首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
TRAF6 has a key role in the regulation of innate immune responses by mediating signals from both TNF receptor and interleukin-1 receptor/Toll-like receptor superfamilies. Here we show that T cell-specific deletion of TRAF6 unexpectedly results in multiorgan inflammatory disease. TRAF6-deficient T cells exhibit hyperactivation of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway compared with wild-type T cells and, as a result, become resistant to suppression by CD4+ CD25+ regulatory T cells. These data identify a previously unrecognized role for TRAF6 in the maintenance of peripheral tolerance, and suggest the presence of a T cell-intrinsic control mechanism to render responder T cells susceptible to tolerizing signals.  相似文献   

4.
Results from lineage tracing studies indicate that precursor cells in the ventricles give rise to both cardiac muscle and conduction cells. Cardiac conduction cells are specialized cells responsible for orchestrating the rhythmic contractions of the heart. Here, we show that Notch signaling plays an important role in the differentiation of cardiac muscle and conduction cell lineages in the ventricles. Notch1 expression coincides with a conduction marker, HNK-1, at early stages. Misexpression of constitutively active Notch1 (NIC) in early heart tubes in chick exhibited multiple effects on cardiac cell differentiation. Cells expressing NIC had a significant decrease in expression of cardiac muscle markers, but an increase in expression of conduction cell markers, HNK-1, and SNAP-25. However, the expression of the conduction marker connexin 40 was inhibited. Loss-of-function study, using a dominant-negative form of Suppressor-of-Hairless, further supports that Notch1 signaling is important for the differentiation of these cardiac cell types. Functional studies show that the expression of constitutively active Notch1 resulted in abnormalities in ventricular conduction pathway patterns.  相似文献   

5.
The specific role of endogenous Bmp2 gene in chondrocytes and in osteoblasts in fracture healing was investigated by generation and analysis of chondrocyte- and osteoblast-specific Bmp2 conditional knockout (cKO) mice. The unilateral open transverse tibial fractures were created in these Bmp2 cKO mice. Bone fracture callus samples were collected and analyzed by X-ray, micro-CT, histology analyses, biomechanical testing and gene expression assays. The results demonstrated that the lack of Bmp2 expression in chondrocytes leads to a prolonged cartilage callus formation and a delayed osteogenesis initiation and progression into mineralization phase with lower biomechanical properties. In contrast, when the Bmp2 gene was deleted in osteoblasts, the mice showed no significant difference in the fracture healing process compared to control mice. These findings suggest that endogenous BMP2 expression in chondrocytes may play an essential role in cartilage callus maturation at an early stage of fracture healing. Our studies may provide important information for clinical application of BMP2.  相似文献   

6.
Mucosal surfaces such as the intestinal tract are continuously exposed to both potential pathogens and beneficial commensal microorganisms. This creates a requirement for a homeostatic balance between tolerance and immunity that represents a unique regulatory challenge to the mucosal immune system. Recent findings suggest that intestinal epithelial cells, although once considered a simple physical barrier, are a crucial cell lineage for maintaining intestinal immune homeostasis. This Review discusses recent findings that identify a cardinal role for epithelial cells in sampling the intestinal microenvironment, discriminating pathogenic and commensal microorganisms and influencing the function of antigen-presenting cells and lymphocytes.  相似文献   

7.
Survivin was initially described as an inhibitor of apoptosis and attracted growing attention as one of the most tumor-specific genes in the human genome and a promising target for cancer therapy. Lately, it has been shown that survivin is a multifunctional protein that takes part in several crucial cell processes. At first, it was supposed that survivin functions only as a homodimer, but now data indicate that many processes require monomeric survivin. Moreover, recent studies reveal a special mechanism regulating the balance between monomeric and dimeric forms of the protein. In this paper we studied the mutant form of survivin that was unable to dimerize and investigated its role in apoptosis. We showed that survivin monomer interacts with Smac/DIABLO and X-linked inhibitor of apoptosis protein (XIAP) both in vitro and in vivo. Due to this feature, it protects cells from caspase-dependent apoptosis even more efficiently than the wild-type survivin. We also identified that mutant monomeric survivin prevents apoptosis-inducing factor release from the mitochondrial intermembrane space, protecting human fibrosarcoma HT1080 cells from caspase-independent apoptosis. On the other hand, our results indicate that only wild-type survivin, but not the monomer mutant form, enhances tubulin stability in cells. These findings suggest that survivin partly performs its functions as a monomer and partly as a dimer. The mechanism of dimer-monomer balance regulation may also work as a "switcher" between survivin functions and thereby explain remarkable functional diversities of this protein.  相似文献   

