首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The subaxial cervical facets are important load-bearing structures, yet little is known about their mechanical response during physiological or traumatic intervertebral motion. Facet loading likely increases when intervertebral motions are superimposed with axial compression forces, increasing the risk of facet fracture. The aim of this study was to measure the mechanical response of the facets when intervertebral axial compression or distraction is superimposed on constrained, non-destructive shear, bending and rotation motions. Twelve C6/C7 motion segments (70 ± 13 yr, nine male) were subjected to constrained quasi-static anterior shear (1 mm), axial rotation (4°), flexion (10°), and lateral bending (5°) motions. Each motion was superimposed with three axial conditions: (1) 50 N compression; (2) 300 N compression (simulating neck muscle contraction); and, (3) 2.5 mm distraction. Angular deflections, and principal and shear surface strains, of the bilateral C6 inferior facets were calculated from motion-capture data and rosette strain gauges, respectively. Linear mixed-effects models (α = 0.05) assessed the effect of axial condition. Minimum principal and maximum shear strains were largest in the compressed condition for all motions except for maximum principal strains during axial rotation. For right axial rotation, maximum principal strains were larger for the contralateral facets, and minimum principal strains were larger for the left facets, regardless of axial condition. Sagittal deflections were largest in the compressed conditions during anterior shear and lateral bending motions, when adjusted for facet side.  相似文献   

2.
Mechanical failure of the annulus fibrosus is mostly indicated by tears, fissures, protrusions or disc prolapses. Some of these annulus failures can be caused by a high intradiscal pressure. This has an effect on disc bulging. However, it is not fully understood how disc bulging is related to disc loading. Therefore, the aim of this study was to investigate the annular fiber strains and disc bulging under simple and complex spinal loads. A novel laser scanner was used to image surfaces of six L2-3 segments. Specimens were loaded with 500 N or 7.5 Nm in a spine tester while acquiring surface maps. Loading was applied in the three principal main directions and four combined directions. Disc bulging and tissue surface strains in annulus collagen fiber directions were computed. Two conditions were measured; intact and defect (vertebral body-disc-body units). Axial compression resulted in 2.7% fiber associated strains in intact segments and the defect increased strains up to 6.7%. Disc bulging increased from 0.7 mm to 0.87 mm. Flexion produced 7.2% fiber associated strains and 1.63 mm bulge going up to 17.5% and 2.21 mm after the defect. Highest fiber associated strains were found for the combination of axial rotation plus lateral bending with 24.6% and with a maximal bulging of 1.14 mm. It was found that there is no tight relationship between fiber associated strains and disc bulging. This was especially seen for the load combinations. Highest fiber associated strains were found to be located in small posterolateral regions. Fiber associated strains had a much higher magnitude than previously reported fiber associated strains. The results showed that combined loading is most likely to produce higher associated fiber strains compared to single axis loading.  相似文献   

3.
Load-displacement properties of lower cervical spine motion segments   总被引:12,自引:0,他引:12  
The load-displacement behavior of 35 fresh adult cervical spine motion segments was measured in compression, shear, flexion, extension, lateral bending and axial torsion tests. Motion segments were tested both intact and with posterior elements removed. Applied forces ranged to 73.6 N in compression and to 39 N in shear, while applied moments ranged to 2.16 Nm. For each mode of loading, principal and coupled motions were measured and stiffnesses were calculated. The effect of disc degeneration on motion segment stiffnesses and the moments required for motion segment failure were also measured. In compression, the stiffnesses of the cervical motion segments were similar to those of thoracic and lumbar motion segments. In other modes of loading, cervical stiffnesses were considerably smaller than thoracic or lumbar stiffnesses. Removal of the posterior elements decreased cervical motion segment stiffnesses by as much as 50%. Degenerated cervical discs were less stiff in compression and stiffer in shear than less degenerated discs, but in bending or axial torsion, no statistically significant differences were evident. Bending moments causing failure were an order of magnitude lower than those for lumbar segments.  相似文献   

