首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Neutrophils kill bacteria generally through oxidative and nonoxidative mechanisms. Whereas much research has focused on the enzymes essential for neutrophil killing, little is known about the regulatory molecules responsible for such killing. In this study, we investigated the role of olfactomedin 4 (OLFM4), an olfactomedin-related glycoprotein, in neutrophil bactericidal capability and host innate immunity. Neutrophils from OLFM4(-/-) mice have increased intracellular killing of Staphylococcus aureus and Escherichia coli in vitro. The OLFM4(-/-) mice have enhanced in vivo bacterial clearance and are more resistant to sepsis when challenged with S. aureus or E. coli by i.p. injection. OLFM4 was found to interact with cathepsin C, a cysteine protease that plays an important role in bacterial killing and immune regulation. We demonstrated that OLFM4 inhibited cathepsin C activity in vitro and in vivo. The cathepsin C activity in neutrophils from OLFM4(-/-) mice was significantly higher than that in neutrophils from wild-type littermate mice. The activities of three serine proteases (neutrophil elastase, cathepsin G, and proteinase 3), which require cathepsin C activity for processing and maturity, were also significantly higher in OLFM4(-/-) neutrophils. The bacterial killing and clearance capabilities observed in OLFM4(-/-) mice that were enhanced relative to wild-type mice were significantly compromised by the additional loss of cathepsin C in mice with OLFM4 and cathepsin C double deficiency. These results indicate that OLFM4 is an important negative regulator of neutrophil bactericidal activity by restricting cathepsin C activity and its downstream granule-associated serine proteases.  相似文献   

2.
The neutrophil oxidative burst reaction differentiates ALR/Lt mice, known for an unusual systemic elevation of antioxidant defenses, from ALS/Lt mice, a related strain known for reduced ability to withstand oxidative stress. Neutrophils from marrow of ALS mice produced a normal neutrophil oxidative burst following phorbol ester stimulation. In contrast, ALR mice exhibited a markedly suppressed superoxide burst. F1 progeny from reciprocal outcrosses between ALR and ALS mice exhibited an intermediate burst level, higher than ALR but significantly lower than ALS. To elucidate the genetic basis for this strain difference, F1 mice were backcrossed to ALS mice, and marrow neutrophils isolated from the progeny were phenotyped for oxidative burst capacity. A genome-wide sweep using polymorphic markers distinguishing the two parental strains was performed to map the trait. A 1:1 phenotypic distribution was observed, and a locus (Suppressor of superoxide production, Susp) controlling this phenotype was mapped to Chromosome 3 near D3Mit241 at 33.1 cM. This locus probably represents an important regulatory element in the overall ALR strain resistance to oxidative stress, since diminished ability to mount a neutrophil burst in backcross segregants correlated with elevated hepatic superoxide dismutase 1 (SOD1) activity, an ALR strain characteristic.  相似文献   

3.
The innate immune response to bovine Babesia bovis infection in vivo has not previously been established. We used assays measuring phagocytosis and oxidative burst to investigate the immune response because they are indicative of the innate antimicrobial capacity of monocytes and neutrophils. Monocyte and neutrophil phagocytosis is thought to be non-specific in nature and so the phagocytosis of either opsonised Zymosan or Escherichia coli was used to indicate the non-specific phagocytic capacity of monocytes and neutrophils ex vivo. The kinetics of both phagocytic and oxidative burst activity in monocytes and neutrophils were followed twice weekly from pre-inoculation (day 0) through to 31 days after inoculation. Peripheral blood monocytes were found to display a pronounced oxidative burst, but a suppressed capacity to phagocytose during a primary infection. On the other hand, neutrophils exhibited an increased phagocytic capacity and reduced oxidative activity during a primary infection. These findings identified considerable antimicrobial activity evident in peripheral blood monocytes and neutrophils from cattle exposed to B. bovis as a primary exposure. This elevated antimicrobial activity was coincident with the time that parasite numbers peaked in the circulation and occurred prior to parasite clearance. These results suggest that peripheral blood monocytes and neutrophils are active mediators in the innate immune response to a primary B. bovis.  相似文献   

