共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The Hippo kinase pathway is emerging as a conserved signaling pathway that is essential for organ growth and tumorigenesis in Drosophila and mammalians. Although the signaling of the core kinases is relatively well understood, less is known about the upstream inputs, downstream outputs and regulation of the whole cascade. Enrichment of the Hippo pathway components with WW domains and their cognate proline-rich interacting motifs provides a versatile platform for further understanding the mechanisms that regulate organ growth and tumorigenesis. Here, we review recently discovered mechanisms of WW domain-mediated interactions that contribute to the regulation of the Hippo signaling pathway in tumorigenesis. We further discuss new insights and future directions on the emerging role of such regulation. 相似文献
6.
7.
8.
9.
10.
Mast cells are known to play a pivotal role in allergic diseases such as allergic rhinitis, asthma, and atopic dermatitis by releasing granules containing histamine, LTC4, and other preformed chemical mediators. Previous reports have demonstrated that IKK2 (also called IKKβ), a central intracellular component of NF-κB activation pathways, plays a critical role in IgE-mediated degranulation of mast cells and anaphylaxis in mice. In this study, we show that protein levels of tumor suppressor p53 are up-regulated upon IgE-mediated activation in mast cells and lack of p53 results in enhanced responses in both early and late phase anaphylaxis. p53 inhibits not only the catalytic activity of IKK2 presumably through the modulation of glycosylation but also p65 (RelA)-mediated transactivation. Our findings are the first to demonstrate that p53 functions as a negative regulator in mast cells. 相似文献
11.
Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule 总被引:56,自引:0,他引:56
Carcinoembryonic antigen (CEA) is a member of a family of cell surface glycoproteins that are produced in excess in essentially all human colon carcinomas and in a high proportion of carcinomas at many other sites. The function of this widely used tumor marker and its relevance to malignant transformation is therefore of considerable interest. We demonstrate here that CEA mediates Ca2+-independent, homotypic aggregation of cultured human colon adenocarcinoma cells (LS-180) and rodent cells transfected with functional CEA cDNA. Furthermore, CEA can effect the homotypic sorting of cells in heterogeneous populations of aggregating cells. CEA can thus be considered a new addition to the family of intercellular adhesion molecules. We also show that, whereas CEA is localized mainly to epithelial cell membranes facing the lumen in normal adult intestine, it is found on adjacent cell membranes in both embryonic intestine and colonic tumors. A model for the role of CEA in the tissue architecture of adult, embryonic, and aberrant tumor intestinal epithelium is presented. 相似文献
12.
Tell S Yi H Jockovich ME Murray TG Hackam AS 《Biochemical and biophysical research communications》2006,349(1):261-269
Retinoblastoma is a pediatric retinal tumor caused by mutational inactivation of the tumor suppressor pRb. Additional genetic changes, as yet unidentified, are believed to be required for tumor initiation. Mutations in the Wnt signaling pathway have been implicated in the pathogenesis of many cancers. Multiple Wnt pathway genes are expressed in the retina and the pRb and Wnt pathways interact biochemically, raising the possibility that alterations in the Wnt pathway contribute to retinoblastoma. Our studies showed that Wnt signaling activation significantly decreased the viability of retinoblastoma cell lines by inducing cell cycle arrest, which was associated with upregulated p53. Furthermore, immunolocalization of the Wnt signaling mediator beta-catenin in human and mouse retinoblastoma tissue indicated that canonical Wnt signaling is suppressed in tumors in vivo. These studies are consistent with the Wnt pathway acting as a tumor suppressor in retinoblastoma and suggest that loss of Wnt signaling is tumorigenic in the retina. 相似文献
13.
14.
Neuroplastin (Np) is a glycoprotein that belongs to the immunoglobulin superfamily of cell adhesion molecules. It exists in two isoforms, Np55 and Np65, named according to their apparent molecular weights. Neuroplastins were first identified as synapse-specific proteins, but subsequent findings have shown that Np65 is indeed expressed only in the brain, whereas Np55 is found in wide range of tissues. Since their discovery, the knowledge of Nps expanded, implicating them in various processes, including neuronal differentiation and synaptic plasticity. Here, we will review the Np structure and mechanisms involved in Np signaling and discuss the functions of Nps in the nervous system. 相似文献
15.
Tao-1 phosphorylates Hippo/MST kinases to regulate the Hippo-Salvador-Warts tumor suppressor pathway
Recent studies have shown that the Hippo-Salvador-Warts (HSW) pathway restrains tissue growth by phosphorylating and inactivating the oncoprotein Yorkie. How growth-suppressive signals are transduced upstream of Hippo remains unclear. We show that the Sterile 20 family kinase, Tao-1, directly phosphorylates T195 in the Hippo activation loop and that, like other HSW pathway genes, Tao-1 functions to restrict cell proliferation in developing imaginal epithelia. This relationship appears to be evolutionarily conserved, because mammalian Tao-1 similarly affects MST kinases. In S2 cells, Tao-1 mediates the effects of the upstream HSW components Merlin and Expanded, consistent with the idea that Tao-1 functions in tissues to regulate Hippo phosphorylation. These results demonstrate that one family of Ste20 kinases can activate another and identify Tao-1 as a component of the regulatory network controlling HSW pathway signaling, and therefore tissue growth, during development. 相似文献
16.
17.
During Drosophila oogenesis, the somatic follicle cells form an epithelial layer surrounding the germline cells to form egg chambers. In this process, follicle cell precursors are specified into polar cells, stalk cells, and main-body follicle cells. Proper specification of these three cell types ensures correct egg chamber formation and polarization of the anterior–posterior axis of the germline cells. Multiple signaling cascades coordinate to control the follicle cell fate determination, including Notch, JAK/STAT, and Hedgehog signaling pathways. Here, we show that the Hippo pathway also participates in polar cell specification. Over-activation of yorkie (yki) leads to egg chamber fusion, possibly through attenuation of polar cell specification. Loss-of-function experiments using RNAi knockdown or generation of mutant clones by mitotic recombination demonstrates that reduction of yki expression promotes polar cell formation in a cell-autonomous manner. Consistently, polar cells mutant for hippo (hpo) or warts (wts) are not properly specified, leading to egg chamber fusion. Furthermore, Notch activity is increased in yki mutant cells and reduction of Notch activity suppresses polar cell formation in yki mutant clones. These results demonstrate that yki represses polar cell fate through Notch signaling. Collectively, our data reveal that the Hippo pathway controls polar cell specification. Through repressing Notch activity, Yki serves as a key repressor in specifying polar cells during Drosophila oogenesis. 相似文献
18.
19.
20.
Esophageal cancer is one of the most common cancers worldwide with a poor prognosis. MicroRNAs(miRNAs) are a class of naturally occurring small noncoding RNAs and play an important role in cancer initiation and development. In this study, we demonstrate that the expression levels of miR-143 and miR-145 were significantly decreased in ESCC tissues in comparison with adjacent normal esophageal squamous tissues(NESTs). Furthermore, an inverse correlation between miR-143 and tumor invasion depth and lymph node metastasis was observed. The enforced expression of miR-143 induced growth suppression and apoptosis of ESCC cells. Rescue of miR-143 significantly suppressed the ESCC cells migration and invasion capabilities. Moreover, we show that functions of miR-143 in ESCC are mediated at least in part by the inhibition of extracellular signal regulated kinase-5(ERK-5) activity. These results prove that miR-143 may act as a tumor suppressor in ESCC. 相似文献