首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mean respiratory quotients determined on samples from individual drones by Cartesian diver respirometry averaged 0·64, suggesting that phospholipids constitute the major source of energy. The average sperm density of semen was 7·76 millions/μl. Dilution of semen increased the rate of oxygen consumption by 68 per cent. Semen stored at 13 to 14°C for 1 month showed only 40 per cent of the oxygen uptake of freshly ejaculated semen. Streptomycin sulphate treated samples of semen showed significantly lower rates of oxygen consumption than untreated samples. These results suggest that the high density of sperm in the semen and low metabolic activity during storage may be at least partly responsible for the successful long-term storage of honey-bee spermatozoa.  相似文献   

2.
Sperm are exposed to substantially different environments during their life history, such as seminal fluid or the female sexual tract, but remarkably little information is currently available about whether and how much sperm composition and function alters in these different environments. Here, we used the honeybee Apis mellifera and quantified differences in the abundance and activity of sperm proteins sampled either from ejaculates or from the female’s sperm storage organ. We find that stored and ejaculated sperm contain the same set of proteins but that the abundance of specific proteins differed substantially between ejaculated and stored sperm. Most proteins with a significant change in abundance are related to sperm energy metabolism. Enzymatic assays performed for a subset of these proteins indicate that specific protein activities differ between stored and ejaculated sperm and are typically higher in ejaculated compared to stored sperm. We provide evidence that the cellular machinery of sperm is plastic and differs between sperm within the ejaculate and within the female’s storage organ. Future work will be required to test whether these changes are a consequence of active adaptation or sperm senescence and whether they alter sperm performance indifferent chemical environments or impact on the cost of sperm storage by the female.However, these changes can be expected to influence sperm performance and therefore determine sperm viability or sperm competitiveness for storage or egg fertilization.  相似文献   

3.
Mitochondrion is the main production site for reactive oxygen species (ROS). In endotherms, the existence of a positive relationship between ROS production and metabolic rate is acknowledged. But, little is known about ectotherms, especially fish, with a metabolic rate dependent on the environmental temperature. The maximal oxygen consumption and the production of highly reactive hydroxyl radicals by permeabilized red muscles of yellow and silver eels and trouts were measured concomitantly and compared to those of rats chosen for their comparable body mass, but different metabolic rate. The positive correlation found in fish between the metabolic rate and the ROS production showed a shift with respect to mammals.  相似文献   

4.
Reactive oxygen species (ROS) such as superoxide radicals are responsible for the pathogenesis of various human diseases. ROS are generated during normal metabolic process in all of the oxygen-utilizing organisms. The copper-zinc-containing SOD (SOD1) acts as a major defense against ROS by detoxifying the superoxide anion. In model organisms, SOD1 has been shown to play a role in the aging process. However, the exact role of the SOD1 protein in the human aging process remains to be resolved. We show that SOD1 RNA interference (RNAi) induces senescence in normal human fibroblasts. This premature senescence depends on p53 induction. In contrast, in human fibroblastic cells with inactivated p53, the SOD1 RNAi is without effect. Surprisingly, in cancer cells (HeLa), the SOD1 RNAi induces cell death rather then senescence. Together, these findings support the notion that in normal human cells the SOD1 protein may play a role in the regulation of cellular lifespan by p53 and may also regulate the death signals in cancer cells.  相似文献   

5.
Reactive oxygen species (ROS) acts as a second messenger to trigger biological responses in low concentrations, while it is implicated to be toxic to biomolecules in high concentrations. Mild inhibition of respiratory chain Complex I by metformin at physiologically relevant concentrations stimulates production of low-level mitochondrial ROS. The ROS seems to induce anti-oxidative stress response via activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione peroxidase (GPx), which results in not only elimination of ROS but also activation of cellular responses including resistance to apoptosis, metabolic changes, cell proliferation, senescence prevention, lifespan extension, and immune T cell activation against cancers, regardless of its effect controlling blood glucose level and T2DM. Although metformin's effect against T2DM, cancers, and ageing, are believed mostly attributed to the activation of AMP-activated protein kinase (AMPK), the cellular responses involving metformin-ROS-Nrf2 axis might be another natural asset to improve healthspan and lifespan.  相似文献   

