首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of development and ethinylestradiol on low density lipoprotein (LDL)-receptor mRNA and hepatic triglyceride lipase (HTGL) activity and mRNA levels was studied in rat liver and intestine. Intestinal LDL-receptor mRNA levels are maximal in the perinatal period, whereas liver LDL-receptor and HTGL mRNA levels are highest after weaning in adult life. All mRNA levels reach a maximum between day 15 and 20 when rats still consume a lipid-rich diet, and increase twofold during weaning. Liver and intestinal LDL-receptor mRNA levels are not influenced by ovariectomy, but increase after ethinylestradiol treatment. Liver LDL-receptor mRNA shows a dose-dependent increase after ethinylestradiol and a sevenfold rise in liver LDL-receptor mRNA is attained with a dose of 2000 micrograms/day. Intestinal LDL-receptor mRNA increases slightly more than twofold after ethinylestradiol and this increase is not dose-dependent. Changes in LDL-receptor mRNA are independent of changes in food intake induced by ethinylestradiol treatment, since they are still observed after pair-feeding. The ethinylestradiol-induced increases in LDL-receptor mRNA levels are reflected by decreased serum apoB levels. HTGL mRNA levels increase after ovariectomy and show a dose-dependent decrease after ethinylestradiol. Pair-feeding abolishes the increase seen after ovariectomy, while the estrogen-mediated decrease is attenuated. These alterations in HTGL mRNA are reflected by similar changes in liver HTGL activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We have isolated cDNA clones derived from three mRNA sequences which are inducible by DIF, the putative stalk-specific morphogen of Dictyostelium. The three mRNA sequences are selectively expressed in cells on the stalk cell pathway of differentiation and we have compared them with previously characterized prestalk-enriched mRNA sequences. We find these latter sequences are expressed without a dependence on DIF, are much less highly enriched in prestalk over prespore cells and are expressed earlier during development than the DIF-inducible mRNA sequences. We propose two distinct mechanisms whereby a mRNA may become enriched in prestalk cells. An apparently small number of genes, represented by those we have isolated, is inducible by DIF and accumulates only in prestalk cells. We suggest that a second class of prestalk-enriched mRNA sequences are induced by cAMP to accumulate in all cells during aggregation and then become enriched in prestalk cells by selective loss from prespore cells.  相似文献   

3.
mRNA molecules encoding a number of inflammatory cytokines, as well as certain proto-oncogenes, contain a conserved UA-exclusive sequence in the 3' untranslated region that confers message instability in vivo. This sequence may comprise a critical regulatory element, governing the level of these mRNA molecules, and determining the efficiency with which they are translated. Through the use of a double-label RNAse assay, we have determined that lysates prepared from mouse macrophages selectively degrade mRNA molecules containing the 3' untranslated UA sequence found in the mRNA encoding human cachectin/TNF. The degree of instability is dependent upon the number of copies of inserted UA sequence present in the target mRNA molecule (a Xenopus beta-globin mRNA). mRNAs containing randomly generated UA sequences are more labile than unmodified globin mRNA, but less susceptible to degradation than mRNAs containing the authentic cachectin-derived sequence. mRNA molecules containing synthetic UG-exclusive sequences are normally stable or protected in vitro. The destruction of UA-containing mRNA is inhibited by random adenylate/uridilate copolymers, but not by guanylate/uridilate copolymers. Boiling or proteinase K treatment destroys the selective nucleolytic activity of macrophage lysates. We propose that the nuclease measured here may serve to regulate cellular levels of mRNA molecules encoding cachectin, other inflammatory cytokines, and certain proto-oncogene products.  相似文献   

4.
5.
Jia M  Li Y 《FEBS letters》2005,579(24):5333-5337
Taking advantage of microarray data in Escherichia coli genome, the relationship among mRNA expression levels, folding free energy and codon usage bias are investigated. Our results indicate that mRNA expression is correlated to the stability of mRNA secondary structure and the codon usage bias. The decrease of the stability of mRNA structure contributes to the increase of mRNA expression. There is a negative correlation between codon adaptation index (CAI) and mRNA expression in genes with less stable structure. The relationship between the stability of mRNA structure and mRNA half-life indicates the stability of mRNA structure is different from mRNA half-life.  相似文献   

