首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gut microbiota of termites plays critical roles in the symbiotic digestion of lignocellulose. While phylogenetically ‘lower termites’ are characterized by a unique association with cellulolytic flagellates, higher termites (family Termitidae) harbour exclusively prokaryotic communities in their dilated hindguts. Unlike the more primitive termite families, which primarily feed on wood, they have adapted to a variety of lignocellulosic food sources in different stages of humification, ranging from sound wood to soil organic matter. In this study, we comparatively analysed representatives of different taxonomic lineages and feeding groups of higher termites to identify the major drivers of bacterial community structure in the termite gut, using amplicon libraries of 16S rRNA genes from 18 species of higher termites. In all analyses, the wood‐feeding species were clearly separated from humus and soil feeders, irrespective of their taxonomic affiliation, offering compelling evidence that diet is the primary determinant of bacterial community structure. Within each diet group, however, gut communities of termites from the same subfamily were more similar than those of distantly related species. A highly resolved classification using a curated reference database revealed only few genus‐level taxa whose distribution patterns indicated specificity for certain host lineages, limiting any possible cospeciation between the gut microbiota and host to short evolutionary timescales. Rather, the observed patterns in the host‐specific distribution of the bacterial lineages in termite guts are best explained by diet‐related differences in the availability of microhabitats and functional niches.  相似文献   

2.
The eastern spruce budworm (Choristoneura fumiferana) is one of the most destructive forest insect pests in Canada. Little is known about its intestinal microbiota, which could play a role in digestion, immune protection, communication and/or development. The present study was designed to provide a first characterization of the effects of rearing conditions on the taxonomic diversity and structure of the C. fumiferana midgut microbiota, using a culture-independent approach. Three diets and insect sources were examined: larvae from a laboratory colony reared on a synthetic diet and field-collected larvae reared on balsam fir or black spruce foliage. Bacterial DNA from the larval midguts was extracted to amplify and sequence the V6-V8 region of the 16S rRNA gene, using the Roche 454 GS-FLX technology. Our results showed a dominance of Proteobacteria, mainly Pseudomonas spp., in the spruce budworm midgut, irrespective of treatment group. Taxonomic diversity of the midgut microbiota was greater for larvae reared on synthetic diet than for those collected and reared on host plants, a difference that is likely accounted for by several factors. A greater proportion of bacteria from the phylum Bacteroidetes in insects fed artificial diet constituted the main difference between this group and those reared on foliage; within the phylum Proteobacteria, the presence of the genus Bradyrhizobium was also unique to insects reared on artificial diet. Strikingly, a Bray-Curtis analysis showed important differences in microbial diversity among the treatment groups, pointing to the importance of diet and environment in defining the spruce budworm midgut microbiota.  相似文献   

3.
Four sheep were fed an alfalfa hay diet. Rumen content samples were collected three hours after feeding in order to total microorganism population (TP), solid attached population (SAP) and solid attached firmly population (SAFP). Fibrolytic specific activities (xylanase, CMCase and beta-glycosidases) were estimated by the amount of reducing sugars or p-nitrophenol released from the appropriate substrate. The distribution of the three main cellulolytic bacterial species (Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens) was quantified by dot-blot hybridisation using specific 16S-rRNA-targeting probes. Specific activities of polysaccharidase enzymes were higher in SAP than in TP, and in SAFP than in SAP. The sum of RNA of the three cellulolytic bacterial species represented on average 9% of the total bacterial RNA, and increased after filtration. In all samples, the relative population size of F. succinogenes was higher than that of R. albus and of R. flavefaciens. These results demonstrate that the most active enzymes are secreted by the particle-associated microorganisms. The differences in composition of the microflora between the solid and liquid phase suggest that bacteria are not equally distributed throughout the rumen content: the cellulolytic species are present in a higher proportion in the solid phase of rumen contents.  相似文献   

