首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Levodopa reportedly inhibits insulin action in skeletal muscle. Here we show that C2C12 myotubes produce levodopa and that insulin-stimulated glucose transport is enhanced when endogenous levodopa is depleted. Exogenous levodopa prevented the stimulation of glucose transport by insulin (P < 0.05) and increased cAMP concentrations (P < 0.05). The decrease in insulin-stimulated glucose transport caused by levodopa was attenuated by propranolol (a beta-adrenergic antagonist) and prevented by NSD-1015 (NSD), an inhibitor of DOPA decarboxylase (DDC; converts levodopa to dopamine). Propranolol and NSD both prevented levodopa-related increases in [cAMP]. However, the effects of levodopa were unlikely to be dependent on the conversion of levodopa to catecholamines because we could detect neither DDC in myotubes nor catecholamines in media after incubation of myotubes with levodopa. The data suggest the possibility of novel autocrine beta-adrenergic action in C2C12 myotubes in which levodopa, produced by myotubes, could have hormone-like effects that impinge on glucose metabolism.  相似文献   

2.
Weanling rats were given diets deficient in or supplemented with zinc. Within a few weeks there were increases in the weight of the adrenal glands and in the concentration of cholesterol and 11-hydroxycorticosteroids in the adrenal glands of the zinc deficient animals. The decrease in cholesterol concentration due to ACTH administration was greater in zinc-deficient than in supplemented rats. After four weeks on the zinc-deficient diet rats had smaller thymus glands than zinc-supplemented rats but zinc-deficient diets had no such effect on adrenalectomised rats. The addition of 2 mg zinc/ml drinking water had no effect on adrenal weight or thymus weight but increased plasma 11-hydroxysteroids after 30 days. The possible connection between zinc intake and resistance to injury and disease is discussed.  相似文献   

3.
X Z Khawaja  I C Green 《Peptides》1991,12(2):227-233
Intraperitoneal administration of beta-endorphin (1 mg/kg) to ob/ob mice doubled fasting plasma insulin concentrations within 30 min, while plasma glucose concentrations were unaltered. In lean mice, beta-endorphin failed to alter plasma insulin or glucose responses. In glucose-loaded ob/ob mice, beta-endorphin (1 mg/kg) reduced insulin levels at 40 min, and delayed glucose disposal. A lower dose of beta-endorphin (0.1 mg/kg) decreased plasma insulin at 90 min, with no effect on plasma glucose disposal. In lean mice, only the higher dose of beta-endorphin suppressed the glucose-stimulated rise in plasma insulin concentrations, without affecting plasma glucose. Beta-endorphin's actions were blocked by naltrexone and could not be mimicked by N-acetyl-beta-endorphin. Beta-endorphin (10(-8)M) enhanced insulin release from isolated ob/ob and lean mouse islets incubated in medium containing 6 mM glucose, but inhibited release when 20 mM glucose was present. These effects were naloxone reversible. The results indicate that 1) ob/ob mice display a greater magnitude of response in vivo to beta-endorphin's actions on insulin release compared with lean mice, 2) high concentrations of beta-endorphin exacerbate glucose disposal in ob/ob mice. 3) the prevailing glucose concentration is an important determinant of whether beta-endorphin's effects on insulin release will be stimulatory or inhibitory and 4) these actions are mediated via opiate receptors.  相似文献   

4.
Peculiarities of the hypothalamo-pituitary-adrenal system (HPAS) reaction in mice of 8 inbred strains to a stress effect of the immoblization and of cold have been studied and a comparison of the effect with the reaction of the adrenal cortex to its direct stimulator--ACTH have been carried out. As a result of the study of the resting level of 11-hydroxycorticosteroids in peripheral plasma of inbred mice significant interstrain differences were found. A positive correlation between resting corticosteroids level and the reaction of HPAS to the stress in mouse strains under study was found, but none of them correlated with the reactivity of the adrenal cortex to ACTH.  相似文献   

5.
In order to assess the ability of nicotinic acid to decrease plasma glucose concentration, normal individuals were given continuous four hour infusions of either nicotinic acid (NA), somatostatin (SRIF), NA + SRIF, or 0.9% NaCl (Saline). Plasma non-esterified fatty acid (NEFA) concentration decreased to about one-fourth of the basal value in response to either NA or NA + SRIF, associated with statistically significant decreases in plasma glucose concentration. The ability of NA and NA + SRIF to decrease plasma glucose concentration was seen despite the fact that plasma insulin concentrations also fell significantly during both infusions. Although plasma glucose concentration fell significantly in response to both NA and NA + SRIF, the effect of NA + SRIF was approximately twice as great as that seen with NA alone. The augmented hypoglycaemic effect of NA + SRIF as compared to NA alone was associated with a concomitant fall in plasma glucagon concentration. In contrast, plasma glucose concentration did not change following Saline, and was actually higher than baseline after the infusion of SRIF alone. These results provide evidence that NA can lower plasma glucose concentration in normal volunteers, and suggests that this is mediated by the NA-associated decrease in plasma NEFA concentration.  相似文献   