4.
Hanses F  Park S  Rich J  Lee JC 《PloS one》2011,6(8):e23633
Diabetes is a frequent underlying medical condition among individuals with Staphylococcus aureus infections, and diabetic patients often suffer from chronic inflammation and prolonged infections. Neutrophils are the most abundant inflammatory cells during the early stages of bacterial diseases, and previous studies have reported deficiencies in neutrophil function in diabetic hosts. We challenged age-matched hyperglycemic and normoglycemic NOD mice intraperitoneally with S. aureus and evaluated the fate of neutrophils recruited to the peritoneal cavity. Neutrophils were more abundant in the peritoneal fluids of infected diabetic mice by 48 h after bacterial inoculation, and they showed prolonged viability ex vivo compared to neutrophils from infected nondiabetic mice. These differences correlated with reduced apoptosis of neutrophils from diabetic mice and were dependent upon the presence of S. aureus and a functional neutrophil respiratory burst. Decreased apoptosis correlated with impaired clearance of neutrophils by macrophages both in vitro and in vivo and prolonged production of proinflammatory tumor necrosis factor alpha by neutrophils from diabetic mice. Our results suggest that defects in neutrophil apoptosis may contribute to the chronic inflammation and the inability to clear staphylococcal infections observed in diabetic patients.  相似文献   

5.
The PI3K/Akt signaling pathway has been recently suggested to have controversial functions in models of acute and chronic inflammation. Our group and others have reported previously that the complement split product C5a alters neutrophil innate immunity and cell signaling during the onset of sepsis and is involved in PI3K activation. We report in this study that in vivo inhibition of the PI3K pathway resulted in increased mortality in septic mice accompanied by strongly elevated serum levels of TNF-alpha, IL-6, MCP-1, and IL-10 during sepsis as well as decreased oxidative burst activity in blood phagocytes. PI3K inhibition in vitro resulted in significant increases in TLR-4-mediated generation of various proinflammatory cytokines in neutrophils, whereas the opposite effect was observed in PBMC. Oxidative burst and phagocytosis activity was significantly attenuated in both neutrophils and monocytes when PI3K activation was blocked. In addition, PI3K inhibition resulted in strongly elevated TLR-4-mediated generation of IL-1beta and IL-8 in neutrophils when these cells were co-stimulated with C5a. C5a-induced priming effects on neutrophil and monocyte oxidative burst activity as well as C5a-induced phagocytosis in neutrophils were strongly reduced when PI3K activation was blocked. Our data suggest that the PI3K/Akt signaling pathway controls various C5a-mediated effects on neutrophil and monocyte innate immunity and exerts an overall protective effect during experimental sepsis.  相似文献   

6.
The efficient clearance of microbes by neutrophils requires the concerted action of reactive oxygen species and microbicidal components within leukocyte secretory granules. Rubrerythrin (Rbr) is a nonheme iron protein that protects many air-sensitive bacteria against oxidative stress. Using oxidative burst-knockout (NADPH oxidase-null) mice and an rbr gene knockout bacterial strain, we investigated the interplay between the phagocytic oxidative burst of the host and the oxidative stress response of the anaerobic periodontal pathogen Porphyromonas gingivalis. Rbr ensured the proliferation of P. gingivalis in mice that possessed a fully functional oxidative burst response, but not in NADPH oxidase-null mice. Furthermore, the in vivo protection afforded by Rbr was not associated with the oxidative burst responses of isolated neutrophils in vitro. Although the phagocyte-derived oxidative burst response was largely ineffective against P. gingivalis infection, the corresponding oxidative response to the Rbr-positive microbe contributed to host-induced pathology via potent mobilization and systemic activation of neutrophils. It appeared that Rbr also provided protection against reactive nitrogen species, thereby ensuring the survival of P. gingivalis in the infected host. The presence of the rbr gene in P. gingivalis also led to greater oral bone loss upon infection. Collectively, these results indicate that the host oxidative burst paradoxically enhances the survival of P. gingivalis by exacerbating local and systemic inflammation, thereby contributing to the morbidity and mortality associated with infection.  相似文献   

