首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hepatopancreas of the American lobster, Homarus americanus, has four epithelial cell types that are anatomically distinguishable and can be separated for in vitro investigation of their individual biological roles in the intact organ using centrifugal elutriation. Previous studies employing this separation method have produced hepatopancreatic cell suspensions that have been used to examine the nature of copper transport, 2 Na+/1 H+ exchange, and D-glucose absorption by each cell type in isolation from the other cells comprising the tubular epithelium. The present investigation used this method to study amino acid transport by E-, F-, R-, and B-cells of the lobster hepatopancreas in order to characterize the absorption processes for protein digestion products by this organ and to identify which cell type was most likely the responsible agent for net transcellular transfer of these organic molecules from lumen to blood. Results indicated that heptopancreatic E- and F-cell types were the only cells exhibiting Na+-dependent 3H-L-proline transport. Further examination of 3H-L-proline influx by F-cell suspensions indicated that this cell type possessed plasma membrane Na+-dependent IMINO-like and B0-like transport mechanisms and Na+-independent L-like transport mechanisms. Using selective inhibitors of these separate transport systems (e.g., L-pipecolate, L-alanine, and L-leucine), the IMINO-like transporter appeared to predominate in L-proline influx into F-cells, while lesser amounts of amino acid transport took place by the B0-like and L-like systems. The results of this study suggest that the hepatopancreatic F-cell is the epithelial cell type responsible for the bulk of amino acid absorption by this organ and that the IMINO-like transporter is responsible for most of the L-proline transfer through this agent. It is further suggested that as digestion and absorption proceeds in the hepatopancreas and concentrations of luminal amino acids and sodium fall, Na+-dependent transport systems, like the IMINO-like and B0-like, increase their binding affinities for their substrates to maximize nutrient transfer across the epithelium.  相似文献   

2.
Mitochondria were isolated from the hepatopancreas of the Florida spiny lobster Panulirus argus using a high osmolarity medium containing 600 mm mannitol, 83 mm sucrose, 5 mm 4-morpholinepropanesulfonic acid, pH 7.6, 0.5% bovine serum albumin (BSA), and 1 mm EDTA. O2 uptake and Ca2+ transport were measured by electrode methods in similar media (plus 4 mm KPi, 3.3 mm MgCl2, and 0.67 mg/ml BSA, with 80 mm KCl replacing a portion of the osmotic support). Substrate-supported respiration was observed to be coupled to phosphorylation of ADP or uptake of Ca2+ ions. State 3 rates (nanogram atoms O × minute?1 × milligram protein?1 ± SEM (N)) were: 49.2 ± 3.9 (19), succinate; 30.9 ± 3.9 (6), dl-palmitoyl carnitine; 29.0 ± 2.7 (9), l-malate; 40.0 ± 2.3 (3), l-glutamate; 27.7 ± 2.2 (5), d-3-hydroxybutyrate; and 26.4 ± 2.4 (18), l-proline ± pyruvate. α-Glycerol phosphate was not oxidized. Ca2+ uptake driven by succinate oxidation proceeded with Ca:O ratios of 4.0 ± 0.2 (SEM). Hepatopancreas mitochondria were not uncoupled by Ca2+ uptake in excess of 1100 ng atoms × mg protein?1. Ca2+ efflux could be induced by ruthenium red, indicating the presence of an active Ca2+ cycle. These mitochondria may provide a favorable model system in which to study regulation of the Ca2+ cycle.  相似文献   

3.
When cells with surface-bound diphtheria toxin were exposed to pH 4.5, the toxin became shielded against lactoperoxidase-catalyzed radioiodination, indicating that the toxin was inserted into the membrane. Cells thus treated had strongly reduced ability to take up 36Cl-, 35SO4(2-), and [14C]SCN-. The reduction of chloride uptake was strongest at neutral pH, whereas that of sulfate was strongest at acidic pH. Lineweaver-Burk plots indicated that the toxin treatment reduced the Jmax but not the Km for the anions. The toxin also inhibited the NaCl-stimulated efflux of 35SO4(2-), indicating that the toxin inhibits the antiporter. No inhibition was found when toxin-treated cells were not exposed to low pH, whereas exposure to pH 4.5 for 20 s induced close to maximal inhibition. Half-maximal inhibition was obtained after exposure to pH 5.4. The concentration of diphtheria toxin required to obtain maximal inhibition (0.3 micrograms/ml) was sufficient to ensure close to maximal toxin binding to the cells. Even in ATP-depleted cells and in the absence of permeant anions, low pH induced inhibition of anion antiport in toxin-treated Vero cells. There was no measurable inhibition of anion antiport in cells with little or no ability to bind the toxin.  相似文献   