4.
Previous studies postulated that an axial compression of lumbar intervertebral discs causes a complex strain pattern on the annulus. This pattern is not fully understood, since most studies measured only the uniaxial ultimate tensile strain of the annulus. The aim of this study was to investigate surface strains and their relation to disc bulging. This work was extended to study some defects that are relevant for the intermediate process of finite element modeling. Six specimens (L2-3) with a median age of 51 years were utilized for this in vitro study. Specimens were loaded with pure moments (2.5-7.5Nm) in the principal directions. The anatomy was subsequently reduced in three steps: (1) ligamentous and bony posterior structures, (2) anterior and posterior ligaments and (3) nucleus. Measured were ranges of motion, three-dimensional disc bulging and surface strains of the outer annulus. Lateral bending showed the largest axial strains (9.7%) for intact specimens, which increased to 15.1% after the removal of posterior structures. Disc bulging was largest in flexion with 1.56mm, which increased to 2.06mm after step (1). Defect (2) caused that flexion yielded the largest axial strains with 22.6% and 2.17mm of bulging. We could also determine a constriction effect of these ligaments. Nucleotomy did not essentially increase anterior disc bulging in flexion, but inward disc bulging increased by 0.55mm, in extension. Due to the increase in the complexity of finite element models, it is difficult to obtain data from the literature for validation purposes. This study presents new data, which assist in the development of such models.  相似文献   

5.
A 3-D finite element model (FEM) of the lumbar spine (L1-S1) was used to determine the effect of a large compressive follower pre-load on range of motions (ROM) in all three planes. The follower load modeled in the FEM produced minimal vertebral rotations in all the three planes. The model was validated by comparing the disc compression at all levels in the lumbar spine with the corresponding results obtained by compressing 10 cadevaric lumbar spines (L1-S1) using the follower load technique described by Patwardhan et al. [1999. A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine 24(10), 1003-1009]. Further validation of the model was performed by comparing the lateral bending and torsion response without pre-load and the flexion-extension response without pre-load and with an 800 N follower pre-load with those obtained using cadaver lumbar spines. Following validation, the FEM was subjected to bending moments in all three planes with and without compressive follower pre-loads of up to 1200 N. Disc compression values and the flexion-extension range of motion under 800 N follower pre-load predicted by the FEM compared well with in vitro results. The current model showed that compressive follower pre-load decreased total as well as segmental ROM in flexion-extension by up to 18%, lateral bending by up to 42%, and torsion by up to 26%.  相似文献   

6.
The mechanical behavior of fourteen fresh human lumbar motion segments taken at autopsy from males with an average age of 29 yr was studied. Forces up to 1029 N were applied in anterior, posterior and lateral shear; and moments up to 95 Nm were applied in flexion, extension, lateral bending and torsion. In response to these loads endplate displacements up to 9 mm and rotations up to 18 degrees were measured. Stiffness values ranged from 53 to 140 N mm-1 in response to the shear forces and 6-11 Nm degree-1 in response to the moments. Lumbar motion segments can develop significant passive resistances to loads in situations where they are allowed to undergo substantial deformations.  相似文献   

7.
The technique used to incise the disc during discectomy may play a role in the subsequent healing and change in biomechanical stiffness of the disc. Several techniques of lumbar disc annulotomy have been described in clinical reports. The purpose of this paper was to study the influence of annulotomy technique on motion segment stiffness using a finite element model. Four incision methods (square, circular, cross, and slit) were compared. The analyses showed that each of the annular incisions produced increase in motions under axial moment loadings with circular incision producing the largest change in the corresponding rotational motion. Under shear loading mode, cross and slit-type annular incisions produced slightly larger changes in the principal motions of the disc than square and circular incisions. All other incision types considered in the current study produced negligibly small increase in motion under rest of the loading conditions. In addition to annulotomy, when nucleotomy was also included in the analyses, once again cross and slit incisions produced larger change in motion under shear loading mode as compared to the other two incision types. A comparison between the four types of annular incisions showed that cross incision produced an increase in motion larger than those produced by the other three incisions under flexion/extension and lateral moment loading and both shear force loadings. Circular incision produced the largest increase in motion under axial moment load in comparison to those produced by square, cross, and slit incisions. Sagittal plane symmetry was influenced by the incision injury to the motion segment leading to coupled motions as well as increased facet loads. From the study it can be concluded that the increase inflexibility of the disc due to annulotomy depends on the type of annulotomy and the annulotomy also produce asymmetrical deformations leading to increased facet loading.  相似文献   