6.
Nicotinamide (NAM) has been shown to suppress reactive oxygen species (ROS) production in primary human fibroblasts, thereby extending their replicative lifespan when added to the medium during long-term cultivation. Based on this finding, NAM is hypothesized to affect cellular senescence progression by keeping ROS accumulation low. In the current study, we asked whether NAM is indeed able to reduce ROS levels and senescence phenotypes in cells undergoing senescence progression and those already in senescence. We employed two different cellular models: MCF-7 cells undergoing senescence progression and human fibroblasts in a state of replicative senescence. In both models, NAM treatment substantially decreased ROS levels. In addition, NAM attenuated the expression of the assessed senescence phenotypes, excluding irreversible growth arrest. N-acetyl cysteine, a potent ROS scavenger, did not have comparable effects in the tested cell types. These data show that NAM has potent antioxidative as well as anti-senescent effects. Moreover, these findings suggest that NAM can reduce cellular deterioration caused by oxidative damage in postmitotic cells in vivo.  相似文献   

7.
Role of oxidative stress in Drosophila aging.   总被引:2,自引:0,他引:2  
We review the role that oxidative damage plays in regulating the lifespan of the fruit fly, Drosophila melanogaster. Results from our laboratory show that the lifespan of Drosophila is inversely correlated to its metabolic rate. The consumption of oxygen by adult insects is related to the rate of damage induced by oxygen radicals, which are purported to be generated as by-products of respiration. Moreover, products of activated oxygen species such as hydrogen peroxide and lipofuscin are higher in animals kept under conditions of increased metabolic rate. In order to understand the in vivo relationship between oxidative damage and the production of the superoxide radical, we generated transgenic strains of Drosophila melanogaster that synthesize excess levels of enzymatically active superoxide dismutase. This was accomplished by P-element transformation of Drosophila melanogaster with the bovine cDNA for CuZn superoxide dismutase, an enzyme that catalyzes the dismutation of the superoxide radical to hydrogen peroxide and water. Adult flies that express the bovine SOD in addition to native Drosophila SOD are more resistant to oxidative stresses and have a slight but significant increase in their mean lifespan. Thus, resistance to oxidative stress and lifespan of Drosophila can be manipulated by molecular genetic intervention. In addition, we have examined the ability of adult flies to respond to various environmental stresses during senescence. Resistance to oxidative stress, such as that induced by heat shock, is drastically reduced in senescent flies. This loss of resistance is correlated with the increase in protein damage generated in old flies by thermal stress and by the insufficient protection from cellular defense systems which includes the heat shock proteins as well as the oxygen radical scavenging enzymes. Collectively, results from our laboratory demonstrate that oxidative damage plays a role in governing the lifespan of Drosophila during normal metabolism and under conditions of environmental stress.  相似文献   

8.
Non-vascular plants rely on sperm to cross the distance between male and female reproductive organs for fertilization and sexual reproduction to occur. The majority of non-vascular plants have separate sexes, and thus, this distance may be a few millimetres to many metres. Because sperm need water for transport, it has been assumed that sperm lifespans are short and that this type of sexual reproduction limits the expansion of non-vascular plants in terrestrial environments. However, little data is available on the lifespan of sperm in non-vascular plants, and none is available for bryophytes, the group thought to have first colonized terrestrial habitats. Here, we documented the lifespan of sperm of Pohlia nutans, collected from a geothermal spring''s area, and tested the effects of variation under environmental conditions on this lifespan. Surprisingly, 20 per cent of the sperm were still motile after 100 h, and sperm lifespan was not significantly affected by temperature variation between 22 and 60°C. Lifespan was significantly affected by sperm dilution and temperatures above 75°C. These results suggest the need to reconsider the importance of sperm motility in bryophyte fertilization.  相似文献   

9.
Nicotinamide extends replicative lifespan of human cells   总被引:3,自引:0,他引:3  
Kang HT  Lee HI  Hwang ES 《Aging cell》2006,5(5):423-436
We found that an ongoing application of nicotinamide to normal human fibroblasts not only attenuated expression of the aging phenotype but also increased their replicative lifespan, causing a greater than 1.6-fold increase in the number of population doublings. Although nicotinamide by itself does not act as an antioxidant, the cells cultured in the presence of nicotinamide exhibited reduced levels of reactive oxygen species (ROS) and oxidative damage products associated with cellular senescence, and a decelerated telomere shortening rate without a detectable increase in telomerase activity. Furthermore, in the treated cells growing beyond the original Hayflick limit, the levels of p53, p21WAF1, and phospho-Rb proteins were similar to those in actively proliferating cells. The nicotinamide treatment caused a decrease in ATP levels, which was stably maintained until the delayed senescence point. Nicotinamide-treated cells also maintained high mitochondrial membrane potential but a lower respiration rate and superoxide anion level. Taken together, in contrast to its demonstrated pro-aging effect in yeast, nicotinamide extends the lifespan of human fibroblasts, possibly through reduction in mitochondrial activity and ROS production.  相似文献   