8.
Notch signaling is a key mechanism in the control of embryogenesis. However, its in vivo function during mesenchymal cell differentiation, and, specifically, in bone homeostasis, remains largely unknown. Here, we show that osteoblast-specific gain of Notch function causes severe osteosclerosis owing to increased proliferation of immature osteoblasts. Under these pathological conditions, Notch stimulates early osteoblastic proliferation by upregulating the genes encoding cyclin D, cyclin E and Sp7 (osterix). The intracellular domain of Notch1 also regulates terminal osteoblastic differentiation by directly binding Runx2 and repressing its transactivation function. In contrast, loss of all Notch signaling in osteoblasts, generated by deletion of the genes encoding presenilin-1 and presenilin-2 in bone, is associated with late-onset, age-related osteoporosis, which in turn results from increased osteoblast-dependent osteoclastic activity due to decreased osteoprotegerin mRNA expression in these cells. Together, these findings highlight the potential dimorphic effects of Notch signaling in bone homeostasis and may provide direction for novel therapeutic applications.  相似文献   

9.
Recent data from multiple organisms indicate that gamma-tubulin has essential, but incompletely defined, functions in addition to nucleating microtubule assembly. To investigate these functions, we examined the phenotype of mipAD159, a cold-sensitive allele of the gamma-tubulin gene of Aspergillus nidulans. Immunofluorescence microscopy of synchronized material revealed that at a restrictive temperature mipAD159 does not inhibit mitotic spindle formation. Anaphase A was inhibited in many nuclei, however, and after a slight delay in mitosis (approximately 6% of the cell cycle period), most nuclei reentered interphase without dividing. In vivo observations of chromosomes at a restrictive temperature revealed that mipAD159 caused a failure of the coordination of late mitotic events (anaphase A, anaphase B, and chromosomal disjunction) and nuclei reentered interphase quickly even though mitosis was not completed successfully. Time-lapse microscopy also revealed that transient mitotic spindle abnormalities, in particular bent spindles, were more prevalent in mipAD159 strains than in controls. In experiments in which microtubules were depolymerized with benomyl, mipAD159 nuclei exited mitosis significantly more quickly (as judged by chromosomal condensation) than nuclei in a control strain. These data reveal that gamma-tubulin has an essential role in the coordination of late mitotic events, and a microtubule-independent function in mitotic checkpoint control.  相似文献   

10.
Maspin (Mp) is a member of the serpin family with inhibitory functions against cell migration, metastasis and angiogenesis. To identify its role in embryonic development in vivo, we generated maspin knockout mice by gene targeting. In this study, we showed that homozygous loss of maspin expression was lethal at the peri-implantation stage. Maspin was specifically expressed in the visceral endoderm after implantation; deletion of maspin interfered with the formation of the endodermal cell layer, thereby disrupting the morphogenesis of the epiblast. In vitro, the ICM of the Mp(-/-) blastocysts failed to grow out appropriately. Data from embryoid body formation studies indicated that the Mp(-/-) EBs had a disorganized, endodermal cell mass and lacked a basement membrane layer. We showed that the embryonic ectoderm lineage was lost in the Mp(-/-) EBs, compared with that of the Mp(+/+) EBs. Re-expression of maspin partially rescued the defects observed in the Mp(-/-) EBs, as evidenced by the appearance of ectoderm cells and a layer of endoderm cells surrounding the ectoderm. In addition, a maspin antibody specifically blocked normal EB formation, indicating that maspin controls the process through a cell surface event. Furthermore, we showed that maspin directly increased endodermal cell adhesion to laminin matrix but not to fibronectin. Mp(+/-) endodermal cells grew significantly slower than Mp(+/+) endodermal cells on laminin substrate. We conclude that deletion of maspin affects VE function by reducing cell proliferation and adhesion, thereby controlling early embryonic development.  相似文献   