8.
Current neck injury criteria do not include limits for lateral bending combined with axial compression and this has been observed as a clinically relevant mechanism, particularly for rollover motor vehicle crashes. The primary objectives of this study were to evaluate the effects of lateral eccentricity (the perpendicular distance from the axial force to the centre of the spine) on peak loads, kinematics, and spinal canal occlusions of subaxial cervical spine specimens tested in dynamic axial compression (0.5 m/s). Twelve 3-vertebra human cadaver cervical spine specimens were tested in two groups: low and high eccentricity with initial eccentricities of 1 and 150% of the lateral diameter of the vertebral body. Six-axis loads inferior to the specimen, kinematics of the superior-most vertebra, and spinal canal occlusions were measured. High speed video was collected and acoustic emission (AE) sensors were used to define the time of injury. The effects of eccentricity on peak loads, kinematics, and canal occlusions were evaluated using unpaired Student t-tests. The high eccentricity group had lower peak axial forces (1544±629 vs. 4296±1693 N), inferior displacements (0.2±1.0 vs. 6.6±2.0 mm), and canal occlusions (27±5 vs. 53±15%) and higher peak ipsilateral bending moments (53±17 vs. 3±18 Nm), ipsilateral bending rotations (22±3 vs. 1±2°), and ipsilateral displacements (4.5±1.4 vs. −1.0±1.3 mm, p<0.05 for all comparisons). These results provide new insights to develop prevention, recognition, and treatment strategies for compressive cervical spine injuries with lateral eccentricities.  相似文献   

9.
Automotive side impacts are a leading cause of injuries to the pubic symphysis, yet the mechanisms of those injuries have not been clearly established. Previous mechanical testing of isolated symphyses revealed increased joint laxity following drop tower lateral impacts to isolated pelvic bone structures, which suggested that the joints were damaged by excessive stresses and/or deformations during the impact tests. In the present study, a finite element (FE) model of a female pelvis including a previously validated symphysis sub-model was developed from computed tomography data. The full pelvis model was validated against measured force-time impact responses from drop tower experiments and then used to study the biomechanical response of the symphysis during the experimental impacts. The FE models predicted that the joint underwent a combination of lateral compression, posterior bending, anterior/posterior and superior/inferior shear that exceeded normal physiological levels prior to the onset of bony fractures. Large strains occurred concurrently within the pubic ligaments. Removal of the contralateral constraints to better approximate the boundary conditions of a seated motor vehicle occupant reduced cortical stresses and deformations of the pubic symphysis; however, ligament strains, compressive and shear stresses in the interpubic disc, as well as posterior bending of the joint structure remained as potential sources of joint damage during automotive side impacts.  相似文献   

10.
We examined the shear properties of passive ventricular myocardium in six pig hearts. Samples (3 x 3 x 3 mm) were cut from adjacent regions of the lateral left ventricular midwall, with sides aligned with the principal material axes. Four cycles of sinusoidal simple shear (maximum shear displacements of 0.1-0.5) were applied separately to each specimen in two orthogonal directions. Resulting forces along the three axes were measured. Three specimens from each heart were tested in different orientations to cover all six modes of simple shear deformation. Passive myocardium has nonlinear viscoelastic shear properties with reproducible, directionally dependent softening as strain is increased. Shear properties were clearly anisotropic with respect to the three principal material directions: passive ventricular myocardium is least resistant to simple shear displacements imposed in the plane of the myocardial layers and most resistant to shear deformations that produce extension of the myocyte axis. Comparison of results for the six different shear modes suggests that simple shear deformation is resisted by elastic elements aligned with the microstructural axes of the tissue.  相似文献   