4.
The human gut harbours a wide range of bacterial communities that play key roles in supplying nutrients and energy to the host through anaerobic fermentation of dietary components and host secretions. This fermentative process involves different functional groups of microorganisms linked in a trophic chain. Although the diversity of the intestinal microbiota has been studied extensively using molecular techniques, the functional aspects of this biodiversity remain mostly unexplored. The aim of the present work was to enumerate the principal metabolic groups of microorganisms involved in the fermentative process in the gut of healthy humans. These functional groups of microorganisms were quantified by a cultural approach, while the taxonomic composition of the microbiota was assessed by in situ hybridization on the same faecal samples. The functional groups of microorganisms that predominated in the gut were the polysaccharide-degrading populations involved in the breakdown of the most readily available exogenous and endogenous substrates and the predominant butyrate-producing species. Most of the functional groups of microorganisms studied appeared to be present at rather similar levels in all healthy volunteers, suggesting that optimal numbers of these various bacterial groups are crucial for efficient gut fermentation, as well as for host nutrition and health. Significant interindividual differences were, however, confirmed with respect to the numbers of methanogenic archaea, filter paper-degrading and acetogenic bacteria and the products formed by lactate-utilizing bacteria.  相似文献   

5.
The scarab gut: A potential bioreactor for bio-fuel production   总被引:1,自引:0,他引:1  
Abstract Cellulose and hemicelluloses are the most prevalent sources of carbon in nature. Currently many approaches employ micro-organisms and their enzyme products to degrade plant feedstocks for production of bioenergy. Scarab larvae are one such model. They consume celluloses from a variety of sources including plant roots, soil organic matter and decaying wood, and are able to extract nutrients and energy from these sources. In this paper, we review the physicochemical properties of the scarab larval gut, the diversity and digestive role that microflora play in the scarab gut and discuss the potential for applying these digestive processes in bioreactors for improving bio-fuel production. Scarab larvae are characterised by their highly alkaline midgut which is dominated by serine proteinase enzymes, and a modified hindgut which harbors the majority of the intestinal microbiota under anaerobic conditions. Evidence suggests that digestion of recalcitrant organic matter in scarab larvae likely results from a combination of endogenous gut proteinases and cellulolytic enzymes produced by symbiotic micro-organisms. Most of the easily digestible proteins are mobilized and absorbed in the midgut by endogenous proteinases. The hindgut contents of scarab larvae are characterized by high concentrations of volatile fatty acids, the presence of fermenting bacteria, and typical anaerobic activities, such as methanogenesis. The hindgut typically contains a wide diversity of micro-organisms, some of which appear to be obligate symbionts with cellulolytic potential. As a result, the scarab larval gut can be regarded as a small bioreactor resembling the rumen of sheep or cattle, where solid food particles composed of cellulose, hemicellulose, pectin and polysaccharides are degraded through enzymatic and fermentation processes. Together these observations suggest scarab larvae have potential to assist the bio-fuel industry by providing new sources of (hemi)cellulolytic bacteria and bacterial (hemi)cellulolytic enzymes.  相似文献   

6.
&#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2014,38(2):291-297
为更好地弄清草鱼(Ctenopharyngodon idella)肠道纤维素降解细菌的种类,采用羧甲基纤维素(CMC)作为唯一碳源的选择性培养基,分别从草鱼肠道内容物和肠道黏膜中分离到了40株产纤维素酶细菌。16S rRNA基因序列的分析结果显示,大多数产纤维素酶细菌为气单胞菌属(Aeromonas)的种类,其次为肠杆菌属(Enterobacter)的细菌以及未经分离纯培养的细菌(Uncultured bacterium)。进一步研究细菌产纤维素酶能力发现,纤维素酶活性显著性高于其他菌株的分别是A. veronii MC2、A. veronii BC6、肠杆菌科(Enterobacteriaceae)中一种未经分离纯培养的细菌BM3(Uncultured bacterium BM3)和A. jandaei HC9。草鱼肠道中简答气单胞菌(A. jandaei)、类志贺邻单胞菌(Plesiomonas shigelloides)、阴沟肠杆菌(E. cloacae)以及产气肠杆菌(E. aerogenes)是被作为产纤维素酶细菌的首次报道。    相似文献   