7.
Reactive oxygen intermediates (ROI) released during inflammation may act as important mediators of neutrophil effector functions. The objective of this investigation was to evaluate the influence of ROI generation on neutrophil adhesion molecule regulation and degranulation. Induction of the neutrophil oxidative burst via Fcgamma receptor cross-linking was accompanied by up-regulation of neutrophil surface CD11b, CD35, and CD66b only in the presence of selected serum proteins, such as purified human C4, C5, or human serum albumin (HSA). Scavenging of ROI attenuated protein-dependent receptor regulations. Moreover, exogenous hydrogen peroxide was effective to increase neutrophil CD11b expression in a protein-dependent way. HSA exposed to neutrophil-derived ROI displayed signs of oxidative modification in terms of carbonyl formation. Such modified HSA transferred to resting neutrophils bound readily to the cell surface and effected receptor modulation as well as cellular spreading. In contrast, neither native HSA nor HSA protected against oxidation by the tocopherol analog Trolox exhibited agonistic properties. In conclusion, we demonstrate that neutrophil-derived ROI modify selected serum proteins, which, in turn, act as proinflammatory mediators of neutrophil stimulation.  相似文献   

8.
Current viewpoints concerning the bactericidal mechanisms of neutrophils are reviewed from a perspective that emphasizes challenges presented by the inability to duplicate ex vivo the intracellular milieu. Among the challenges considered are the influences of confinement upon substrate availability and reaction dynamics, direct and indirect synergistic interactions between individual toxins, and bacterial responses to stressors. Approaches to gauging relative contributions of various oxidative and nonoxidative toxins within neutrophils using bacteria and bacterial mimics as intrinsic probes are also discussed.  相似文献   

9.
Neutrophil granules contain proteins important in host defense against bacterial pathogens. Granule proteins released from activated neutrophils facilitate opsonization, phagocytosis, tissue digestion, and antimicrobial activity. Three similar, if not identical, neutrophil proteins, bactericidal/permeability-increasing protein (BPI), 57,000 m.w. cationic antimicrobial protein, and bactericidal protein have been described that specifically kill gram negative bacteria. Since LPS is a structure common to all gram-negative bacteria, we investigated whether the microbicidal protein BPI affects biologic activity of LPS in vitro. Human neutrophils can be activated both in vitro and in vivo by LPS. Upon stimulation, surface expression of CR1 and CR3 increases markedly. Using flow microfluorimetry, we analyzed surface expression of CR1 and CR3 as a measure of neutrophil stimulation in response to LPS. CR up-regulation on neutrophils was TNF independent, suggesting direct LPS stimulation of neutrophils in this system. Purified BPI completely inhibited CR up-regulation on neutrophils stimulated with both rough and smooth LPS chemotypes at 1.8 to 3.6 nM (100 to 200 ng/ml). By comparison, the polypeptide antibiotic polymyxin B completely inhibited the same dose of LPS at 0.4 nM. The inhibitory activity of BPI appeared to be specific for LPS because neutrophil stimulation by formylated peptide or TNF was unaffected. The specificity of BPI for LPS was further demonstrated by inhibition of LPS activity in the limulus amebocyte lysate assay. Therefore, the role of BPI in infection may not be limited to its microbicidal activity, but it may also regulate the neutrophil response to LPS.  相似文献   

10.
During gonorrhoeal infection, there is a heterogeneous population of Neisseria gonorrhoeae (Gc) varied in their expression of opacity‐associated (Opa) proteins. While Opa proteins are important for bacterial attachment and invasion of epithelial cells, Opa+ Gc has a survival defect after exposure to neutrophils. Here, we use constitutively Opa? and OpaD+ Gc in strain background FA1090 to show that Opa+ Gc is more sensitive to killing inside adherent, chemokine‐treated primary human neutrophils due to increased bacterial residence in mature, degradative phagolysosomes that contain primary and secondary granule antimicrobial contents. Although Opa+ Gc stimulates a potent oxidative burst, neutrophil killing of Opa+ Gc was instead attributable to non‐oxidative components, particularly neutrophil proteases and the bactericidal/permeability‐increasing protein. Blocking interaction of Opa+ Gc with carcinoembryonic antigen‐related cell adhesion molecules (CEACAMs) or inhibiting Src family kinase signalling, which is downstream of CEACAM activation, enhanced the survival of Opa+ Gc in neutrophils. Src family kinase signalling was required for fusion of Gc phagosomes with primary granules to generate mature phagolysosomes. Conversely, ectopic activation of Src family kinases or coinfection with Opa+ Gc resulted in decreased survival of Opa? Gc in neutrophils. From these results, we conclude that Opa protein expression is an important modulator of Gc survival characteristics in neutrophils by influencing phagosome dynamics and thus bacterial exposure to neutrophils’ full antimicrobial arsenal.  相似文献   