11.
To study the effect of denucleation on the mechanical behavior of the human lumbar intervertebral disc through a 2mm incision, two groups of six human cadaver lumbar spinal units were tested in axial compression, axial rotation, lateral bending and flexion/extension after incremental steps of "partial" denucleation. Neutral zone, range of motion, stiffness, intradiscal pressure and energy dissipation were measured; the results showed that the contribution of the nucleus pulposus to the mechanical behavior of the intervertebral disc was more dominant through the neutral zone than at the farther limits of applied loads and moments.  相似文献   

12.
The objectives of this study were to obtain linearized stiffness matrices, and assess the linearity and hysteresis of the motion segments of the human lumbar spine under physiological conditions of axial preload and fluid environment. Also, the stiffness matrices were expressed in the form of an 'equivalent' structure that would give insights into the structural behavior of the spine. Mechanical properties of human cadaveric lumbar L2-3 and L4-5 spinal motion segments were measured in six degrees of freedom by recording forces when each of six principal displacements was applied. Each specimen was tested with axial compressive preloads of 0, 250 and 500 N. The displacements were four slow cycles of +/-0.5mm in anterior-posterior and lateral displacements, +/-0.35 mm axial displacement, +/-1.5 degrees lateral rotation and +/-1 degrees flexion-extension and torsional rotations. There were significant increases with magnitude of preload in the stiffness, hysteresis area (but not loss coefficient) and the linearity of the load-displacement relationship. The mean values of the diagonal and primary off-diagonal stiffness terms for intact motion segments increased significantly relative to values with no preload by an average factor of 1.71 and 2.11 with 250 and 500 N preload, respectively (all eight tests p<0.01). Half of the stiffness terms were greater at L4-5 than L2-3 at higher preloads. The linearized stiffness matrices at each preload magnitude were expressed as an equivalent structure consisting of a truss and a beam with a rigid posterior offset, whose geometrical properties varied with preload. These stiffness properties can be used in structural analyses of the lumbar spine.  相似文献   

13.
Prior studies have found that primary rotations in the lumbar spine are accompanied by coupled out-of-plane rotations. However, it is not clear whether these accompanying rotations are primarily due to passive (discs, ligaments and facet joints) or active (muscles) spinal anatomy. The aim of this study was to use a finite element (FE) model of the lumbar spine to predict three-dimensional coupled rotations between the lumbar vertebrae, due to passive spinal structures alone. The FE model was subjected to physiologically observed whole lumbar spine rotations about in vivo centres of rotation. Model predictions were validated by comparison of intra-discal pressures and primary rotations with in vivo measurements and these showed close agreement. Predicted coupled rotations matched in vivo measurements for all primary motions except lateral bending. We suggest that coupled rotations accompanying primary motions in the sagittal (flexion/extension) and transverse (axial rotation) planes are primarily due to passive spinal structures. For lateral bending the muscles most likely play a key role in the coupled rotation of the spine.  相似文献   

14.
Abstract

The current paper aims at assessing the sensitivity of muscle and intervertebral disc force computations against potential errors in modeling muscle attachment sites. We perturbed each attachment location in a complete and coherent musculoskeletal model of the human spine and quantified the changes in muscle and disc forces during standing upright, flexion, lateral bending, and axial rotation of the trunk. Although the majority of the muscles caused minor changes (less than 5%) in the disc forces, certain muscle groups, for example, quadratus lumborum, altered the shear and compressive forces as high as 353% and 17%, respectively. Furthermore, percent changes were higher in the shear forces than in the compressive forces. Our analyses identified certain muscles in the rib cage (intercostales interni and intercostales externi) and lumbar spine (quadratus lumborum and longissimus thoracis) as being more influential for computing muscle and disc forces. Furthermore, the disc forces at the L4/L5 joint were the most sensitive against muscle attachment sites, followed by T6/T7 and T12/L1 joints. Presented findings suggest that modeling muscle attachment sites based on solely anatomical illustrations might lead to erroneous evaluation of internal forces and promote using anatomical datasets where these locations were accurately measured. When developing a personalized model of the spine, certain care should also be paid especially for the muscles indicated in this work.  相似文献   