7.
8.
Insects are the most abundant animals on Earth, and the microbiota within their guts play important roles by engaging in beneficial and pathological interactions with these hosts. In this study, we comprehensively characterized insect-associated gut bacteria of 305 individuals belonging to 218 species in 21 taxonomic orders, using 454 pyrosequencing of 16S rRNA genes. In total, 174,374 sequence reads were obtained, identifying 9,301 bacterial operational taxonomic units (OTUs) at the 3% distance level from all samples, with an average of 84.3 (±97.7) OTUs per sample. The insect gut microbiota were dominated by Proteobacteria (62.1% of the total reads, including 14.1% Wolbachia sequences) and Firmicutes (20.7%). Significant differences were found in the relative abundances of anaerobes in insects and were classified according to the criteria of host environmental habitat, diet, developmental stage, and phylogeny. Gut bacterial diversity was significantly higher in omnivorous insects than in stenophagous (carnivorous and herbivorous) insects. This insect-order-spanning investigation of the gut microbiota provides insights into the relationships between insects and their gut bacterial communities.  相似文献   

9.
The mosquito midgut is a hostile environment that vector‐borne parasites must survive to be transmitted. Commensal bacteria in the midgut can reduce the ability of mosquitoes to transmit disease, either by having direct anti‐parasite effects or by stimulating basal immune responses of the insect host. As different bacteria have different effects on parasite development, the composition of the bacterial community in the mosquito gut is likely to affect the probability of disease transmission. We investigated the diversity of mosquito gut bacteria in the field using 454 pyrosequencing of 16S rRNA to build up a comprehensive picture of the diversity of gut bacteria in eight mosquito species in this population. We found that mosquito gut typically has a very simple gut microbiota that is dominated by a single bacterial taxon. Although different mosquito species share remarkably similar gut bacteria, individuals in a population are extremely variable and can have little overlap in the bacterial taxa present in their guts. This may be an important factor in causing differences in disease transmission rates within mosquito populations.  相似文献   

10.
The sugarcane weevil, Sphenophorus levis, is a wide-spread sugarcane pest in Brazil. Sphenophorus levis may depend on microorganisms that inhabit its intestinal tract. We examined the diversity of the gut microbiota of S. levis, which was characterized using culture-dependent and culture-independent methods. Analysis of 16S rRNA amplified directly from the gut community revealed the presence of 14 genera, one group from the Candidatus category, one uncultured group assigned to the family Flavobacteriaceae, and one uncultured group assigned to the family Enterobacteriaceae; all of them are members of the Alpha-Proteobacteria, Beta-Proteobacteria, Gamma-Proteobacteria, Firmicutes, and Bacteroidetes phyla. Microorganisms isolated through culture-dependent methods were classified according to morphological parameters and by 16S rRNA gene sequences. In addition to bacteria, four filamentous fungi were isolated. A higher bacterial diversity was observed in field populations of larvae than in laboratory populations, according to the Shannon index (Field H' = 3.36; Laboratory H' = 3.26). Five genera of bacteria and two filamentous fungi were found to have cellulolytic activity. This is the first report of S. levis gut microbiota; it may contribute to development of strategies for controlling this sugarcane pest.  相似文献   

11.
The midgut microbiota associated with Anopheles stephensi and Anopheles maculipennis (Diptera: Culicidae) was investigated for development of a paratransgenesis-based approach to control malaria transmission in Eastern Mediterranean Region (EMR). Here, we present the results of a polymerase chain reaction (PCR) and biochemical-based approaches to identify the female adult and larvae mosquitoe microbiota of these two major malaria vectors, originated from South Eastern and North of Iran. Plating the mosquito midgut contents from lab-reared and field-collected Anopheles spp. was used for microbiota isolation. The gram-negative and gram-positive bacterial colonies were identified by Gram staining and specific mediums. Selected colonies were identified by differential biochemical tests and 16S rRNA gene sequence analysis. A number of 10 An. stephensi and 32 An. maculipennis adult mosquitoes and 15 An. stephensi and 7 An. maculipennis larvae were analyzed and 13 sequences of 16S rRNA gene bacterial species were retrieved, that were categorized in 3 classes and 8 families. The majority of the identified bacteria were belonged to the γ-proteobacteria class, including Pseudomonas sp. and Aeromonas sp. and the others were some closely related to those found in other vector mosquitoes, including Pantoea, Acinetobacter, Brevundimonas, Bacillus, Sphingomonas, Lysinibacillus and Rahnella. The 16S rRNA sequences in the current study aligned with the reference strains available in GenBank were used for construction of the phylogenetic tree that revealed the relatedness among the bacteria identified. The presented data strongly encourage further investigations, to verify the potential role of the detected bacteria for the malaria control in Iran and neighboring countries.  相似文献   

