首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although curcumin has been shown to inhibit prostate tumor growth in animal models, its mechanism of action is not clear. To better understand the anti-cancer effects of curcumin, we investigated the effects of curcumin on cell survival factor Akt in human prostate cancer cell lines, LNCaP, PC-3, and DU-145. Our results demonstrated differential activation of Akt. Akt was constitutively activated in LNCaP and PC-3 cells. Curcumin inhibited completely Akt activation in both LNCaP and PC-3 cells. The presence of 10% serum decreased the inhibitory effect of curcumin in PC-3 cells whereas complete inhibition was observed in 0.5% serum. Very little or no activation of Akt was observed in serum starved DU-145 cells (0.5% serum). The presence of 10% serum activated Akt in DU-145 cells and was not inhibited by curcumin. Results suggest that one of the mechanisms of curcumin inhibition of prostate cancer may be via inhibition of Akt. To our knowledge this is the first report on the curcumin inhibition of Akt activation in LNCaP and PC-3 but not in DU-145 cells.  相似文献   

2.
The serine-threonine kinase Akt is a protooncogene involved in the regulation of cell proliferation and survival. Activation of Akt is initiated by binding to the phospholipid products of phosphoinositide 3-kinase at the inner leaflet of the plasma membranes followed by phosphorylation at Ser(473) and Thr(308). We have found that Akt is activated by Salmonella enterica serovar Typhimurium in epithelial cells. A bacterial effector protein, SigD, which is translocated into host cells via the specialized type III secretion system, is essential for Akt activation. In HeLa cells, wild type S. typhimurium induced translocation of Akt to membrane ruffles and phosphorylation at residues Thr(308) and Ser(473) and increased kinase activity. In contrast, infection with a SigD deletion mutant did not induce phosphorylation or activity although Akt was translocated to membrane ruffles. Complementation of the SigD deletion strain with a mutant containing a single Cys to Ser mutation (C462S), did not restore the Akt activation phenotype. This residue has previously been shown to be essential for inositol phosphatase activity of the SigD homologue, SopB. Our data indicate a novel mechanism of Akt activation in which the endogenous cellular pathway does not convert membrane-associated Akt into its active form. SigD is also the first bacterial effector to be identified as an activator of Akt.  相似文献   

3.
The protein kinase B/Akt signalling pathway in human malignancy   总被引:34,自引:0,他引:34  
Protein kinase B or Akt (PKB/Akt) is a serine/threonine kinase, which in mammals comprises three highly homologous members known as PKBalpha (Akt1), PKBbeta (Akt2), and PKBgamma (Akt3). PKB/Akt is activated in cells exposed to diverse stimuli such as hormones, growth factors, and extracellular matrix components. The activation mechanism remains to be fully characterised but occurs downstream of phosphoinositide 3-kinase (PI-3K). PI-3K generates phosphatidylinositol-3,4,5-trisphosphate (PIP(3)), a lipid second messenger essential for the translocation of PKB/Akt to the plasma membrane where it is phosphorylated and activated by phosphoinositide-dependent kinase-1 (PDK-1) and possibly other kinases. PKB/Akt phosphorylates and regulates the function of many cellular proteins involved in processes that include metabolism, apoptosis, and proliferation. Recent evidence indicates that PKB/Akt is frequently constitutively active in many types of human cancer. Constitutive PKB/Akt activation can occur due to amplification of PKB/Akt genes or as a result of mutations in components of the signalling pathway that activates PKB/Akt. Although the mechanisms have not yet been fully characterised, constitutive PKB/Akt signalling is believed to promote proliferation and increased cell survival and thereby contributing to cancer progression. This review surveys recent developments in understanding the mechanisms and consequences of PKB/Akt activation in human malignancy.  相似文献   