11.
12.
A putative CLC voltage-gated anion channel gene from Aspergillus nidulans (AnCLCA) is characterised. The expression of the AnCLCA cDNA restored the iron-limited growth of the Saccharomyces cerevisiae CLC null mutant strain (gef1) suggesting that AnCLCA functions as a chloride channel. An AnCLCA conditional mutant was created and exhibited a strong and specific growth inhibition in the presence of extracellular copper concentrations >18 microM. This sensitivity was shown to be the result of a hyper-accumulation of copper by the conditional mutant, which generates superoxide to toxic levels inhibiting the growth. Further analysis revealed that copper dependent enzymes were disrupted in the AnCLCA conditional null mutant, specifically, a reduced activity of the copper-zinc superoxide dismutase (CuZn-SOD) and enhanced activity of the cytochrome oxidase (COX). These results suggest that AnCLCA plays a key role in copper homeostasis in A. nidulans and that a malfunction of this chloride channel results in disrupted intracellular copper trafficking.  相似文献   

13.
The Golgi complex is a central hub for intracellular protein trafficking and glycosylation. Steady-state localization of glycosylation enzymes is achieved by a combination of mechanisms involving retention and recycling, but the machinery governing these mechanisms is poorly understood. Herein we show that the Golgi-associated retrograde protein (GARP) complex is a critical component of this machinery. Using multiple human cell lines, we show that depletion of GARP subunits impairs Golgi modification of N- and O-glycans and reduces the stability of glycoproteins and Golgi enzymes. Moreover, GARP-knockout (KO) cells exhibit reduced retention of glycosylation enzymes in the Golgi. A RUSH assay shows that, in GARP-KO cells, the enzyme beta-1,4-galactosyltransferase 1 is not retained at the Golgi complex but instead is missorted to the endolysosomal system. We propose that the endosomal system is part of the trafficking itinerary of Golgi enzymes or their recycling adaptors and that the GARP complex is essential for recycling and stabilization of the Golgi glycosylation machinery.  相似文献   

14.
TFIIH plays an essential role in RNA polymerase I transcription   总被引:7,自引:0,他引:7  
  相似文献   

15.
In the present study, we explored the involvement of interleukin-6 (IL-6) in neutrophilia under inflammatory conditions. The neutrophil count in the peripheral blood was high in arthritic monkeys, and anti-IL-6 receptor antibody reduced neutrophil counts to normal levels. IL-6 injection into normal monkeys significantly increased neutrophil counts in the blood 3h after injection. The expression of cluster of differentiation (CD) 162 on circulating neutrophils was reduced by IL-6 injection. IL-6 treatment in vitro did not affect CD162 expression on neutrophils from human blood. In IL-6-treated monkeys, IL-8 and granulocyte-macrophage colony-stimulating factor (GM-CSF) levels in plasma were clearly elevated. IL-8 and GM-CSF treatment in vitro reduced cell-surface CD162 expression on human neutrophils, and moreover, increased soluble CD162 expression in the cell supernatant. The addition of IL-6 into human whole peripheral blood induced IL-8 production and reduced CD162 expression on neutrophils. Furthermore, IL-8 and GM-CSF augmented mRNA expression of a disintegrin and metalloprotease like domain 10 (ADAM10) in neutrophils. Knock-down of ADAM10 by siRNA in neutrophil-like HL-60 cells partially reversed the expression of CD162 reduced by GM-CSF and IL-8 on HL-60 cells. In conclusion, IL-6 induced neutrophilia and reduced CD162 expression on neutrophils in inflammation.  相似文献   