11.
Helicobacter pylori is a human pathogen, whereas the natural hosts for 'Gastrospirillum hominis' and Helicobacter felis are animals. 'G. hominis' is occasionally found to cause infection in humans, whereas H. felis only rarely infects humans. The pathogenesis of H. pylori infection is not completely understood and in order to reveal differences in immune response to the three Helicobacter species, the upregulation of adherence molecule CD11b/CD18, chemotactic activity and oxidative burst response of neutrophils after stimulation with H. pylori, 'G. hominis' and H. felis sonicates, were compared. Like H. pylori, 'G. hominis' and H. felis induced upregulation of CD11b/CD18 and chemotaxis of neutrophils. 'G. hominis' demonstrated a more pronounced upregulation of CD11b/CD18, whereas H. felis was the strongest stimulant of neutrophil chemotaxis. H. felis was unable to stimulate neutrophils to oxidative burst response, whereas 'G. hominis' activated neutrophils in a dose-dependent way similar to H. pylori. 'G. hominis' and H. felis were both able to prime neutrophils for oxidative burst response similar to H. pylori. In conclusion, we observed clear differences in neutrophil responses to different Helicobacter species, which indicates that bacterial virulence factors may be important for the diversity in the pathogenetic outcome of Helicobacter infections.  相似文献   

12.
Respiratory burst mediates crucial bactericidal mechanism in neutrophils. However, undesirable respiratory burst leads to pathological inflammation and tissue damage. This study investigates the effect and the underlying mechanism of 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,7-dimethoxy-4H-chromen-4-one (MSF-2), a lignan extracted from the fruit of Melicope Semecarprifolia, on fMLP-induced respiratory burst in human neutrophils and suggests a possible therapeutic approach to ameliorate disease associated with neutrophil hyperactivation. MSF-2 inhibited fMLP-induced neutrophil superoxide anion production, cathepsin G release and migration in human neutrophils isolated from healthy volunteers, reflecting inhibition of phosphatidylinositol 3-kinase (PI3K) activation. Specifically, PI3K/AKT activation results in migration, degranulation and superoxide anion production in neutrophils. MSF-2 suppresses PI3K activation and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production, and consequently inhibits downstream activation of PDK1 and AKT. Further, PI3K also stimulates respiratory burst via PLC-dependent elevation of intracellular calcium. MSF-2 reduces fMLP-mediated PLCγ2 activation and intracellular calcium accumulation notably through extracellular calcium influx in a PI3K and PLC-dependent manner. However, MSF-2 is not a competitive or allosteric antagonist of fMLP. Additionally, in an in vivo study, MSF-2 prevents fMLP-induced neutrophil infiltration and inflammation in mice. In conclusion, MSF-2 opposes fMLP-mediated neutrophil activation and inflammation by inhibiting PI3K activation and subsequent activation of AKT and PLCγ2.  相似文献   

13.
Epithelial antimicrobial activity may protect the lung against inhaled pathogens. The bactericidal/permeability-increasing protein family has demonstrated antimicrobial activity in vitro. PLUNC (palate, lung, and nasal epithelium associated) is a 25-kDa secreted protein that shares homology with bactericidal/permeability-increasing proteins and is expressed in nasopharyngeal and respiratory epithelium. The objective of this study was to determine whether PLUNC can limit Pseudomonas aeruginosa infection in mice. Transgenic mice (Scgb1a1-hPLUNC) were generated in which human PLUNC (hPLUNC) was directed to the airway epithelium with the Scgb1a1 promoter. The hPLUNC protein (hPLUNC) was detected in the epithelium throughout the trachea and bronchial airways and in bronchoalveolar lavage fluid. Bronchoalveolar lavage fluid from transgenic mice exhibited higher antibacterial activity than that from wild type littermates in vitro. After in vivo P. aeruginosa challenge, Scgb1a1-hPLUNC transgenic mice displayed enhanced bacterial clearance. This was accompanied by a decrease in neutrophil infiltration and cytokine levels. More importantly, the overexpressed hPLUNC in Scgb1a1-hPLUNC transgenic mouse airway significantly enhanced mouse survival against P. aeruginosa-induced respiratory infection. These data indicate that PLUNC is a novel antibacterial protein that likely plays a critical role in airway epithelium-mediated innate immune response.  相似文献   