4.
Although sphingosine-1-phosphate (S1P) is a well-known mitogen, it has only recently been demonstrated that S1P is able to inhibit cell proliferation in human epidermal keratinocytes and hepatic myofibroblasts. In the present study, we investigated the possible signalling pathways involved in the growth inhibition of human keratinocytes. Our results show that S1P potently inhibits keratinocyte proliferation, and that this leads to the inhibition of DNA synthesis. Interestingly, the prolonged activation of extracellular signal-regulated protein kinase (ERK) and the transient inactivation of Akt/protein kinase B (PKB) were also observed in concert with the inhibition of keratinocyte proliferation by S1P. To verify further the antiproliferative action of S1P, we examined changes in cell cycle-related proteins. S1P inhibited cyclin D(2) synthesis but stimulated p21(WAF1/CIP1) (p21) and p27(KIP1) (p27) synthesis; all are inhibitors of cyclin-dependent kinase. Furthermore, we found that the growth inhibition by S1P was in part abolished by pertussis toxin (PTX) treatment, but that ERK activation and Akt/PKB inhibition were not abrogated, suggesting that S1P functions both intracellularly, as a second messenger, and extracellularly, as a ligand for cell surface receptors. Insulin-like growth factor I (IGF-I) is a well-established human keratinocyte mitogen and is known to stimulate Akt/PKB in various cell types. In the present study, S1P was found to inhibit the keratinocyte proliferation and Akt/PKB activation induced by IGF-I. Our results suggest that S1P may play an important role in the negative regulation of keratinocyte proliferation by inhibiting the Akt/PKB pathway.  相似文献   

5.
6.
Follicles from the hen ovary that have been selected into the preovulatory hierarchy are committed to ovulation and rarely become atretic under normal physiological conditions. In part, this is attributed to the resistance of the granulosa layer to apoptosis. The present studies were conducted to evaluate the role of the phosphatidylinositol (PI) 3-kinase/Akt signaling pathway in hen granulosa cell survival and, by implication, follicle viability. Cloning of the chicken akt2 homologue revealed a high degree of amino acid homology to its mammalian counterparts within the catalytic domain, plus complete conservation of the putative Thr(308) and Ser(474) phosphorylation sites. Treatment of granulosa cells from the three largest preovulatory follicles with insulin-like growth factor (IGF)-I and, to a lesser extent, transforming growth factor (TGF)-alpha induces rapid phosphorylation of Akt, and such phosphorylation is effectively blocked by the PI 3-kinase-inhibitor LY294006. Serum withdrawal from cultured cells for 33-44 h initiates oligonucleosome formation, an indicator of apoptotic cell death, whereas cotreatment with IGF-I prevents this effect. Moreover, treatment of cultured cells for 20 h with LY294006 induces apoptosis. The potential for nonspecific cell toxicity following LY294006 treatment is considered unlikely because of the ability of either LH or 8-bromo cAMP cotreatment to block LY294006-induced cell death. Finally, both IGF-I and TGF-alpha also activate mitogen-activated protein (MAP) kinase signaling, at least in part, through the phosphorylation of ERK: However, treatment with neither U0126 nor PD98059 (inhibitors of MAP kinase kinase) induced cell death in cultured granulosa cells, despite the ability of each inhibitor to effectively block Erk phosphorylation. Taken together, these results provide evidence for a role of the Akt signaling pathway in promoting cell survival within the preovulatory follicle granulosa layer. In addition, the data indicate the importance of an alternative survival pathway mediated via gonadotropins and protein kinase A independent of Akt signaling.  相似文献   

7.
8.
9.
The serine/threonine kinase protein kinase B (PKB)/Akt plays a central role in many cellular processes, including cell growth, glucose metabolism, and apoptosis. However, the identification and validation of novel regulators or effectors is key to future advances in understanding the multiple functions of PKB. Here we report the identification of a novel PKB binding protein, called Ft1, from a cDNA library screen using a green fluorescent protein-based protein-fragment complementation assay. We show that the Ft1 protein interacts directly with PKB, enhancing the phosphorylation of both of its regulatory sites by promoting its interaction with the upstream kinase PDK1. Further, the modulation of PKB activity by Ft1 has a strong effect on the apoptosis susceptibility of T lymphocytes treated with glucocorticoids. We demonstrate that this phenomenon occurs via a PDK1/PKB/GSK3/NF-ATc signaling cascade that controls the production of the proapoptotic hormone Fas ligand. The wide distribution of Ft1 in adult tissues suggests that it could be a general regulator of PKB activity in the control of differentiation, proliferation, and apoptosis in many cell types.  相似文献   