6.
The function of proteins that interact with mRNA   总被引:4,自引:0,他引:4  
Specific proteins are associated with mRNA in the cytoplasm of eukaryotic cells. The complement of associated proteins depends upon whether the mRNA is an integral component of the polysomal complex being translated, or, alternatively, whether it is part of the non-translated free mRNP fraction. By subjecting cells to ultraviolet irradiation in vivo to cross-link proteins to mRNA, mRNP proteins have been shown to be associated with specific regions of the mRNA molecule. Examination of mRNP complexes containing a unique mRNA has suggested that not all mRNA contain the same family of associated RNA binding proteins. The function of mRNA associated proteins may include a role in providing stability for mRNA, and/or in modulating translation. With the recent demonstrations that both free and polysomal mRNPs are associated with the cytoskeletal framework, specific mRNP proteins may play a role in determining the subcellular localization of specific mRNPs.  相似文献   

7.
Anchorage-dependent cells, when forced into suspension culture, display a repertoire of dramatic, coordinated regulatory phenomena. Message production promptly decreases 5 fold but the cells maintain a constant amount of poly(A)+ by means of a concomitant stabilization of mRNA against decay. Protein synthesis shuts down much later and the mRNA is stored in a nonfunctioning state. In this study, the inactive mRNA is extracted from suspended cells and shown to have aberrant translation properties. Well defined polypeptides are apparently no longer synthesized when this mRNA directs protein formation in either reticulocyte or wheat germ-derived heterologous translation systems. Rather, shortened peptides are formed by this mRNA and these become smaller as mRNA is used from cells suspended for longer periods of time. Very few focused spots are formed when the aberrant polypeptides are analyzed in two-dimensional electrophoresis.The sedimentation properties of suspended cell mRNA and the size of poly(A) are unchanged from control monolayer cells. Cross-hybridization of cDNA transcribed from a control cell message population with suspended cell mRNA shows that all sequences are present in normal concentrations. While most identifiable spots disappear from the two-dimensional gel electropherograms of the protein products produced by suspended cell mRNA, a few polypeptides are still synthesized in relatively normal amounts. Conserved polypeptides are found in products of both the reticulocyte and wheat germ systems, but they are different products in each case. The lesion in the suspended cell mRNA does not seem to be at the 5′ termini, since synthesis of the shortened peptides is fully sensitive to inhibition by pm7G.Cells that contain extensively modified message can resume protein synthesis when allowed to reattach to a solid substrate. There is an apparent remodification of mRNA to normal translatability within a few hours of cell reattachment, since mRNA from recovering cells quickly resumes directing relatively normal patterns of polypeptide synthesis in vitro. The restoration of normal message function occurs even when new message formation is blocked with actinomycin.Cells recovering after reattachment synthesize supranormal amounts of a few major proteins involved with cell structure, as shown in these studies by an increased amount of translatable sequences which encode these proteins. The most apparent enhanced message is that coding for actin. mRNA from recovering cells produces in vitro several times more actin relative to other proteins than does control cell mRNA. The enhancement of actin mRNA is not seen in the message population of cells that reattach in the presence of actinomycin. The results suggest a morphologically related induction of gene expression.  相似文献   