12.
Gut microbial diversity is thought to reflect the co‐evolution of microbes and their hosts as well as current host‐specific attributes such as genetic background and environmental setting. To explore interactions among these parameters, we characterized variation in gut microbiome composition of California voles (Microtus californicus) across a contact zone between two recently diverged lineages of this species. Because this contact zone contains individuals with mismatched mitochondrial‐nuclear genomes (cybrids), it provides an important opportunity to explore how different components of the genotype contribute to gut microbial diversity. Analyses of bacterial 16S rRNA sequences and joint species distribution modelling revealed that host genotypes and genetic differentiation among host populations together explained more than 50% of microbial community variation across our sampling transect. The ranked importance (most to least) of factors contributing to gut microbial diversity in our study populations were: genome‐wide population differentiation, local environmental conditions, and host genotypes. However, differences in microbial communities among vole populations (β‐diversity) did not follow patterns of lineage divergence (i.e., phylosymbiosis). Instead, among‐population variation was best explained by the spatial distribution of hosts, as expected if the environment is a primary source of gut microbial diversity (i.e., dispersal limitation hypothesis). Across the contact zone, several bacterial taxa differed in relative abundance between the two parental lineages as well as among individuals with mismatched mitochondrial and nuclear genomes. Thus, genetic divergence among host lineages and mitonuclear genomic mismatches may also contribute to microbial diversity by altering interactions between host genomes and gut microbiota (i.e., hologenome speciation hypothesis).  相似文献   

13.
We investigated the influence of host species on intestinal microbiota by comparing the gut bacterial community structure of four cohabitating freshwater fish larvae, silver carp, grass carp, bighead carp, and blunt snout bream, using denaturing gradient gel electrophoresis (DGGE) of the amplified 16S and 18S rRNA genes. Similarity clustering indicated that the intestinal microbiota derived from these four fish species could be divided into four groups based on 16S rRNA gene similarity, whereas the eukaryotic 18S rRNA genes showed no distinct groups. The water sample from the shared environment contained microbiota of an independent group as indicated by both 16S and 18S rRNA genes segments. The bacterial community structures were visualized using rank-abundance plots fitted with linear regression models. Results showed that the intestinal bacterial evenness was significantly different between species (P<0.05) and between species and the water sample (P<0.01). Thirty-five relatively dominant bands in DGGE patterns were sequenced and grouped into five major taxa: Proteobacteria (26), Actinobacteria (5), Bacteroidetes (1), Firmicutes (2), and Cyanobacterial (1). Six eukaryotes were detected by sequencing 18S rRNA genes segments. The present study suggests that the intestines of the four fish larvae, although reared in the same environment, contained distinct bacterial populations, while intestinal eukaryotic microorganisms were almost identical.  相似文献   

14.
The gut microorganisms in some animals are reported to include a core microbiota of consistently associated bacteria that is ecologically distinctive and may have coevolved with the host. The core microbiota is promoted by positive interactions among bacteria, favoring shared persistence; its retention over evolutionary timescales is evident as congruence between host phylogeny and bacterial community composition. This study applied multiple analyses to investigate variation in the composition of gut microbiota in drosophilid flies. First, the prevalence of five previously described gut bacteria (Acetobacter and Lactobacillus species) in individual flies of 21 strains (10 Drosophila species) were determined. Most bacteria were not present in all individuals of most strains, and bacterial species pairs co-occurred in individual flies less frequently than predicted by chance, contrary to expectations of a core microbiota. A complementary pyrosequencing analysis of 16S rRNA gene amplicons from the gut microbiota of 11 Drosophila species identified 209 bacterial operational taxonomic units (OTUs), with near-saturating sampling of sequences, but none of the OTUs was common to all host species. Furthermore, in both of two independent sets of Drosophila species, the gut bacterial community composition was not congruent with host phylogeny. The final analysis identified no common OTUs across three wild and four laboratory samples of D. melanogaster. Our results yielded no consistent evidence for a core microbiota in Drosophila. We conclude that the taxonomic composition of gut microbiota varies widely within and among Drosophila populations and species. This is reminiscent of the patterns of bacterial composition in guts of some other animals, including humans.  相似文献   