16.
17.
Genome duplication is tightly controlled in multicellular organisms to ensure the genome stability. Studies in Saccharomyces cerevisiae and Xenopus show that minichromosome maintenance (MCM) proteins are essential for genome duplication. However, the development role of MCM proteins in multicellular organisms is not well known. MCM5 encodes a member of the MCM2-7 protein family involved in the initiation of DNA replication. The sequences of all Mcm5 homologues from yeast to human are highly conserved and suggest that their functions are also conserved. Here, we isolated the first mutant allele of mcm-5 (fw7) in Caenorhabditis elegans. Homozygous mcm-5 (fw7) mutants from heterozygous parents exhibited variable larval lethality and adult sterility. The postembryonically born neuron number was decreased and also showed aberrant axon morphology. Our study revealed that the losses of neurons in mcm-5 (fw7) mutants were caused by cell cycle defects not by programmed cell death. The examination showed that mcm-5 was widely used for postembryonic development in multiple cells such as seam cells, gonad and intestinal cells. Knockdown of mcm-5 by RNAi caused 98.1% embryonic arrest, suggesting that mcm-5 was also required for embryonic development. After RNAi treatment of the other MCM2-7 family members, we found that they all exhibited similar phenotypes as mcm-5, suggesting that the MCM2-7 family in C. elegans might function associated with cell division as its homologues in S. cerevisiae.  相似文献   

18.
The mobilization of inorganic phosphate (Pi) in planta is a complex process regulated by a number of developmental and environmental cues. Plants possess many Pi transporters that acquire Pi from the rhizosphere and translocate it throughout the plant. A few members of the high-affinity Pht1 family of Pi transporters have been functionally characterized and, for the most part, have been shown to be involved in Pi acquisition. We recently demonstrated that the Arabidopsis Pi transporter, Pht1;5, plays a key role in translocating Pi between tissues. Loss-of-function pht1;5 mutant seedlings accumulated more P in shoots relative to wild type but less in roots. In contrast, overexpression of Pht1;5 resulted in a lower P shoot:root ratio compared with wild type. Also, the rosette leaves of Pht1;5-overexpression plants senesced early and contained less P, whereas reproductive organs accumulated more P than those of wild type. Herein we report the molecular response of disrupting Pht1;5 expression on other factors known to modulate P distribution. The results reveal reciprocal mis-regulation of PHO1, miR399d, and At4 in the pht1;5 mutant and Pht1;5-overexpressor, consistent with the corresponding changes in P distribution in these lines. Together our studies reveal a complex role for Pht1;5 in regulating Pi homeostasis.  相似文献   

19.
FGF-10 plays an essential role in the growth of the fetal prostate   总被引:4,自引:0,他引:4  
Induction and branching morphogenesis of the prostate are dependent on androgens, which act via the mesenchyme to induce prostatic epithelial development. One mechanism by which the mesenchyme may regulate the epithelium is through secreted growth factors such as FGF-10. We have examined the male reproductive tract of FGF-10(-/-) mice, and at birth, most of the male secondary sex organs were absent or atrophic, including the prostate, seminal vesicle, bulbourethral gland, and caudal ductus deferens. Rudimentary prostatic buds were occasionally observed in the prostatic anlagen, the urogenital sinus (UGS) of FGF-10(-/-) mice. FGF-10(-/-) testes produced sufficient androgens to induce prostatic development in control UGS organ cultures. Prostatic rudiments from FGF-10(-/-) mice transplanted into intact male hosts grew very little, but showed some signs of prostatic differentiation. In cultures of UGS, the FGF-10 null phenotype was partially reversed by the addition of FGF-10 and testosterone, resulting in the formation of prostatic buds. FGF-10 alone did not stimulate prostatic bud formation in control or FGF-10(-/-) UGS. Thus, FGF-10 appears to act as a growth factor which is required for development of the prostate and several other accessory sex organs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号