10.
Evolutionary theory is firmly grounded on the existence of trade-offs between life-history traits, and recent interest has centred on the physiological mechanisms underlying such trade-offs. Several branches of evolutionary biology, particularly those focusing on ageing, immunological and sexual selection theory, have implicated reactive oxygen species (ROS) as profound evolutionary players. ROS are a highly reactive group of oxygen-containing molecules, generated as common by-products of vital oxidative enzyme complexes. Both animals and plants appear to intentionally harness ROS for use as molecular messengers to fulfil a wide range of essential biological processes. However, at high levels, ROS are known to exert very damaging effects through oxidative stress. For these reasons, ROS have been suggested to be important mediators of the cost of reproduction, and of trade-offs between metabolic rate and lifespan, and between immunity, sexual ornamentation and sperm quality. In this review, we integrate the above suggestions into one life-history framework, and review the evidence in support of the contention that ROS production will constitute a primary and universal constraint in life-history evolution.  相似文献   

11.
Fertilization by aged sperm can result in adverse fitness consequences for both males and females. Sperm storage during male sexual rest could provide an environment for post‐meiotic sperm senescence causing a deterioration in the quality of stored sperm, possibly impacting on both sperm performance (e.g. swimming ability) and DNA quality. Here, we compared the proportion of sperm with fragmented DNA, an indicator of structural damage of DNA within the sperm cell, among males that had been sexually rested for approximately 2 months, to that of males that had mated recently. We found no evidence of intra‐epididymal sperm DNA damage or any impairment in sperm performance, and consequently no evidence of post‐meiotic sperm senescence. Our results suggest that male house mice are likely to possess mechanisms that function to ensure that their sperm reserves remain stocked with ‘young’, viable sperm during periods of sexual inactivity. We also discuss the possibility that our experimental design leads to no difference in the age of sperm among males from the two mating treatments. Post‐meiotic sperm senescence is especially relevant under sperm competition. Thus, we sourced mice from populations that differed in their levels of post‐copulatory sexual selection, enabling us to gain insight into how selection for higher sperm production influences the rate of sperm ageing and levels of DNA fragmentation. We found that males from the population that produced the highest number of sperm also had the smallest proportion of DNA‐fragmented sperm and discuss this outcome in relation to selection acting upon males to ensure that they produce ejaculates with high‐quality sperm that are successful in achieving fertilizations under competitive conditions.  相似文献   

12.
Cellular senescence has long been used as a cellular model for understanding mechanisms underlying the ageing process. Compelling evidence obtained in recent years demonstrate that DNA damage is a common mediator for both replicative senescence, which is triggered by telomere shortening, and premature cellular senescence induced by various stressors such as oncogenic stress and oxidative stress. Extensive observations suggest that DNA damage accumulates with age and that this may be due to an increase in production of reactive oxygen species (ROS) and a decline in DNA repair capacity with age. Mutation or disrupted expression of genes that increase DNA damage often result in premature ageing. In contrast, interventions that enhance resistance to oxidative stress and attenuate DNA damage contribute towards longevity. This evidence suggests that genomic instability plays a causative role in the ageing process. However, conflicting findings exist which indicate that ROS production and oxidative damage levels of macromolecules including DNA do not always correlate with lifespan in model animals. Here we review the recent advances in addressing the role of DNA damage in cellular senescence and organismal ageing.  相似文献   

