首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparison was made of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Although all three organisms reduced nitrate to dinitrogen gas, they did so at different rates and accumulated different kinds and amounts of intermediates. Their rates of anaerobic growth on nitrate varied about 1.5-fold; concomitant gas production varied more than 8-fold. Cell yields from nitrate varied threefold. Rates of gas production by resting cells incubated with nitrate, nitrite, or nitrous oxide varied 2-, 6-, and 15-fold, respectively, among the three species. The composition of the gas produced also varied markedly: Pseudomonas stutzeri produced only dinitrogen; Pseudomonas aeruginosa and Paracoccus denitrificans produced nitrous oxide as well; and under certain conditions Pseudomonas aeruginosa produced even more nitrous oxide than dinitrogen. Pseudomonas stutzeri and Paracoccus denitrificans rapidly reduced nitrate, nitrite, and nitrous oxide and were able to grow anaerobically when any of these nitrogen oxides were present in the medium. Pseudomonas aeruginosa reduced these oxides slowly and was unable to grow anaerobically at the expense of nitrous oxide. Furthermore, nitric and nitrous oxide reduction by Pseudomonas aeruginosa were exceptionally sensitive to inhibition by nitrite. Thus, although it has been well studied physiologically and genetically, Pseudomonas aeruginosa may not be the best species for studying the later steps of the denitrification pathway.  相似文献   

2.
A comparison was made of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Although all three organisms reduced nitrate to dinitrogen gas, they did so at different rates and accumulated different kinds and amounts of intermediates. Their rates of anaerobic growth on nitrate varied about 1.5-fold; concomitant gas production varied more than 8-fold. Cell yields from nitrate varied threefold. Rates of gas production by resting cells incubated with nitrate, nitrite, or nitrous oxide varied 2-, 6-, and 15-fold, respectively, among the three species. The composition of the gas produced also varied markedly: Pseudomonas stutzeri produced only dinitrogen; Pseudomonas aeruginosa and Paracoccus denitrificans produced nitrous oxide as well; and under certain conditions Pseudomonas aeruginosa produced even more nitrous oxide than dinitrogen. Pseudomonas stutzeri and Paracoccus denitrificans rapidly reduced nitrate, nitrite, and nitrous oxide and were able to grow anaerobically when any of these nitrogen oxides were present in the medium. Pseudomonas aeruginosa reduced these oxides slowly and was unable to grow anaerobically at the expense of nitrous oxide. Furthermore, nitric and nitrous oxide reduction by Pseudomonas aeruginosa were exceptionally sensitive to inhibition by nitrite. Thus, although it has been well studied physiologically and genetically, Pseudomonas aeruginosa may not be the best species for studying the later steps of the denitrification pathway.  相似文献   

3.
The course of denitrification of nitrate, nitrite and both compounds together by static cultures of Paracoccus denitrificans, Pseudomonas stutzeri and Pseudomonas aeruginosa was studied. These strains represent three different types of denitrification: 1. reduction of nitrate to gaseous nitrogen without accumulation of nitrite (P. denitrificans); 2. partial accumulation of nitrite in growing cultures during reduction of nitrate to gaseous nitrogen (P. aeruginosa) and 3. two-phase denitrification that includes reduction of nitrates at the very beginning of the process, and then, after depletion of the former, the reduction of nitrates to gaseous nitrogen (P. stutzeri). These observations differ from the results reported in the literature and possible reasons are discussed.  相似文献   

4.
Dimethylsulphoxide (DMSO) and trimethylamine oxide (TMAO) sustained anaerobic growth of Proteus vulgaris with the non-fermentable substrate lactate. Cytoplasmic membrane vesicles energized by electron transfer from formate to DMSO displayed anaerobic uptake of serine, which was hindered by metabolic inhibitors known to destroy the proton motive force. This showed that DMSO reduction was coupled with a chemiosmotic mechanism of energy conversion; similar data for TMAO respiration have been presented previously. All biochemical tests applied indicated that the oxides were reduced by the same reductase system. The DMSO and TMAO reductase activities showed the same mobility on ion-exchange chromatography, and polyacrylamide disc gel electrophoresis (pH 8.9), gradient gel electrophoresis, and gel isoelectric focusing; mol. wt. and pI determined were 95,000 and 4.6, respectively. DMSO inhibited reduction of [14C]TMAO in vesicles. The reductase was inducible to a certain extent; both oxides being equally efficient as inducers. TMAO was reduced at a higher rate than DMSO, explaining faster growth of cells and increased uptake of serine in vesicles with TMAO as electron acceptor. Comparative studies with Escherichia coli also gave evidence for common TMAO and DMSO reductase systems.Abbreviations TMAO trimethylamine oxide - DMSO dimethylsulphoxide  相似文献   