8.
Incubating ribosomes and eukaryotic initiation factor eIF3 with an inosine-substituted mRNA (where the mRNA secondary structure is strongly reduced) in the absence of ATP and other protein synthesis factors produces a 40 S ribosome.mRNA complex. When Met-tRNAMeti and eIF2 are added, a 60 S ribosome subunit attaches forming an 80 S ribosome.mRNA complex. ATP and the three mRNA factors, eIF4B, cap-site factor, and eIF4A, strongly stimulate the attachment of the 60 S subunit. In the absence of Met-tRNAMeti, the 60-S subunit does not attach, and adding ATP and the mRNA factors inhibits the accumulation of 40 S ribosome.inosine mRNA complexes. These results indicate that a 40 S ribosome, probably in a complex with eIF3, has an intrinsic capacity to attach to mRNA. Further, they suggest that Met-tRNAMeti may interact in a subsequent step to stabilize the 40 S ribosome.mRNA complex and allow the attachment of a 60 S ribosome subunit. Although seen most clearly with the inosine-substituted mRNAs, the 40 S ribosome reaction is also obtained with "guanosine" mRNA. A 40 S ribosome attaches to guanosine mRNA without ATP and mRNA factors when an incubation mixture containing ribosomes, eIF3, and mRNA is fixed with glutaraldehyde. In addition, a 40 S ribosome.guanosine mRNA complex can be obtained without glutaraldehyde in incubations containing ATP and the three mRNA factors in the absence of Met-tRNAMeti. The latter reaction is limited because of the instability of the 40 S ribosome.mRNA complex in the absence of Met-tRNA. Nevertheless, its authenticity is indicated by its full dependence upon ATP and the three mRNA factors. The lack of factor requirement for the formation of 40 S ribosome complexes with inosine-substituted mRNAs indicates that ATP and the three mRNA factors function primarily to unwind the secondary structure of a guanosine mRNA. Data relevant to a role for ATP in facilitating ribosome migration on an mRNA are also discussed.  相似文献   

9.
Although ovalbumin and conalbumin mRNA accumulate in the same tubular gland cells of the chick oviduct in response to estrogen or progesterone treatment, the kinetics of induction are markedly different. Conalbumin mRNA begins to accumulate within 30 min after estrogen administration, whereas there is a lag of approximately 3 hr before ovalbumin mRNA begins to accumulate, as measured by three independent assays. The kinetics of estrogen-receptor binding to chromatin indicate that these sites are saturated within 15 min of estrogen administration to the chicks, demonstrating that the lag is not due to slow uptake of the steroid. Suboptimal doses of estrogen produce the same lag, but the resultant rate of ovalbumin mRNA accumulation is lower than with an optimal dose. Partial induction of ovalbumin mRNA by a low dose of estrogen does not shorten the lag with an optimal dose. With progesteone, there is a lag of about 2 hr before either ovalbumin or conalbumin mRNA begins to accumulate. Treatment of chicks with hydroxyurea shortens the lag for ovalbumin induction with either hormone. Inhibition of protein synthesis with emetine does not prevent the accumulation of either ovalbumin or conalbumin mRNA. With cycloheximide, however, ovalbumin mRNA accumulation can be prevented. The existence of a lag suggests that there are intermediate steps between the binding of steroid receptors to chromatin and the induction of ovalbumin mRNA. There are basically two models to explain these delays in response: one involving the accumulation of an essential intermediate, and the other involving a rate-limiting translocation of steroid receptors from initial nonproductive chromatin-binding sites to productive sites. Several aspects of the kinetics of ovalbumin mRNA induction are more consistent with the latter model.  相似文献   

10.
Nuclear RNA from immature duck erythrocytes was fractionated into polyadenylated and nonpolyadenylated fractions, and globin mRNA sequences were determined by hybridization to DNA complementary to globin mRNA.80–90% of labeled nuclear RNA is found to be nonpolyadenylated, and 70–80% of the globin mRNA sequences present in the nucleus are found in nonpolyadenylated molecules. These data suggest that polyadenylation does not specifically select for globin mRNA sequences.The nonpolyadenylated globin mRNA sequences present in the nucleus are found mostly in molecules of small size, close to the size of polyribosomal globin mRNA, suggesting that polyadenylation is a later event in globin mRNA formation.  相似文献   

11.
12.
The metazoan proteins UAP56, REF1, and NXF1 are thought to bind sequentially to mRNA to promote its export to the cytoplasm: UAP56 is thought to recruit REF1 to nascent mRNA; REF1 acts as an adaptor protein mediating the association of NXF1 with mRNA, whereas NXF1 translocates the mRNA across the nuclear pore complex. REF1 is a component of the exon-exon junction complex (EJC); thus, the EJC is thought to play a role in the export of spliced mRNA. NXF1 and UAP56 are essential for mRNA export. An essential role for metazoan REF1 or the additional EJC proteins in this process has not been established. Contrary to expectation, we show that REF1 and the additional components of the EJC are dispensable for export of bulk mRNA in Drosophila cells. Only when REF1 and RNPS1 are codepleted, or when all EJC proteins are simultaneously depleted is a partial nuclear accumulation of polyadenylated RNAs observed. Because a significant fraction of bulk mRNA is detected in the cytoplasm of cells depleted of all EJC proteins, we conclude that additional adaptor protein(s) mediate the interaction between NXF1 and cellular mRNAs in metazoa. Our results imply that the essential role of UAP56 in mRNA export is not restricted to the recruitment of REF1.  相似文献   