4.
Incubation of human skin fibroblasts in hypotonic media induced the activation of 36Cl- efflux which was roughly proportional to the decrease in the osmolality of the media. The efflux of 36Cl- was insensitive to DIDS plus furosemide and inhibited by addition of a Cl- channel blocker such as 5-nitro-2-(3-phenyl propylamino) benzoic acid (NPPB). We propose that a conductive pathway for Cl- transport, almost silent in isotonic conditions, is activated by exposing human fibroblasts to hypotonic shock, this conclusion being supported by evidence that also 36Cl- influx was enhanced by hypotonic medium.  相似文献   

5.
6.
7.
Two rate-limiting mechanisms have been proposed to explain the gramicidin channel facilitated decay of the pH difference across vesicular membrane (delta pH) in the pH region 6-8 and salt (MCI, M+ = K+, Na+) concentration range 50-300 mM. 1) At low pH conditions (approximately 6), H+ transport through the gramicidin channel predominantly limits the delta pH decay rate. 2) At higher pH conditions (approximately 7.5), transport of a deprotonated species (but not through the channel) predominantly limits the rate. The second mechanism has been suggested to be the hydroxyl ion propogation through water chains across the bilayer by hydrogen bond exchange. In both mechanisms alkali metal ion transport providing the compensating flux takes place through the gramicidin channels. Such an identification has been made from a detailed study of the delta pH decay rate as a function of 1) gramicidin concentration, 2) alkali metal ion concentration, 3) pH, 4) temperature, and 5) changes in the membrane order (by adding small amounts of chloroform to vesicle solutions). The apparent activation energy associated with the second mechanism (approximately 3.2 kcal/mol) is smaller than that associated with the first mechanism (approximately 12 kcal/mol). In these experiments, delta pH was created by temperature jump, and vesicles were prepared using soybean phospholipid or a mixture of 94% egg phosphatidylcholine and 6% phosphatidic acid.  相似文献   

8.
Nuclear pore complexes provide the sole gateway for the exchange of material between nucleus and cytoplasm of interphase eukaryotic cells. They support two modes of transport: passive diffusion of ions, metabolites, and intermediate-sized macromolecules and facilitated, receptor-mediated translocation of proteins, RNA, and ribonucleoprotein complexes. It is generally assumed that both modes of transport occur through a single diffusion channel located within the central pore of the nuclear pore complex. To test this hypothesis, we studied the mutual effects between transporting molecules utilizing either the same or different modes of translocation. We find that the two modes of transport do not interfere with each other, but molecules utilizing a particular mode of transport do hinder motion of others utilizing the same pathway. We therefore conclude that the two modes of transport are largely segregated.  相似文献   

9.
In sodium-free buffer of low ionic strength, the uptake of chloride and sulfate in Vero cells was found to occur mainly by antiport which was very sensitive to inhibition by 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid. Efflux of anions from the cells appeared to energize the uptake. While the uptake of Cl- occurred over a wide pH range, that of SO4(2-) showed a clear maximum at pH 6-7. The rate of efflux of 36Cl- and 35SO4(2-) was strongly increased by the presence of permeant anions in the efflux buffer. Preincubation of the cells at slightly alkaline pH strongly increased the rate of C1- efflux into buffers nominally free of permeant anions, as well as the efflux by exchange. This increase did not occur if the cells were depleted for ATP during the preincubation. Depolarization of the cells reduced the rate of efflux into buffers without permeant anions, indicating that the efflux is at least partly due to net, electrogenic, anion transport. The efflux by antiport was not affected by manipulations of the membrane potential, indicating electroneutral exchange. The uptake and efflux were increased to the same extent with increasing temperature, the activation energies were Ea = 25 kcal/mol of Cl- and Ea = 12 kcal/mol of SO4(2-). Similar anion antiport appears to occur in L, baby hamster kidney, and HeLa S3 cells.  相似文献   

10.
Orthophosphate (Pi) modulates the activity and activation of ribulose 1,5-bis-phosphate carboxylase/oxygenase (RuBisCO) via a mechanism that is still controversial. Whereas its effects on the higher plant enzyme have been described, little is known about Pi regulation of the structurally similar, yet kinetically different cyanobacterial enzyme. We found that RuBisCO of Synechocystis PCC6803 was affected by Pi in a paradoxical fashion. On the one hand, Pi inhibited catalysis by competing with the substrate RuBP, and on the other hand it stimulated enzyme activation in a dual manner manifested by multiphasic kinetics, which differed from the effect on activation of the higher plant enzyme. Pi concentrations > 5 mM promoted the carbamylation of the cyanobacterial enzyme and the binding of Mg2+ to the carbanion at suboptimal concentrations of CO2 and Mg2+. Surprisingly, Pi also increased the activation level of the carbamylated enzyme via another putative site of interaction. In contrast with the higher plant RuBisCO, RuBP did not inhibit the stimulatory effect of phosphate on activation of the cyanobacterial enzyme, suggesting a Pi effect through a site other than the sugar binding site. The dual effect on activation could be distinguished by the phosphate analogue vanadate, which inhibited only the stimulation achieved at high phosphate concentrations. The elevation of RuBisCO activation at suboptimal levels of CO2 and high concentrations of RuBP suggests that in cyanobacteria Pi may have a role analogous to that of RuBisCO activase in higher plants.  相似文献   