14.
It is known that low intensity magnetic fields increase superoxide anion production during the respiratory burst of rat peritoneal neutrophils in vitro. We investigated whether the high intensity magnetic fields (1.5 T) during magnetic resonance imaging can influence the human neutrophil function under in vivo conditions. Blood samples were obtained from 12 patients immediately before and after magnetic resonance imaging (mean time 27.6(+/-11.4 min)). The induced respiratory burst was investigated by the intracellular oxidative transformation of dihydrorhodamine 123 to the fluorescent dye rhodamine 123 via flow cytometry. The respiratory burst was induced either with phorbol 12-myristate 13-acetate, Escherichia coli, N-formyl-methionyl-leucylphenylalanine or priming with tumor necrosis factor followed by FMLP stimulation. There was no significant difference between the respiratory burst before and after magnetic resonance imaging, irrespective of the stimulating agent. Short time exposure to a high intensity magnetic field during magnetic resonance imaging seems not to influence the production of radical species in living neutrophils.  相似文献   

15.
Sphingosine-1-phosphate (S1P) lyase catalyzes the degradation of S1P, a potent signaling lysosphingolipid. Mice with an inactive S1P lyase gene are impaired in the capacity to degrade S1P, resulting in highly elevated S1P levels. These S1P lyase-deficient mice have low numbers of lymphocytes and high numbers of neutrophils in their blood. We found that the S1P lyase-deficient mice exhibited features of an inflammatory response including elevated levels of pro-inflammatory cytokines and an increased expression of genes in liver associated with an acute-phase response. However, the recruitment of their neutrophils into inflamed tissues was impaired and their neutrophils were defective in migration to chemotactic stimulus. The IL-23/IL-17/granulocyte-colony stimulating factor (G-CSF) cytokine-controlled loop regulating neutrophil homeostasis, which is dependent on neutrophil trafficking to tissues, was disturbed in S1P lyase-deficient mice. Deletion of the S1P4 receptor partially decreased the neutrophilia and inflammation in S1P lyase-deficient mice, implicating S1P receptor signaling in the phenotype. Thus, a genetic block in S1P degradation elicits a pro-inflammatory response but impairs neutrophil migration from blood into tissues.  相似文献   

16.
The outer membrane protein A (OmpA) of Gram-negative bacteria has been ascribed multiple functions including maintenance of structural membrane integrity and porin activity. OmpA has also been implicated in various host defense processes in that it contributes to bacterial serum resistance and activates certain immune cells. Recently, OmpA was shown to be the molecular target for neutrophil elastase (NE), and Escherichia coli mutants lacking OmpA were resistant to the bactericidal effects of NE. In addition to NE, neutrophils use a variety of other antibacterial effector molecules such as oxygen radicals and bactericidal peptides or proteins. The aim of this study was to investigate the role of E. coli OmpA regarding susceptibility to other neutrophil-derived defense systems. We found that OmpA-deficient (OmpA(-)), but not wild-type isogenic, E. coli activated human neutrophils to produce oxygen radicals intracellularly. This activation was found to require an intact neutrophil cytoskeleton but was independent of bacterial phagocytosis. Furthermore, we found that the OmpA(-) strain was more susceptible to membrane-acting bactericidal peptides than the wild-type strain, although the susceptibility to different oxygen radicals was independent of the presence of OmpA. Taken together, these data suggest an important role for OmpA in the context of bacteria vs. host interactions.  相似文献   

17.
An impact of adenosine modification with electroneutral, lipophilic 1,12-dicarba-closo-dodecaborane or electronegative 7,8-dicarba-nido-undecaborane boron cluster at the 6-N, 2′-C and 2-C positions on human neutrophil oxidative burst, neutrophil adherence to fibronectin and protein kinase C activity was studied. Modification of adenosine with 1,12-dicarba-closo-dodecaborane, but not 7,8-dicarba-nido-undecaborane, changes the function of adenosine from an inactive to an active state in regulating neutrophil response to PMA stimulation by reducing neutrophils’ reactivity through a mechanism involving the PKC signaling pathway. Our results show that exogenously administered adenosine derivatives can be useful in regulating the oxidative burst of neutrophils in the inflammatory process.  相似文献   