15.
The mechanical coupling behaviour of the thoracic spine is still not fully understood. For the validation of numerical models of the thoracic spine, however, the coupled motions within the single spinal segments are of importance to achieve high model accuracy. In the present study, eight fresh frozen human thoracic spinal specimens (C7-L1, mean age 54 ± 6 years) including the intact rib cage were loaded with pure bending moments of 5 Nm in flexion/extension (FE), lateral bending (LB), and axial rotation (AR) with and without a follower load of 400 N. During loading, the relative motions of each vertebra were monitored. Follower load decreased the overall ROM (T1-T12) significantly (p < 0.01) in all primary motion directions (extension: −46%, left LB: −72%, right LB: −72%, left AR: −26%, right AR: −26%) except flexion (−36%). Substantial coupled motion was found in lateral bending with ipsilateral axial rotation, which increased after a follower load was applied, leading to a dominant axial rotation during primary lateral bending, while all other coupled motions in the different motion directions were reduced under follower load. On the monosegmental level, the follower load especially reduced the ROM of the upper thoracic spine from T1-T2 to T4-T5 in all motion directions and the ROM of the lower thoracic spine from T9-T10 to T11-T12 in primary lateral bending. The facet joints, intervertebral disc morphologies, and the sagittal curvature presumably affect the thoracic spinal coupled motions depending on axial compressive preloading. Using these results, the validation of numerical models can be performed more accurately.  相似文献   

16.
A simple axisymmetric finite element model of a human spine segment containing two adjacent vertebrae and the intervening intervertebral disc was constructed. The bodies and disc were modeled by three substructures; one to represent each of the vertebral bodies, the annulus fibrosus, and the nucleus pulposus. A semi-analytic technique was used to maintain the computational economies of a two-dimensional analysis when non- axisymmetric loads were imposed on the model. The response of the model to compression, shear, torsion and bending loads applied to the superior vertebral body was examined to determine the effects of disc geometry and material properties on response. Comparisons of model responses with experimentally measured responses were made to estimate material property values for which model behaviors are in agreement with measured behaviors.  相似文献   

17.
Valgus bending and shearing of the knee have been identified as primary mechanisms of injuries in a lateral loading environment applicable to pedestrian-car collisions. Previous studies have reported on the structural response of the knee joint to pure valgus bending and lateral shearing, as well as the estimated injury thresholds for the knee bending angle and shear displacement based on experimental tests. However, epidemiological studies indicate that most knee injuries are due to the combined effects of bending and shear loading. Therefore, characterization of knee stiffness for combined loading and the associated injury tolerances is necessary for developing vehicle countermeasures to mitigate pedestrian injuries. Isolated knee joint specimens (n=40) from postmortem human subjects were tested in valgus bending at a loading rate representative of a pedestrian-car impact. The effect of lateral shear force combined with the bending moment on the stiffness response and the injury tolerances of the knee was concurrently evaluated. In addition to the knee moment-angle response, the bending angle and shear displacement corresponding to the first instance of primary ligament failure were determined in each test. The failure displacements were subsequently used to estimate an injury threshold function based on a simplified analytical model of the knee. The validity of the determined injury threshold function was subsequently verified using a finite element model. Post-test necropsy of the knees indicated medial collateral ligament injury consistent with the clinical injuries observed in pedestrian victims. The moment-angle response in valgus bending was determined at quasistatic and dynamic loading rates and compared to previously published test data. The peak bending moment values scaled to an average adult male showed no significant change with variation in the superimposed shear load. An injury threshold function for the knee in terms of bending angle and shear displacement was determined by performing regression analysis on the experimental data. The threshold values of the bending angle (16.2 deg) and shear displacement (25.2 mm) estimated from the injury threshold function were in agreement with previously published knee injury threshold data. The continuous knee injury function expressed in terms of bending angle and shear displacement enabled injury prediction for combined loading conditions such as those observed in pedestrian-car collisions.  相似文献   