5.
6.
Abstract Gaschromatographic analysis shows that whole cells of Paracoccus denitrificans produce dinitrogen in the absence and nitrous oxide in the presence of thiocyanate during nitrate reduction. NADH nitrate reductase activity in vesicles is much more sensitive to thiocyanate than either NADH oxidase activity in vesicles or reduction of nitrate by endogenous substrates in whole cells. NADH nitrate reductase activity is not inhibited and NADH oxidase activity is partially inhibited by antimycin A in vesicles. Production of nitrous oxide from nitrate in cells is completely inhibited by the simultaneous presence of thiocyanate and Triton X-100. Carbonylcyanide m -chlorophenylhydrazone does not cause a lag phase in reduction of nitrate by NADH in vesicles, in contrast to the situation in cells.  相似文献   

7.
8.
9.
Fundamental denitrification kinetic studies with Pseudomonas denitrificans   总被引:1,自引:0,他引:1  
Fundamental kinetic studies on the reduction of nitrate, nitrite, and their mixtures were performed with a strain of Pseudomonas denitrificans (ATCC 13867). Methanol served as the carbon source and was supplied in excess (2:1 mole ratio relative to nitrate and/or nitrite). Nitrate and nitrite served as terminal electron acceptors as well as sources of nitrogen for biomass synthesis. The results were explained under the assumption that respiration is a growth-associated process. It was found that the sequence of complete reduction of nitrate to nitrogen gas is via nitrite and nitrous oxide.It was found that the specific growth rate of the biomass on either nitrate or nitrite follows Andrews inhibitory kinetics and nitrite is more inhibitory than nitrate. It was also found that the culture has severe maintenance requirements which can be described by Herbert's model, i.e., by self-oxidation of portions of the biomass. The specific maintenance rates at 30 degrees C and pH 7.1 were found to be equal to about 28% of the maximum specific growth rate on nitrate and 23% of the maximum specific growth rate on nitrite. Nitrate and nitrite were found to be involved in a cross-inhibitory noncompetitive kinetic interaction. The extent of this interaction is negligible when the presence of nitrite is low but is considerable when nitrite is present at levels above 15 mg/L.Studies on the effect of temperature have shown that the culture cannot grow at temperatures above 40 degrees C. The optimal temperature for nitrate or nitrite reduction was found to be about 38 degrees C. Using an Arrhenius expression to describe the effect of temperature on the specific growth rates, it was found that the activation energy for the use of nitrate by the culture is 8.6 kcal/mol and 7.21 kcal/mol for nitrite. Arrhenius-type expressions were also used in describing the effect of temperature on each of the parameters appearing in the specific growth rate expressions. Studies on the effect of pH at 30 degrees C have shown that the culture reduces nitrate optimally at a pH between 7.4 and 7.6, and nitrite at a pH between 7.2 and 7.3. (c) 1995 John Wiley & Sons, Inc.  相似文献   

10.
Summary Ubiquinone-10 (Q10) production was measured in batch cultures of Paracoccus denitrificans grown for 8 h at increasing oxygen concentrations (0–21 % O2 in the sparging gas). Whereas the cellular level of Q10 decreased monotonically from 1.2 to 0.5 mol/g d.w., the total yield of Q10 was maximal at 2.5 % O2 and amounted to 350 nmol (0.3 mg) per L of culture.  相似文献   