11.
The glucose transport across the bovine retinal pigment epithelium (RPE) was studied in a modified Ussing chamber. Unidirectional fluxes were recorded with radioactive tracers L-[14C]-glucose (LG) and 3-O-methyl-D-[3H]-glucose (MDG). There was no significant difference between the unidirectional MDG fluxes (retina to choroid, and choroid to retina directions) with or without ouabain. The effects of two glucose transporter inhibitors, phloretin and cytochalasin B, on the glucose fluxes from choroid to retina cells were also investigated. The MDG flux was found to be inhibited by 45.5% by phloretin (10(-4) M) and 87.4% by cytochalasin B (10(-4) M). These inhibitory characteristics resembled the facilitated diffusion mode of glucose transport. The glucose transporter protein in the plasma membrane of RPE was located by means of photolabeling [3H]-cytochalasin B. The labeled plasma membrane enriched fraction was analysed by SDS-PAGE. The glucose transporter of bovine RPE was found to have a molecular weight range of 46-53 kDa. The molecular weight range of this transporter protein agreed with those of facilitated glucose transporters in other tissues indicating a molecular similarity between them. The results indicated that the glucose transport across the RPE is via passive facilitated diffusion.  相似文献   

12.
Nuclear proteins are transported from the cytoplasm into the nucleus via nuclear envelope pore complexes (NPCs). At the molecular level, the mechanisms responsible for this transport remain obscure. However, it is known that, for many proteins, the process requires ATP and proceeds against formidable nucleocytoplasmic concentration gradients. Therefore, the NPC is often thought of as an active transport site. In this article, Philip Paine presents the alternative hypothesis that, on current evidence, protein translocation across the nuclear envelope and accumulation in the nucleus can equally well be explained by facilitated transport through the NPC and subsequent intranuclear binding.  相似文献   

13.
Intestinal epithelial membrane transport of L-lactic acid was characterized using rabbit jejunal brush-border membrane vesicles (BBMVs). The uptake of L-[(14)C]lactic acid by BBMVs showed an overshoot phenomenon in the presence of outward-directed bicarbonate and/or inward-directed proton gradients. Kinetic analysis of L-[(14)C]lactic acid uptake revealed the involvement of two saturable processes in the presence of both proton and bicarbonate gradients. An arginyl residue-modifying agent, phenylglyoxal, inhibited L-[(14)C]lactic acid transport by the proton cotransporter, but not by the anion antiporter. The initial uptakes of L-[(14)C]lactic acid which are driven by bicarbonate ion and proton gradients were inhibited commonly by monocarboxylic acids and selectively by anion exchange inhibitor 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid and protonophore carbonylcyanide p-trifluoromethoxyphenylhydrazone, respectively. These observations demonstrate that L-lactic acid is transported across the intestinal brush-border membrane by multiple mechanisms, including an anion antiporter and a previously known proton cotransporter.  相似文献   

14.
Phenylthiosemicarbazones (PTSCs) are proton-coupled anion transporters with pH-switchable behaviour known to be regulated by an imine protonation equilibrium. Previously, chloride/nitrate exchange by PTSCs was found to be inactive at pH 7.2 due to locking of the thiourea anion binding site by an intramolecular hydrogen bond, and switched ON upon imine protonation at pH 4.5. The rate-determining process of the pH switch, however, was not examined. We here develop a new series of PTSCs and demonstrate their conformational behaviour by X-ray crystallographic analysis and pH-switchable anion transport properties by liposomal assays. We report the surprising finding that the protonated PTSCs are extremely selective for halides over oxyanions in membrane transport. Owing to the high chloride over nitrate selectivity, the pH-dependent chloride/nitrate exchange of PTSCs originates from the rate-limiting nitrate transport process being inhibited at neutral pH.  相似文献   