13.
14.
Induction of somites by myosin mRNA   总被引:1,自引:0,他引:1  
The effects of the messenger for myosin heavy chain (26S mRNA) on postnodal explants of chick embryo blastoderm were studied. Somites do not differentiate in the postnodal explants of chick embryo cultivated by New's method. They are induced when postnodal pieces are cultivated in the presence of a 26S mRNA extracted from chick leg muscles or in the presence of myosin. 26S mRNA plus actinomycin D induces small somites. 26S mRNA of duck, rabbit, or trout induce somite structures often built up of cells separated by large spaces and joined around a large myocele. Crayfish 26S mRNA or chick myosin light chain induce columnar cells connected around a cavity. Liver or kidney mRNA do not induce. The induction process can be summarized as follows: 26S mRNA codes for myosin (heavy chain) and the myosin (heavy chain) induces the somites. Induction of somites by mRNA can occur in the presence of actinomycin D but not when there is mRNA plus puromycin. It does occur when myosin acts in the presence of puromycin. Myosin and its heavy chain are present in chick blastoderm before the appearance of somites. Induced somites are able to induce neural plates. We conclude that in normal development somites are induced by myosin.  相似文献   

15.
To investigate poly(A)-lacking mRNA in mouse kidney, we studied a fraction of renal mRNA that does not bind to oligo(dT)-cellulose but can be purified by benzoylated cellulose chromatography. Nominal poly(A)-lacking mRNA and poly(A)-containing mRNA have complete nucleotide sequence homology, suggesting that kidney does not contain mRNAs that are not represented in the polyadenylated RNA fraction. Translation products directed by nominal poly(A)-lacking mRNA and poly(A)-containing mRNA are qualitatively and quantitatively similar in one-dimensional polyacrylamide gels. [3H]cDNA transcribed from poly(A)-containing mRNA hybridizes with its template and with nominal poly(A)-lacking mRNA to the same extent (95%) and with the same kinetics; reaction of [3H]cDNA to nominal poly(A)-lacking mRNA with the two mRNA populations gives the same result. The extensive homology these two mRNA populations share is important to the interpretation of mRNA lifetime and to the analysis of authentic poly(A)-lacking mRNAs.  相似文献   

16.
In Drosophila, the posterior localization of oskar mRNA and its translational regulation are essential for axis specification and germline formation. Recently in Cell, demonstrated that Bruno inhibits cap-dependent translation of oskar mRNA and uncovered a novel Bruno-dependent assembly of oskar mRNA into multimeric RNP particles, which are inaccessible to the translational machinery. This work provides a novel link between mRNA localization, particle formation, and translational regulation.  相似文献   

17.
18.
19.
We used a genetic screen in Drosophila to identify mutations which disrupt the localization of oskar mRNA during oogenesis. Based on the hypothesis that some cytoskeletal components which are required during the mitotic divisions will also be required for oskar mRNA localization during oogenesis, we designed the following genetic screen. We screened for P-element insertions in genes which slow down the blastoderm mitotic divisions. A secondary genetic screen was to generate female germ-line clones of these potential cell division cycle genes and to identify those which cause the mislocalization of oskar mRNA. We identified mutations in ter94 which disrupt the localization of oskar mRNA to the posterior pole of the oocyte. Ter94 is a member of the CDC48p/VCP subfamily of AAA proteins which are involved in homotypic fusion of the endoplasmic reticulum during mitosis. Consistent with the function of the yeast ortholog, ter94-mutant egg chambers are defective in the assembly of the endoplasmic reticulum. We tested whether other membrane biosynthesis genes are required for localizing oskar mRNA during oogenesis. We found that ovaries that are mutant for syntaxin-1a, rop, and synaptotagmin are also defective in oskar mRNA localization during oogenesis. We suggest a pathway for the role of membrane assembly proteins on oskar mRNA localization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号