11.
12.
Nitrate is an undesirable component of several foods. A typical case of contamination with high nitrate contents is whey concentrate, containing nitrate in concentrations up to 25 l. The microbiological removal of nitrate by Paracoccus denitrificans under formation of harmless nitrogen in combination with a cell retention reactor is described here. Focus lies on the resource‐conserving design of a microbal denitrification process. Two methods are compared. The application of polyvinyl alcohol‐immobilized cells, which can be applied several times in whey feed, is compared with the implementation of a two step denitrification system. First, the whey concentrate's nitrate is removed by ion exchange and subsequently the eluent regenerated by microorganisms under their retention by crossflow filtration. Nitrite and nitrate concentrations were determined by reflectometric color measurement with a commercially available Reflectoquant® device. Correction factors for these media had to be determined. During the pilot development, bioreactors from 4 to 250 mg·L?1 and crossflow units with membrane areas from 0.02 to 0.80 m2 were examined. Based on the results of the pilot plants, a scaling for the exemplary process of denitrifying 1,000 tons per day is discussed. © 2010 American Institute of Chemical Engineers Biotechnol. Prog. 2010  相似文献   

13.
14.
Denitrification is a well-studied respiratory system that is also important in the biogeochemical nitrogen cycle. Environmental signals such as oxygen and N-oxides have been demonstrated to regulate denitrification, though how denitrification is regulated in a bacterial community remains obscure. Pseudomonas aeruginosa is a ubiquitous bacterium that controls numerous genes through cell-to-cell signals. The bacterium possesses at least two N-acyl-L-homoserine lactone (AHL) signals. In our previous study, these quorum-sensing signals controlled denitrification in P. aeruginosa. In addition to the AHL signals, a third cell-to-cell communication signal, 2-heptyl-3-hydroxy-4-quinolone, referred to as the Pseudomonas quinolone signal (PQS), has been characterized. In this study, we examined the effect of PQS on denitrification to obtain more insight into the respiratory regulation in a bacterial community. Denitrification in P. aeruginosa was repressed by PQS, which was partially mediated by PqsR and PqsE. Measuring the denitrifying enzyme activities indicated that nitrite reductase activity was increased by PQS, whereas PQS inhibited nitric oxide reductase and the nitrate-respiratory chain activities. This is the first report to demonstrate that PQS influences enzyme activities, suggesting this effect is not specific to P. aeruginosa. Furthermore, when iron was supplied to the PQS-added medium, denitrifying activity was almost restored, indicating that the iron chelating property of PQS affected denitrification. Thus, our data indicate that PQS regulates denitrification primarily through iron chelation. The PQS effect on denitrification was relevant in a condition where oxygen was limited and denitrification was induced, suggesting its role in controlling denitrification where oxygen is present.  相似文献   

15.
16.
Summary Whole cells of Pseudomonas denitrificans, immobilized in alginate gel, were used for columnar denitrification of ground water. Ethanol was selected as a suitable carbon source and the C/N-ratio necessary for satisfactory nitrate reduction was established (1.6 mg ethanol-C/mg nitrate-N). The course of the reaction and the diffusional limitations were investigated during columnar denitrification. The mechanical integrity of the gel matrix, as judged from leakage of cells was studied. The release of cells into the effluent was effectively inhibited (<102 cells/ml) by the use of different filter devices. The operational characteristics were determined by studying a column operating for nearly four months. Theoretically, the alginate gel column should, from high nitrate drinking water (22 mg NO 3 -N/1), produce 3 1 of denitrified water/kg gel/h (wet wt.) during a period of two months. The regeneration of nitrate reduction activity by means of activation in nutrient media proved a useful tool for restoring initial activity, the gel column having shown no loss in activity at the end of the operation period.  相似文献   

