and thus far has not been clearly linked with biologic behavior. KIT mutations are associated with tumor development, and cytogenetic aberrations are associated with tumor progression. The pathogenesis of GISTs involves a gain-of-function mutation in the KIT proto-oncogene, leading to ligand-independent constitutive activation of the KIT receptor. KIT-wild-type GISTs have shown mutually exclusive platelet-derived growth factor receptor (PDGFR) mutation and activation. The use of imatinib mesylate (also known as Gleevec or STI-571) has greatly increased the therapeutic efficacy for this otherwise chemotherapy-resistant tumor. GISTs with very low levels of KIT expression may respond to imatinib mesylate therapy if the receptors are activated by specific mechanisms. KIT-activating mutations fall into two groups: the regulatory type and the enzymatic site type. The regulatory type of mutation is conserved at the imatinib binding site, whereas the enzymatic site mutation has a structurally changed drug-binding site, resulting in drug resistance. Resistance to the drug is the major cause of treatment failure in cancer therapy, emphasizing the need for researchers to understand KIT signaling pathways so as to identify new therapeutic targets. This review summarizes the pathologic features of GISTs, recent advances in understanding their molecular and biologic features, and therapy with imatinib mesylate.  相似文献   

16.
The monocarboxylate (lactate) transporters MCT1 and MCT4 require the membrane-spanning glycoprotein CD147 for their correct plasma membrane expression and function. We have successfully expressed CD147 and MCT1 tagged on their C or N termini with either the cyan (CFP) or yellow (YFP) variants of green fluorescent protein. The tagged proteins were correctly targeted to the plasma membrane of COS-7 cells and were functionally active. Measurements of fluorescence resonance energy transfer (FRET) between all combinations of the tagged proteins were made. FRET was observed when either the C or N terminus of MCT1 (intracellular) is tagged with CFP or YFP and co-expressed with CD147 tagged with YFP or CFP on the C terminus (intracellular) but not the N terminus (extracellular). FRET was also observed between two CD147 molecules when both YFP and CFP were on the C terminus but not when both were on the N terminus or one on either end. No FRET was observed between MCT1-YFP and MCT-CFP in any combination. A wide range of controls including photobleaching were employed to confirm that where FRET was observed, it was not an artifact of direct excitation of YFP by the CFP excitation laser. It was also shown that nonspecific overcrowding of proteins did not induce FRET. Because FRET only occurs between two fluorophores if they are less than 100 A apart and in a suitable orientation, our data provide important information on the topology of CD147 and MCT1 within the plasma membrane. The minimum configuration consistent with the data is a dimer of CD147 associating with two MCT1 molecules such that the C terminus of CD147 in the cytosol is close to the C terminus of its partner CD147 and to the C and N termini of an associated MCT1 molecule. FRET may provide a non-invasive technique for measuring changes in these interactions in living cells.  相似文献   

17.
This meta-analysis aims to examine whether the genotype status of MspI, Ile462Val, and Thr461Asn polymorphisms in Cytochrome P450 1A1 (CYP1A1) is associated with ovarian cancer risk. Eligible case-control studies were identified through search in MEDLINE (end of search: October 2010). Pooled odds ratios (ORs) were appropriately derived from fixed effects or random effects models. Concerning MspI polymorphism, seven studies were eligible (1,051 cases and 1,613 controls); 11 studies were eligible (1,680 cases and 3,345 controls) for Ile462Val and three studies were eligible (349 cases and 785 controls) for Thr461Asn. Ile462Val polymorphism seemed to confer elevated ovarian cancer risk concerning homozygous carriers (pooled OR?=?2.65, 95?% CI: 1.40-5.03, p?=?0.003, fixed effects), as well as at the recessive model (pooled OR?=?2.10, 95?% CI: 1.13-3.92, p?=?0.020, fixed effects); these findings were replicated upon Caucasian subjects. MspI polymorphism was not associated with ovarian cancer risk (for heterozygous TC vs TT carriers pooled OR?=?1.10, 95?% CI: 0.91-1.34, p?=?0.329, fixed effects; for homozygous CC vs. TT carriers pooled OR?=?1.11, 95?% CI: 0.65-1.90, p?=?0.693, fixed effects). With respect to Thr461Asn polymorphism a finding of borderline statistical significance emerged, pointing to marginally elevated ovarian cancer risk in heterozygous Thr/Asn carriers (pooled OR?=?1.62, 95?% CI: 0.97-2.70, p?=?0.066, fixed effects), but not in homozygous Asn/Asn carriers (pooled OR?=?1.40, 95?% CI: 0.18-10.89, p?=?0.749, fixed effects). Ile462Val status seems to represent a meaningful risk factor for ovarian cancer in Caucasians. Additional case-control studies of high methodological quality are needed in order to further substantiate and enrich the present findings. Special attention should be paid upon the design of future studies; Asian and African populations should represent points of focus.  相似文献   