13.
Oxygen free radicals have a major impact on senescence of primary human cells. In replicative senescence, which is induced by uncapping of telomeres, the rate of telomere shortening is largely determined by telomere-specific accumulation of DNA damage induced by reactive oxygen species (ROS). More intense ROS-generating stressors can induce premature senescence via generation of telomere-independent DNA damage. Interestingly, ROS levels were also elevated when premature senescence was triggered by pathways downstream or independent of DNA damage. This has led to the suggestion that ROS generation could be a specific component of the signalling pathways inducing senescence. However, the available data are compatible with the concept that senescence is triggered as a DNA damage response. ROS appear to be involved as inducers of DNA damage rather than as specific signalling molecules. The upregulation of ROS production often seen in premature senescence might be related to retrograde response initiated by mitochondria.  相似文献   

14.
Previous studies have shown that glucose-6-phosphate dehydrogenase (G6PD)-deficient cells are under increased oxidative stress and undergo premature cellular senescence. The present study demonstrates that G6PD-deficient cells cultured under 3% oxygen concentration had an extended replicative lifespan, as compared with those cultured under atmospheric oxygen level. This was accompanied by a reduction in the number of senescence-associated β-galactosidase (SA-β-Gal) positive and morphologically senile cells at comparable population doubling levels (PDL). Concomitant with the extension of lifespan was decreased production of reactive oxygen species. Additionally, lifespan extension was paralleled by the greatly abated formation of such oxidative damage markers as 8-hydroxy-deoxyguanosine (8-OHdG) as well as the oxidized and cross-linked proteins. Moreover, the mitochondrial mass increased, but the mitochondrial membrane potential ΔΨm decreased in cells upon serial propagation. These changes were inhibited by lowering the oxygen tension. Our findings provide additional support to the notion that oxidative damage contributes to replicative senescence of G6PD-deficient cells and reduction of oxidative damage by lowering oxygen tension can delay the onset of cellular senescence.  相似文献   

15.
《Cryobiology》2015,70(3):386-393
Reactive oxygen species (ROS) are one of the main causes for decreased viability in cryopreserved sperm. Many studies have reported the beneficial effect of antioxidant supplements in freezing media for post-thaw sperm quality. In the present study, we explored two new approaches of ROS inhibition in sperm cryopreservation of yellow catfish, namely mitochondrial-targeted antioxidant and metabolic modulator targeting mitochondrial uncoupling pathways. Our study revealed that addition of MitoQ, a compound designed to deliver ubiquinone into mitochondria, significantly decreased ROS production, as well as lipid peroxidation, and increased post-thaw viability. Similarly, sperm incubated with 2,4-dinitrophenol (DNP), a chemical protonophore that induces mitochondrial uncoupling, also had reduced ROS production, as well as lipid peroxidation, and increased post-thaw sperm viability. Conversely, activation of uncoupling protein (UCP2) by 4-hydroxynonenal (HNE) neither reduced ROS production nor increased post-thaw sperm viability. Our findings indicate that ROS inhibition through mitochondrial-targeted antioxidant or mild mitochondrial uncoupling is beneficial for sperm cryopreservation in yellow catfish. Our study provides novel methods to mitigate oxidative stress induced damage in cryopreserved sperm for future applications.  相似文献   

16.
The quest to understand why and how we age has led to numerous lines of investigation that have gradually converged to consider mitochondrial metabolism as a major player. During mitochondrial respiration a small and variable amount of the consumed oxygen is converted to reactive species of oxygen (ROS). For many years, these ROS have been perceived as harmful by-products of respiration. However, evidence from recent years indicates that ROS fulfill important roles as cellular messengers. Results obtained using model organisms suggest that ROS-dependent signalling may even activate beneficial cellular stress responses, which eventually may lead to increased lifespan. Nevertheless, when an overload of ROS cannot be properly disposed of, its accumulation generates oxidative stress, which plays a major part in the ageing process. Comparative studies about the rates of ROS production and oxidative damage accumulation, have led to the idea that the lower rate of mitochondrial oxygen radical generation of long-lived animals with respect to that of their short-lived counterpart, could be a primary cause of their slow ageing rate. A hitherto largely under-appreciated alternative view is that such lower rate of ROS production, rather than a cause may be a consequence of the metabolic constraints imposed for the large body sizes that accompany high lifespans. To help understanding the logical underpinning of this rather heterodox view, herein I review the current literature regarding the mechanisms of ROS formation, with particular emphasis on evolutionary aspects.  相似文献   