17.
Induction and repression of denitrification activity were studied in a continuous culture of Paracoccus denitrificans during changes from aerobic to anaerobic growth conditions and vice versa. The denitrification activity of the cells was monitored by measuring the formation of denitrification products (nitrite, nitric oxide, nitrous oxide, and dinitrogen), individual mRNA levels for the nitrate, nitrite, and nitrous oxide reductases, and the concentration of the nitrite reductase enzyme with polyclonal antibodies against the cd1-type nitrite reductase. On a change from aerobic to anaerobic respiration, the culture entered an unstable transition phase during which the denitrification pathway became induced. The onset of this phase was formed by a 15- to 45-fold increase of the mRNA levels for the individual denitrification enzymes. All mRNAs accumulated during a short period, after which their overall concentration declined to reach a stable value slightly higher than that observed under aerobic steady-state conditions. Interestingly, the first mRNAs to be formed were those for nitrate and nitrous oxide reductase. The nitrite reductase mRNA appeared significantly later, suggesting different modes of regulation for the three genes. Unlike the mRNA levels, the level of the nitrite reductase protein increased slowly during the anaerobic period, reaching a stable value about 30 h after the switch. All denitrification intermediates could be observed transiently, but when the new anaerobic steady state was reached, dinitrogen was the main product. When the anaerobic cultures were switched back to aerobic respiration, denitrification of the cells stopped at once, although sufficient nitrite reductase was still present. We could observe that the mRNA levels for the individual denitrification enzymes decreased slightly to their aerobic, uninduced levels. The nitrite reductase protein was not actively degraded during the aerobic period.  相似文献   

18.
Reaction of oxygen with cytochrome c oxidase from Paracoccus denitrificans   总被引:6,自引:0,他引:6  
The reaction of reduced cytochrome c oxidase (EC 1.9.3.1) from Paracoccus denitrificans (American Type Culture Collection 13543) with dioxygen has been followed by laser flash photolysis of the CO derivative. In detergent-stabilized solutions the reaction showed at least two distinct kinetic components, the faster of which was oxygen concentration dependent and had a rate of approximately 60 X 10(6) M-1 s-1. The slower reaction was independent of oxygen concentration and had a rate of 9 X 10(2) s-1. These rates are about 1.5 times greater than comparable rates for ox heart oxidase reported by C. Greenwood and Q. H. Gibson (J. Biol. Chem. (1967) 242, 1782-1787). The kinetic components have markedly different optical spectra which agree precisely in form with those for ox heart enzyme (Greenwood, C., and Gibson, Q. H. (1967) J. Biol. Chem. 242, 1782-1787) but are shifted by 2 nm toward the red. In phospholipid vesicles, the spectral contribution of the faster component was augmented. The dissociation constant for CO at 20 degrees C is 1.6 microM, 6 times greater than for the ox heart enzyme. The bacterial enzyme binds one CO per 2 heme a. The enzyme has an absorption band at 830 nm in the oxidized form similar to that of the ox heart enzyme.  相似文献   

19.
The terminal oxidases of Paracoccus denitrificans   总被引:4,自引:2,他引:2  
Three distinct types of terminal oxidases participate in the aerobic respiratory pathways of Paracoccus denitrificans. Two alternative genes encoding sub unit I of the aa3-type cytochrome c oxidase have been isolated before, namely ctaDI and ctaDII. Each of these genes can be expressed separately to complement a double mutant (ActaDI, ActaDII), indicating that they are isoforms of subunit I of the aa3-type oxidase. The genomic locus of a quinol oxidase has been isolated: cyoABC. Thisprotohaem-containing oxidase, called cytochrome bb3, is the oniy quinoi oxidase expressed under the conditions used, in a triple oxidase mutant (ActaDI, ActaDII, cyoB::KmR) an alternative cyto-chrome c oxidase has been characterized; this cbb3-type oxidase has been partially purified. Both cytochrome aa3 and cytochrome bb3 are redox-driven proton pumps. The proton-pumping capacity of cytochrome cbb3 has been analysed; arguments for and against the active transport of protons by this novel oxidase complex are discussed.  相似文献   

20.
Genetics of Paracoccus denitrificans   总被引:5,自引:0,他引:5  
Abstract In bioenergetic research Paracoccus denitrificans has been used as an interesting model to elucidate the mechanisms of bacterial energy transduction. Genes for protein complexes of the respiratory chain and for proteins which are involved in periplasmic electron transport have been cloned and sequenced. Conjugational gene transfer has allowed the construction of site-specific mutant strains. Complementation experiments did not only open the field for site-directed mutagenesis and investigation of the structure/function relationship of the various electron-transport proteins, but also allowed first insights into processes like oxygen-dependent gene regulation or the assembly of electron-transport complexes. Also data will be presented that characterize two restriction-/modification systems, the codon usage and the promoter sequences of Paracoccus . Details will be given about the extrachromosomal localization of a duplicated cytochrome oxidase subunit I gene on one of the Paracoccus megaplasmids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号