10.
Protein kinase B (PKB, also named as Akt or RAC-protein kinase), that is activated by cellular stress such as heat shock and hyperosmotic treatment, was revealed to be activated by oxidative stress and by chemical stressors of CdCl2 and NaAsO2 by measuring the activity of the enzyme immunoprecipitated from the transfected COS-7 cells. Upon stress treatment, a 30-kDa phosphoprotein was co-immunoprecipitated with PKB from the cells metabolic labeled with [32P]orthophosphate. The phosphoprotein was identified as Hsp27, a small heat shock protein, by immunoblot analysis and co-immunoprecipitation. The association of Hsp27 was specific to PKB as the heat shock protein was not co-immunoprecipitated with other protein kinases such as protein kinase C and PKN. When the cells were treated with H2O2, PKB was activated gradually and the association of Hsp27 with PKB increased concurrently with the enhancement of PKB activity. In heat-shocked cells, activation of PKB and the association of Hsp27 were detected immediately after the treatment, and the association of the heat shock protein decreased while PKB kept stimulated activity when the cells were further incubated at 37°C. These results suggest that Hsp27 is involved in the activation process of PKB in the signal transduction pathway of various forms of stress.  相似文献   

11.
While positive regulation of c-Akt (also known as protein kinase B) by receptor tyrosine kinases is well documented, compounds acting through G protein-coupled receptors can also activate Akt and its downstream targets. We therefore explored the role of G protein subunits in the regulation of Akt in cultured mammalian cells. In HEK-293 and COS-7 cells transiently transfected with beta(2)-adrenergic or m2 muscarinic receptors, respectively, treatment with agonist-induced phosphorylation of Akt at serine 473 as evidenced by phosphoserine-specific immunoblots. This effect was blocked by the phosphatidylinositol-3-OH kinase inhibitor LY294002 and wild-type Galpha(i1), and was not duplicated by co-transfection of the constitutively active Galpha(s)-Q227L or Galpha(i)-Q204L mutant. Co-transfection of Gbeta(1), Gbeta(2) but not Gbeta(5) together with Ggamma(2) activated the kinase when assayed in vitro following immunoprecipitation of the epitope-tagged enzyme. In contrast, constitutively activated G protein subunits representing the four Galpha subfamilies were found unable to activate Akt in either cell line. The latter results are in disagreement with a report by Murga et al. (Murga, C., Laguinge, L., Wetzker, R., Cuadrado, A., and Gutkind, J. S. (1998) J. Biol. Chem. 273, 19080-19085) that described activation of Akt in response to mutationally activated Galpha(q) and Galpha(i) transfection in COS cells. To the contrary, in our experiments Galpha(q)-Q209L inhibited Akt activation resulting from betagamma or mutationally activated H-Ras co-transfection in these cells. In HEK-293 cells Galpha(q)-Q209L transfection inhibited insulin-like growth factor-1 activation of epitope-tagged Akt. In m1 muscarinic receptor transfected HEK-293 cells, carbachol inhibited insulin-like growth factor-1 stimulated phosphorylation at Ser(473) of endogenous Akt in an atropine-reversible fashion. We conclude that G proteins can regulate Akt by two distinct and potentially opposing mechanisms: activation by Gbetagamma heterodimers in a phosphatidylinositol-3-OH kinase-dependent fashion, and inhibition mediated by Galpha(q). This work identifies Akt as a novel point of convergence between disparate signaling pathways.  相似文献   

12.
Unravelling the activation mechanisms of protein kinase B/Akt   总被引:17,自引:0,他引:17  
Scheid MP  Woodgett JR 《FEBS letters》2003,546(1):108-112
Over the past decade, protein kinase B (PKB, also termed Akt) has emerged as an important signaling mediator between extracellular cues and modulation of gene expression, metabolism, and cell survival. The enzyme is tightly controlled and consequences of its deregulation include loss of growth control and oncogenesis. Recent work has better characterized the mechanism of PKB activation, including upstream regulators and secondary binding partners. This minireview refreshes some old concepts with new twists and highlights current outstanding questions.  相似文献   