17.
Previous studies have shown that glucose-6-phosphate dehydrogenase (G6PD)-deficient cells are under increased oxidative stress and undergo premature cellular senescence. The present study demonstrates that G6PD-deficient cells cultured under 3% oxygen concentration had an extended replicative lifespan, as compared with those cultured under atmospheric oxygen level. This was accompanied by a reduction in the number of senescence-associated β-galactosidase (SA-β-Gal) positive and morphologically senile cells at comparable population doubling levels (PDL). Concomitant with the extension of lifespan was decreased production of reactive oxygen species. Additionally, lifespan extension was paralleled by the greatly abated formation of such oxidative damage markers as 8-hydroxy-deoxyguanosine (8-OHdG) as well as the oxidized and cross-linked proteins. Moreover, the mitochondrial mass increased, but the mitochondrial membrane potential ΔΨm decreased in cells upon serial propagation. These changes were inhibited by lowering the oxygen tension. Our findings provide additional support to the notion that oxidative damage contributes to replicative senescence of G6PD-deficient cells and reduction of oxidative damage by lowering oxygen tension can delay the onset of cellular senescence.  相似文献   

18.
Mass-specific metabolic rate, the rate at which organisms consume energy per gram of body weight, is negatively associated with body size in metazoans. As a consequence, small species have higher cellular metabolic rates and are able to process resources at a faster rate than large species. Since mass-specific metabolic rate has been shown to constrain evolution of sperm traits, and most of the metabolic activity of sperm cells relates to ATP production for sperm motility, we hypothesized that mass-specific metabolic rate could influence sperm energetic metabolism at the cellular level if sperm cells maintain the metabolic rate of organisms that generate them. We compared data on sperm straight-line velocity, mass-specific metabolic rate, and sperm ATP content from 40 mammalian species and found that the mass-specific metabolic rate positively influences sperm swimming velocity by (a) an indirect effect of sperm as the result of an increased sperm length, and (b) a direct effect independent of sperm length. In addition, our analyses show that species with higher mass-specific metabolic rate have higher ATP content per sperm and higher concentration of ATP per μm of sperm length, which are positively associated with sperm velocity. In conclusion, our results suggest that species with high mass-specific metabolic rate have been able to evolve both long and fast sperm. Moreover, independently of its effect on the production of larger sperm, the mass-specific metabolic rate is able to influence sperm velocity by increasing sperm ATP content in mammals.  相似文献   

19.
Oxygen is toxic to aerobic animals because it is univalently reduced inside cells to oxygen free radicals. Studies dealing with the relationship between oxidative stress and aging in different vertebrate species and in caloric-restricted rodents are discussed in this review. Healthy tissues mainly produce reactive oxygen species (ROS) at mitochondria. These ROS can damage cellular lipids, proteins and, most importantly, DNA. Although antioxidants help to control this oxidative stress in cells in general, they do not decrease the rate of aging, because their concentrations are lower in long- than in short-lived animals and because increasing antioxidant levels does not increase vertebrate maximum longevity. However, long-lived homeothermic vertebrates consistently have lower rates of mitochondrial ROS production and lower levels of steady-state oxidative damage in their mitochondrial DNA than short-lived ones. Caloric-restricted rodents also show lower levels of these two key parameters than controls fed ad libitum. The decrease in mitochondrial ROS generation of the restricted animals has been recently localized at complex I and the mechanism involved is related to the degree of electronic reduction of the complex I ROS generator. Strikingly, the same site and mechanism have been found when comparing a long- with a short-lived animal species. It is suggested that a low rate of mitochondrial ROS generation extends lifespan both in long-lived and in caloric-restricted animals by determining the rate of oxidative attack and accumulation of somatic mutations in mitochondrial DNA.  相似文献   

20.
Sperm limitation is widespread across many animal species. Several mechanisms of sperm allocation have been proposed, including optimal allocation according to clutch size and equal allocation across females. However, considerably less effort has been directed at investigating the behavioural signals associated with sperm limitation in males, which may include mating rate and the intensity of courtship. We investigated whether multiple successive spawnings affect individual male fertilization success, mating rates and courtship rates in Japanese medaka (Oryzias latipes). Across an average of 17 spawning events per male, fertilization success decreased from 83.7 per cent for the first spawning to 40 per cent for the last spawning while courtship rate decreased from 3.4 to 1.5 min−1. Females appeared to respond to male sperm depletion by reducing clutch size. Our results suggest that male Japanese medaka are sperm-limited, and that courtship rate may be an honest indication of fertilization ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号