18.
Recent advances in medical imaging techniques have allowed pure displacement-control trunk models to estimate spinal loads with no need to calculate muscle forces. Sensitivity of these models to the errors in post-imaging evaluation of displacements (reported to be ∼0.4–0.9° and 0.2–0.3 mm in vertebral displacements) has not yet been investigated. A Monte Carlo analysis was therefore used to assess the sensitivity of results in both musculoskeletal (MS) and passive finite element (FE) spine models to errors in measured displacements. Six static activities in upright standing, flexed, and extended postures were initially simulated using a force-control hybrid MS-FE model. Computed vertebral displacements were subsequently used to drive two distinct fully displacement-control MS and FE models. Effects of alterations in the reference vertebral displacements (at 3 error levels with SD (standard deviation) = 0.1, 0.2, and 0.3 mm in input translations together with, respectively, 0.2, 0.4, and 0.6° in input rotations) were investigated on the model predictions. Results indicated that outputs of both models had substantial task-dependent sensitivities to errors in the measured vertebral translations. For instance, L5-S1 intradiscal pressures (IDPs) were considerably affected (SD values reaching 1.05 MPa) and axial compression and shear forces even reversed directions as translation errors increased to 0.3 mm. Outputs were however generally much less sensitive to errors in measured vertebral rotations. Accounting for the accuracies in image-based kinematics measurements, therefore, it is concluded that the current measured vertebral translation errors at and beyond 0.1 mm are too large to drive biomechanical models of the spine.  相似文献   

19.
This paper describes a technique for characterizing strains and stresses induced in vivo in the rat tibia during application of an external four-point bending load. An external load was applied through the muscle and soft tissue with a four-point bending device, to induce strain in a 11 mm section of the right tibiae of ten adult female Sprague-Dawley rats. Induced strains were measured in vivo on the lateral surface of the tibia. Inter-rat difference, leg positioning and strain gage placement were evaluated as sources of variability of applied strains. Beam bending theory was used to predict externally induced in vivo strains. Finite element analysis was used to quantify the magnitude of shear stresses induced by this type of loading. There was a linear relationship between applied load and induced in vivo strains. In vivo strains induced by external loading were linearly correlated (R2 = 0.87) with the strains calculated using beam bending theory. The finite element analysis predicted shear stresses at less than 10% of the longitudinal stresses resulting from four-point bending. Strains predicted along the tibia by finite element analysis and beam bending theory were well-correlated. Inter-rat variability due to tibia size and shape difference was the most important source of variation in induced strain (CV = 21.6%). Leg positioning was less important (CV = 9.5%).  相似文献   

20.
Total disc arthroplasty (TDA) can be used to replace a degenerated intervertebral disc in the spine. There are different designs of prosthetic discs, but one of the most common is a ball-and-socket combination. Contact between the bearing surfaces can result in high frictional torque, which can then result in wear and implant loosening. This study was designed to determine the effects of ball radius on friction. Generic models of metal-on-metal TDA were manufactured with ball radii of 10, 12, 14 and 16 mm, with a radial clearance of 0.015 mm. A simulator was used to test each sample in flexion-extension, lateral bending and axial rotation at frequencies of 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75 and 2 Hz under loads of 50, 600, 1200 and 2000 N, in new born calf serum. Frictional torque was measured and Stribeck curves were plotted to illustrate the lubrication regime in each case. It was observed that implants with a smaller ball radius showed lower friction and showed boundary and mixed lubrication regimes, whereas implants with larger ball radius showed boundary lubrication only. This study suggests designing metal-on-metal TDAs with ball radius of 10 or 12 mm, in order to reduce wear and implant loosening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号