13.
磷脂酰肌醇-3-激酶(phosphatidylinositol 3-kinase,PI3K)/蛋白激酶B(protein kinase B,PKB/Akt)信号通路在细胞生长与存活中起着关键作用,PI3K/Akt通路的过度激活在多种肿瘤中常见。Akt激酶本身以及Akt激酶上游调节分子,例如PTEN和PI3K,在超过50%的人类肿瘤中均有异常变化。因此Akt成为肿瘤预防和肿瘤靶向治疗的热点之一。许多小分子化合物通过不同机制抑制Akt活性,根据小分子抑制剂与激酶的结合部位和化学结构不同,主要分为ATP竞争性抑制剂、Akt变构抑制剂和磷脂酰肌醇类似物抑制剂。本文综述了PI3K/Akt通路与肿瘤的关系和Akt抑制剂的研究现状,为新型抗癌药物的设计研究提供参考。  相似文献   

14.
Recent data have implicated the serine/threonine protein kinase Akt/protein kinase B (PKB) in a diverse array of physiological pathways, raising the question of how biological specificity is maintained. Partial clarification derived from the observation that mice deficient in either of the two isoforms, Akt1/PKBalpha or Akt2/PKBbeta, demonstrate distinct abnormalities, i.e. reduced organismal size or insulin resistance, respectively. However, the question still persists as to whether these divergent phenotypes are due exclusively to tissue-specific differences in isoform expression or distinct capacities for signaling intrinsic to the two proteins. Here we show that Akt2/PKBbeta-/- adipocytes derived from immortalized mouse embryo fibroblasts display significantly reduced insulin-stimulated hexose uptake, clearly establishing that the partial defect in glucose disposal in these mice derives from lack of a cell autonomous function of Akt2/PKBbeta. Moreover, in adipocytes differentiated from primary fibroblasts or immortalized mouse embryo fibroblasts, and brown preadipocytes the absence of Akt2/PKBbeta resulted in reduction of insulin-induced hexose uptake and glucose transporter 4 (GLUT4) translocation, whereas Akt1/PKBalpha was dispensable for this effect. Most importantly, hexose uptake and GLUT4 translocation were completely restored after re-expression of Akt2/PKBbeta in Akt2/PKBbeta-/- adipocytes, but overexpression of Akt1/PKBalpha at comparable levels was ineffective at rescuing insulin action to normal. These results show that the Akt1/PKBalpha and Akt2/PKBbeta isoforms are uniquely adapted to preferentially transmit distinct biological signals, and this property is likely to contribute significantly to the ability of Akt/PKB to play a role in diverse processes.  相似文献   

15.
Phosphorylation of Thr(308) in the activation loop and Ser(473) at the carboxyl terminus is essential for protein kinase B (PKB/Akt) activation. However, the biochemical mechanism of the phosphorylation remains to be characterized. Here we show that expression of a constitutively active mutant of mouse 3-phosphoinositide-dependent protein kinase-1 (PDK1(A280V)) in Chinese hamster ovary cells overexpressing the insulin receptor was sufficient to induce PKB phosphorylation at Thr(308) to approximately the same extent as insulin stimulation. Phosphorylation of PKB by PDK1(A280V) was not affected by treatment of cells with inhibitors of phosphatidylinositol 3-kinase or by deletion of the pleckstrin homology (PH) domain of PKB. C(2)-ceramide, a cell-permeable, indirect inhibitor of PKB phosphorylation, did not inhibit PDK1(A280V)-catalyzed PKB phosphorylation in cells and had no effect on PDK1 activity in vitro. On the other hand, co-expression of full-length protein kinase C-related kinase-1 (PRK1/PKN) or 2 (PRK2) inhibited PDK1(A280V)-mediated PKB phosphorylation. Replacing alanine at position 280 with valine or deletion of the PH domain enhanced PDK1 autophosphorylation in vitro. However, deletion of the PH domain of PDK1(A280V) significantly reduced PDK1(A280V)-mediated phosphorylation of PKB in cells. In resting cells, PDK1(A280V) localized in the cytosol and at the plasma membrane. However, PDK1(A280V) lacking the PH domain localized predominantly in the cytosol. Taken together, our findings suggest that the wild-type PDK1 may not be constitutively active in cells. In addition, activation of PDK1 is sufficient to phosphorylate PKB at Thr(308) in the cytosol. Furthermore, the PH domain of PDK1 may play both positive and negative roles in regulating the in vivo function of the enzyme. Finally, unlike the carboxyl-terminal fragment of PRK2, which has been shown to bind PDK1 and allow the enzyme to phosphorylate PKB at both Thr(308) and Ser(473), full-length PRK2 and its related kinase PRK1/PKN may both play negative roles in PKB-mediated downstream biological events.  相似文献   