18.
Sprague-Dawley rats (200 g) were fed either a Mg-deficient or Mg-sufficient diet for 3 weeks. An enriched neutrophil fraction (>85%) was isolated from the blood by sodium metrizoate/dextran gradient centrifugation. Using the superoxide dismutase (SOD)-inhibitable cytochrome c reduction assay, the basal activity of neutrophils isolated from the Mg-deficient rats were found elevated 5 fold after two weeks, and up to 7 fold after three weeks on the diet. Upon challenge by phorbol myristate acetate (PMA), unlike the Mg-sufficient cells, the Mg-deficient cells exhibited no significant activation. Treatment of the Mg-deficient rats with the nitric oxide (NO)-synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME) in the drinking water, significantly attenuated the basal superoxide producing activity of the neutrophils and partially restored its response to PMA challenge. In association with the neutrophil activation. Mg-deficiency resulted in 70% decrease in plasma glutathione and 220% increase in Fe-promoted, thiobarbituric acid reactive substance (TBARS) levels; both changes were significantly attenuated by L-NAME treatment. The results suggest that neutrophils from Mg-deficient rats are activated endogenously to generate oxy-radicals which might directly mediate the in vivo peroxidative indices during Mg-deficiency. Furthermore, the neutrophil activity was lowered by NO-synthase inhibition suggesting that NO overproduction during Mg-deficiency participates in the neutrophil activation process.  相似文献   

19.
Human polymorphonuclear neutrophils play a key role in host defenses against invading microorganisms. In response to a variety of stimuli, neutrophils release large quantities of superoxide anion (O2.-) in a phenomenon known as the respiratory burst. O2.- is the precursor of potent oxidants, which are essential for bacterial killing and also potentiate inflammatory reactions. Regulation of this production is therefore critical to kill pathogens without inducing tissue injury. Neutrophil production of O2.- is dependent on the respiratory burst oxidase, or NADPH oxidase, a multicomponent enzyme system that catalyzes NADPH-dependent reduction of oxygen to O2.-. NADPH oxidase is activated and regulated by various neutrophil stimuli at infectious or inflammatory sites. Proinflammatory cytokines such as GM-CSF, TNF and IL-8 modulate NADPH oxidase activity through a priming phenomenon. These cytokines induce a very weak oxidative response by PMN but strongly enhance neutrophil release of reactive oxygen species on exposure to a secondary applied stimulus such as bacterial N-formyl peptides. Priming phenomena are involved in normal innate immune defense and in some inflammatory diseases. The mechanisms underlying the priming process are poorly understood, although some studies have suggested that priming with various agonists is regulated at the receptor and post-receptor levels. Resolution of inflammation involves desensitization phenomena and cytokines are involved in this process by various mechanisms. A better understanding of phenomena involved in the regulation of NADPH oxidase could help to develop novel therapeutic agents for inflammatory diseases involving abnormal neutrophil superoxide production.  相似文献   

20.
Hydroxyl radical production by stimulated neutrophils reappraised   总被引:4,自引:0,他引:4  
Release of active oxygen species during the human neutrophil respiratory burst is thought to be mandatory for effective defense against bacterial infections and may play an important role in damage to host tissues. Part of the critical bacterial and host tissue damage has been attributed to hydroxyl radicals produced from superoxide and hydrogen peroxide. Because of the short life time of the very reactive hydroxyl radical, direct study of hydroxyl radical production is not possible; therefore, indirect detection methods such as electron spin resonance (ESR) coupled with appropriate spin-trapping agents such as 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) have been used. Superoxide production during the oxidative burst has been unambiguously demonstrated. Recent reports claim that hydroxyl radicals are not made during neutrophil stimulation and offer as an explanation the presence of granular components that interfere with hydroxyl radical production. When using the spin-trap agent DMPO, absence of the relatively long-lived adducts DMPO-OH and DMPO-CH3 has been assumed to be prima facie evidence for lack of hydroxyl radical participation. We show that high superoxide flux produced during stimulation of human neutrophils rapidly destroys both DMPO-OH and DMPO-CH3. In accord with previous implications, our results provide an alternative explanation for the absence of .OH adduct in spin-trapping studies and corroborate results obtained using other methods that implicate hydroxyl radical production during neutrophil stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号