15.
《Genomics》2021,113(2):815-826
Silver carp is an invasive fish present in the Gobindsagar reservoir, India and has a profound impact on aquaculture. Understanding taxonomic diversity and functional attributes of gut microbiota will provide insights into the important role of bacteria in metabolism of silver carp that facilitated invasion of this exotic species. Microbial composition in foregut, midgut, hindgut and water samples was analysed using 16S rRNA gene amplicon sequencing. The bacterial communities of water samples were distinct from gut microbiota, and unique microbial assemblages were present in different regions of gut depicting profound impact of gut environment on microflora. Proteobacteria was the most abundant phyla across all samples. Ecological network analysis showed dominance of competitive interactions within posteriors region of the gut, promoting niche specialization. Predictive functional profiling revealed the microbiota specialized in digestive functions in different regions of the gut, which also reflects the dietary profile of silver carp.  相似文献   

16.
Otiorhynchus sulcatus (Fabricius) (Coleoptera: Curculionidae), commonly known as black vine weevil or simply vine weevil, is an important pest of soft fruit and ornamental crops. This species is endemic to temperate areas of Europe but has spread to many other areas over the last century, including North America and Australasia. The ability of vine weevils to adapt to such different environments is difficult to reconcile with the parthenogenetic reproduction strategy, which is likely to underpin a low genetic diversity. It is therefore tempting to hypothesize that weevil adaptation to different environments is mediated, at least partly, by the microbial communities inhabiting these insects. As a first step towards testing this hypothesis we characterized the composition of the bacterial microbiota in weevils from populations feeding on strawberry plants across four geographically separate locations in the UK. We performed 16S rRNA gene Illumina amplicon sequencing, generating 2 882 853 high‐quality reads. Ecological indices, namely Chao1 and Shannon, revealed that the populations used for this study harboured a low diversity and an uneven bacterial microbiota. Furthermore, β‐diversity analysis failed to identify a clear association between microbiota composition and location. Notably, a single operational taxonomic unit phylogenetically related to Candidatus Nardonella accounted for 81% of the total sequencing reads for all tested insects. Our results indicate that vine weevil bacterial microbiota resembles that of other insects as it has low diversity and it is dominated by few taxa. A prediction of this observation is that location per se may not be a determinant of the microbiota inhabiting weevil populations. Rather, other or additional selective pressures, such as the plant species used as a food source, ultimately shape the weevil bacterial microbiota. Our results will serve as a reference framework to investigate other or additional hypotheses aimed at elucidating vine weevil adaptation to its environment.  相似文献   

17.
Mammals live in a homeostatic symbiosis with their gastrointestinal microbiota. The mammalian host provides the microbiota with nutrients and a stable environment; whereas the microbiota helps shaping the host's gut mucosa and provides nutritional contributions. Microorganisms start colonizing the gut immediately after birth followed by a succession of populations until a stable, adult microbiota has been established. However, physiological conditions differ substantially among locations in the gut and determine bacterial density and diversity. While Firmicutes and Bacteroidetes dominate the gut microbiota in all mammals, the bacterial genera and species diversity is huge and reflects mammalian phylogeny. The main function of the gastrointestinal epithelium is to absorb nutrients and to retain water and electrolytes, yet at the same time it is an efficient barrier against harmful compounds and microorganisms, and is able to neutralize antagonists coincidentally breaching the barrier. These processes are influenced by the microbiota, which modify epithelial expression of genes involved in nutrient uptake and metabolism, mucosal barrier function, xenobiotic metabolism, enteric nervous system and motility, hormonal and maturational responses, angiogenesis, cytoskeleton and extracellular matrix, signal transduction, and general cellular functions. Whereas such effects are local at the gut epithelium they may eventually have systemic consequences, e.g. on body weight and composition.  相似文献   