18.
We hypothesized that a part of therapeutic effects of endurance training on insulin resistance is mediated by increase in cardiac and skeletal muscle mitochondrial lactate transporter, monocarboxylate transporter 1 (MCT1). Therefore, we examined the effect of 7 weeks endurance training on the mRNA and protein expression of MCT1 and MCT4 and their chaperon, CD147, on both sarcolemmal and mitochondrial membrane, separately, in healthy and type 2 diabetic rats. Diabetes was induced by injection of low dose of streptozotocin and feeding with high-fat diet. Insulin resistance was confirmed by homeostasis model assessment-estimated insulin resistance index and accuracy of two membranes separation was confirmed by negative control markers (glucose transporter 1 and cytochrome c oxidase. Real-time PCR and western blotting were used for mRNA and protein expression, respectively. Diabetes dramatically reduced MCT1 and MCT4 mRNA and their expression on sarcolemmal membrane whereas the reduction in MCT1 expression was less in mitochondrial membrane. Training increased the MCT1 mRNA and protein expression in both membranes and decreased insulin resistance as an adaptive consequence. In both tissues increase in CD147 mRNA was only parallel to MCT1 expression. The response of MCT1 on sarcolemmal and mitochondrial membranes was different between cardiac and skeletal muscles which indicate that intracellular lactate kinetic is tissue specific that allows a tissue to coordinate whole organism metabolism.  相似文献   

19.
This study aimed to assess the distribution of VEGF-C and VEGFR-3 expression in gastrointestinal stromal tumours (GISTs), and to analyse the value of lymphatic vessel density (LVD) in a tumour that is believed to preferentially metastasize through blood vessel conduits. A panel of immunohistochemical antibodies was used to evaluate 51 cases of genetically characterised GISTs: VEGF-C, VEGFR-3, D2-40 (for LVD assessment) and CD31 (for blood vessel density--BDV--assessment). The results were correlated with the clinical-pathological data. The large majority of cases (86.2%; 44/51) showed a mutation of the KIT gene, most of them (72.5%; 37/51) revealing mutations in exon 11. VEGFR-3 was predominantly expressed in KIT mutated GISTs (p=0.019). High LVD was correlated with the absence of metastasis (p=0.010) and high BVD showed a positive correlation with the occurrence of metastasis (p=0.049). The strong expression of VEGF-C and VEGFR-3 in GIST's cells was not correlated with the clinical parameters of aggressiveness, nor with high LVD.  相似文献   

20.
Most malignant tumors exhibit the Warburg effect, which consists in increased glycolysis rates with production of lactate, even in the presence of oxygen. Monocarboxylate transporters (MCTs), maintain these glycolytic rates, by mediating the influx and/or efflux of lactate and are overexpressed in several cancer cell types. The lactate and pyruvate analogue 3-bromopyruvate (3-BP) is an inhibitor of the energy metabolism, which has been proposed as a specific antitumor agent. In the present study, we aimed at determining the effect of 3-BP in breast cancer cells and evaluated the putative role of MCTs on this effect. Our results showed that the three breast cancer cell lines used presented different sensitivities to 3-BP: ZR-75-1 ER (+)>MCF-7 ER (+)>SK-BR-3 ER (-). We also demonstrated that 3-BP reduced lactate production, induced cell morphological alterations and increased apoptosis. The effect of 3-BP appears to be cytotoxic rather than cytostatic, as a continued decrease in cell viability was observed after removal of 3-BP. We showed that pre-incubation with butyrate enhanced significantly 3-BP cytotoxicity, especially in the most resistant breast cancer cell line, SK-BR-3. We observed that butyrate treatment induced localization of MCT1 in the plasma membrane as well as overexpression of MCT4 and its chaperone CD147. Our results thus indicate that butyrate pre-treatment potentiates the effect of 3-BP, most probably by increasing the rates of 3-BP transport through MCT1/4. This study supports the potential use of butyrate as adjuvant of 3-BP in the treatment of breast cancer resistant cells, namely ER (-).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号