15.
Lysosomes are known centers for sequestration of calcium and a variety of heavy metals in many invertebrate tissues, and as a result of this compartmentalization these organelles perform important detoxification roles in the animals involved. The present investigation uses a centrifugation method to isolate and purify hepatopancreatic lysosomes from the American lobster, Homarus americanus. Purified lysosomal preparations were used to characterize membrane transport mechanisms in these organelles for transferring and sequestering cytoplasmic copper following its absorption across the plasma membrane from dietary constituents. The copper-specific fluorescent dye, Phen Green, was employed to quantify transmembrane fluxes of this metal as has been recently used to investigate copper movements across hepatopancreatic mitochondrial and plasma membranes. Results indicated the presence of a vanadate-sensitive, calcium-stimulated, copper ATPase in the membranes of these organelles that displayed high affinity carrier-mediated transport kinetics and may significantly contribute to organismic copper homeostasis. Together with a putative bafilomycin-sensitive V-ATPase in the membrane of the same organelles, importing hydrogen ions into the organellar interior, this copper ATPase may function as part of a physiological mechanism for precipitate formation between metallic cations and anions. These ionic precipitate complexes may then act as a sink for excess metals and thereby reduce the circulating concentrations of these elements.  相似文献   

16.
17.
Human red blood cells anion exchange protein (band 3) exposed to peroxyl radicals produced by thermolysis of 2,2'-azo-bis(2-amidinopropane) (AAPH) is degraded by proteinases that prevent accumulation of oxidatively damaged proteins. To assess whether this degradation affects anion transport capacity we used the anionic fluorescent probe 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-y) amino] ethanosulfonate (NBD-taurine). A decrease of band 3 function was observed after exposure to peroxyl radicals. In the presence of proteinase inhibitors the decrement of anion transport through band 3 was smaller indicating that removal achieved by proteinases includes oxidized band 3 which still retain transport ability. Proteinases recognize band 3 aggregates produced by peroxyl radicals as was evaluated by immunoblotting. It is concluded that decrease of band 3 transport capacity may result from a direct protein oxidation and from its degradation by proteinases and that band 3 aggregates removal may prevent macrophage recognition of the senescent condition which would lead to cell disposal.  相似文献   

18.
Spiny dogfish shark (Squalus acanthias) lateral and IV choroid plexuses (CPs) are ultrastructurally similar to the corresponding tissues of rat. However, shark IV CP is proportionally larger and easily accessible. Moreover, this epithelial sheet can be halved and studied in Ussing flux chambers. We have used confocal fluorescence microscopy and radiotracer techniques to characterize transepithelial transport of the organic anions (OAs) fluorescein (FL) and 2,4-dichlorophenoxyacetic acid (2,4-D), respectively, by shark CP. Lateral and IV CP accumulated 1 microM FL, with highest levels in the underlying extracellular spaces, intermediate levels in epithelial cells, and lowest levels in the medium. 2,4-D and probenecid inhibited FL accumulation in cells and extracellular spaces, suggesting that these substrates compete for common carriers. Unidirectional absorptive [cerebrospinal fluid (CSF)-to-blood] and secretory (blood-to-CSF) fluxes of 10 microM [(14)C]2,4-D were measured under short-circuited conditions in IV CP mounted in Ussing chambers. 2,4-D underwent net absorption, with an average flux ratio of 7. Probenecid, 2,4,5-trichlorophenoxyacetic acid, and 5-hydroxyindolacetic acid reduced net absorption, reversibly inhibiting unidirectional absorption, with no effect on secretion. Ouabain irreversibly reduced net 2,4-D absorption and cellular and extracellular accumulation of FL, suggesting energetic coupling of OA absorption to Na(+) transport. Collectively, these data indicate that shark CP actively removes OAs from CSF by a process that is specific and active.  相似文献   

19.
Human erythrocytes were exposed to oxidative stress by treatment with the slowly hemolytic drug phenylhydrazine. Phenylhydrazine has been previously shown to trigger the production of toxic oxygen metabolites including O-2 and H2O2 and the formation of Heinz bodies. The concentration-dependent formation of Heinz bodies was confirmed using optical microscopy. Heinz body formation was accompanied by surface protuberances as shown by scanning electron microscopy. The formation of Heinz bodies was accompanied by inhibition of anion translocation. Anion translocation was measured using the anionic fluorescent substrate analog N-(2-aminoethylsulfonate)-7-nitrobenz-2-oxa-1,3-diazole (NBD-taurine). The efflux of NBD-taurine was measured by continuous monitoring of transport by fluorescence (CMTF). The mean value of the kinetic rate constant for transport, k, was found to be -0.090 +/- 0.017 min-1. Phenylhydrazine was found to decrease k to less than one-half of control values in a dose-dependent fashion. The disruption of anion translocation may be related to the oxidative effects of phenylhydrazine and to the generation of Heinz bodies, which bind to the N-terminal domain of band 3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号