18.
Adaptive radiations provide unique opportunities to test whether and how recent ecological and evolutionary diversification of host species structures the composition of entire bacterial communities. We used 16S rRNA gene sequencing of faecal samples to test for differences in the gut microbiota of six species of Puerto Rican Anolis lizards characterized by the evolution of distinct ‘ecomorphs’ related to differences in habitat use. We found substantial variation in the composition of the microbiota within each species and ecomorph (trunk‐crown, trunk‐ground, grass‐bush), but no differences in bacterial alpha diversity among species or ecomorphs. Beta diversity analyses revealed subtle but significant differences in bacterial composition related to host phylogeny and species, but these differences were not consistently associated with Anolis ecomorph. Comparison of a trunk‐ground species from this clade (A. cristatellus) with a distantly related member of the same ecomorph class (A. sagrei) where the two species have been introduced and are now sympatric in Florida revealed pronounced differences in the alpha diversity and beta diversity of their microbiota despite their ecological similarity. Comparisons of these populations with allopatric conspecifics also revealed geographic differences in bacterial alpha diversity and beta diversity within each species. Finally, we observed high intraindividual variation over time and strong effects of a simplified laboratory diet on the microbiota of A. sagrei. Collectively, our results indicate that bacterial communities are only weakly shaped by the diversification of their lizard hosts due to the strikingly high levels of bacterial diversity and variation observed within Anolis species.  相似文献   

19.
The gut microbiota of animal hosts can be influenced by environmental factors, such as unnatural food items that are introduced by humans. Over the past 30 years, human presence has grown exponentially in the Galapagos Islands, which are home to endemic Darwin's finches. Consequently, humans have changed the environment and diet of Darwin's finches, which in turn, could affect their gut microbiota. In this study, we compared the gut microbiota of two species of Darwin's finches, small ground finches (Geospiza fuliginosa) and medium ground finches (Geospiza fortis), across sites with and without human presence, where finches prefer human‐processed and natural food, respectively. We predicted that: (a) finch microbiota would differ between sites with and without humans due to differences in diet, and (b) gut microbiota of each finch species would be most similar where finches have the highest niche overlap (areas with humans) compared to the lowest niche overlap (areas without humans). We found that gut bacterial community structure differed across sites and host species. Gut bacterial diversity was most distinct between the two species at the site with human presence compared to the site without human presence, which contradicted our predictions. Within host species, medium ground finches had lower bacterial diversity at the site with human presence compared to the site without human presence and bacterial diversity of small ground finches did not differ between sites. Our results show that the gut microbiota of Darwin's finches is affected differently across sites with varying human presence.  相似文献   

20.
Complex polysaccharides (e.g. cellulose, xylan, and chitin), the most abundant renewable biomass resources available on Earth, are mainly degraded by microorganisms in nature. However, little is known about the global distribution of the enzymes and microorganisms responsible for the degradation of cellulose, xylan, and chitin in natural environments. Through large-scale alignments between the sequences released by the Earth Microbiome Project and sequenced prokaryotic genomes, we determined that almost all prokaryotic communities have the functional potentials to degrade cellulose, xylan, and chitin. The median abundances of genes encoding putative cellulases, xylanases, and chitinases in global prokaryotic communities are 0.51 (0.17–1.01), 0.24 (0.05–0.57), and 0.33 (0.11–0.71) genes/cell, respectively, and the composition and abundance of these enzyme systems are environmentally varied. The taxonomic sources of the three enzymes are highly diverse within prokaryotic communities, and the main factor influencing the diversity is the community's alpha diversity index rather than gene abundance. Moreover, there are obvious differences in taxonomic sources among different communities, and most genera with degradation potentials are narrowly distributed. In conclusion, our analysis preliminarily depicts a panorama of cellulose-, xylan-, and chitin-degrading enzymatic systems across global prokaryotic communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号