16.
17.
18.
Endogenous inhibitor of protein kinases (type II inhibitor, GABA-modulin) blocks the phosphorylation catalyzed by cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) as a competitive inhibitor of substrate proteins when histone is used as a substrate. Moreover, type II inhibitor blocks the phosphorylation of endogenous membrane proteins by PKC. Stimulation of alpha 1-adrenoceptors induced rapid redistribution of PKC from cytosol to membrane fraction which lasted at least 3 h, accompanied by rapid and short-lasting translocation of type II inhibitor from membrane to cytosol fraction. The cytosol content of type II inhibitor reached maximal level 10 and 20 min and became normal again 40 min after i.p. administration of methoxamine. The above actions of methoxamine were completely blocked by pretreatment with prazosin. It seems that short-lasting redistribution of type II inhibitor from membrane to cytosol fraction allows the effective phosphorylation of membrane proteins by PKC after stimulation of alpha 1-adrenoceptors.  相似文献   

19.
Inducible nitric-oxide synthase (iNOS) has been implicated in many human diseases including insulin resistance. However, how iNOS causes or exacerbates insulin resistance remains largely unknown. Protein S-nitrosylation is now recognized as a prototype of a redox-dependent, cGMP-independent signaling component that mediates a variety of actions of nitric oxide (NO). Here we describe the mechanism of inactivation of Akt/protein kinase B (PKB) in NO donor-treated cells and diabetic (db/db) mice. NO donors induced S-nitrosylation and inactivation of Akt/PKB in vitro and in intact cells. The inhibitory effects of NO donor were independent of phosphatidylinositol 3-kinase and cGMP. In contrast, the concomitant presence of oxidative stress accelerated S-nitrosylation and inactivation of Akt/PKB. In vitro denitrosylation with reducing agent reactivated recombinant and cellular Akt/PKB from NO donor-treated cells. Mutated Akt1/PKBalpha (C224S), in which cysteine 224 was substituted by serine, was resistant to NO donor-induced S-nitrosylation and inactivation, indicating that cysteine 224 is a major S-nitrosylation acceptor site. In addition, S-nitrosylation of Akt/PKB was increased in skeletal muscle of diabetic (db/db) mice compared with wild-type mice. These data suggest that S-nitrosylation-mediated inactivation may contribute to the pathogenesis of iNOS- and/or oxidative stress-involved insulin resistance.  相似文献   

20.
PTEN is mutated at high frequency in many primary human cancers and several familial cancer predisposition disorders. Activation of AKT is a common event in tumors in which the PTEN gene has been inactivated. We previously showed that deletion of the murine Pten gene in embryonic stem (ES) cells led to increased phosphatidylinositol triphosphate (PIP(3)) accumulation, enhanced entry into S phase, and better cell survival. Since PIP(3) controls multiple signaling molecules, it was not clear to what degree the observed phenotypes were due to deregulated AKT activity. In this study, we mutated Akt-1 in Pten(-/-) ES cells to directly assess the role of AKT-1 in PTEN-controlled cellular processes, such as cell proliferation, cell survival, and tumorigenesis in nude mice. We showed that AKT-1 is one of the major downstream effectors of PTEN in ES cells and that activation of AKT-1 is required for both the cell survival and cell proliferation phenotypes observed in Pten(-/-) ES cells. Deletion of Akt-1 partially reverses the aggressive growth of Pten(-/-) ES cells in vivo, suggesting that AKT-1 plays an essential role in PTEN-controlled tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号