6.
Fed and 24 hour fasted lean and genetically obese mice (ob/ob) were given a fixed glucose load per gm body weight by intraperitoneal and intragastric administration. Intraperitoneal glucose injection into the obese mice produced a prolonged elevated blood glucose level with a concomitant significant decrease of circulating insulin. Possible interpretations of this observation are discussed. In those obese animals in which glucose was administered intragastrically the fed obese mice had a blood glucose concentration of 450-500 mg% for a period of one hour but there was no increase in circulating insulin, however, in the fasted obese mice in which the glucose concentration was about 350 mg% for one hour, there was a significant increase in the circulating insulin levels. The fed and fasted lean mice showed normal glucose tolerance curves and the expected increase in circulating insulin following either intraperitoneal orintragastric glucose loads. It is concluded that hyperglycaemia in the ob/ob mice is unlikely to be the principal cause of hyperinsulinaemia.  相似文献   

7.
Abstract: Levodopa was infused under various circumstances of pretreatment into the ear veins of unanesthetized rabbits. Concentrations of neostriatal dopamine formed in response to levodopa administration were determined. The aim was to characterize the temporal relationship between the concentrations of levodopa in plasma and dopamine in the neostriatum. When plasma levodopa was maintained constant by i.v. infusion, the concentration of neostriatal dopamine reached a plateau by 1 h. Increases in dopamine were proportional to the amount of precursor in plasma. The tissue half-life of this dopamine in normal rabbits was not more than 15 min. Half-lives of comparable duration for striatal dopamine were calculated from rabbits treated chronically with levodopa, and from rabbits with monoamine-depleting lesions. The results show that the concentration of dopamine in rabbit neostriatum correlates closely with the concentration of levodopa in plasma. Concurrent analyses of neocortical tissues indicate that the neostriatum may not be different from other brain regions with regard to dopamine storage mechanisms. Interpretation of the results in terms of the clinical use of levodopa suggests that the durations of short-term effects (measured in h) of the drugs are paralleled by changes in concentration of brain dopamine.  相似文献   

8.
Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted by endocrine K-cells in response to nutrient absorption. In this study we have utilized a specific and enzymatically stable GIP receptor antagonist, (Pro3)GIP, to evaluate the contribution of endogenous GIP to insulin secretion and glucose homeostasis in mice. Daily injection of (Pro3)GIP (25 nmol/kg body weight) for 11 days had no effect on food intake or body weight. Non-fasting plasma glucose concentrations were significantly raised (p<0.05) by day 11, while plasma insulin concentrations were not significantly different from saline treated controls. After 11 days, intraperitoneal glucose tolerance was significantly impaired in the (Pro3)GIP treated mice compared to control (p<0.01). Glucose-mediated insulin secretion was not significantly different between the two groups. Insulin sensitivity of 11-day (Pro3)GIP treated mice was slightly impaired 60 min post injection compared with controls. Following a 15 min refeeding period in 18 h fasted mice, food intake was not significantly different in (Pro3)GIP treated mice and controls. However, (Pro3)GIP treated mice displayed significantly elevated plasma glucose levels 30 and 60 min post feeding (p<0.05, in both cases). Postprandial insulin secretion was not significantly different and no changes in pancreatic insulin content or islet morphology were observed in (Pro3)GIP treated mice. The observed biological effects of (Pro3)GIP were reversed following cessation of treatment for 9 days. These data indicate that ablation of GIP signaling causes a readily reversible glucose intolerance without appreciable change of insulin secretion.  相似文献   

9.
The effects of diabetes and lipoprotein lipase (LpL) on plasma lipids were studied in mice expressing human apolipoprotein B (HuBTg). Our overall objective was to produce a diabetic mouse model in which the sole effects of blood glucose elevation on atherosclerosis could be assessed. Mice were made diabetic by intraperitoneal injection of streptozotocin, which led to a 2- to 2. 5-fold increase in plasma glucose. Lipids were assessed in mice on chow and on an atherogenic Western type diet (WTD), consisting of 21% (wt/wt) fat and 0.15% (wt/wt) cholesterol. Plasma triglyceride and cholesterol were the same in diabetic and non-diabetic mice on the chow diet. On the WTD, male diabetic HuBTg mice had a >50% increase in plasma cholesterol and more very low density lipoprotein (VLDL) cholesterol and triglyceride as assessed by FPLC analysis. A Triton study showed no increase in triglyceride or apolipoprotein B production, suggesting that the accumulation of VLDL was due to a decrease in lipoprotein clearance. Surprisingly, the VLDL increase in these mice was not due to a decrease in LpL activity in postheparin plasma. To test whether LpL overexpression would alter these diabetes-induced lipoprotein changes, HuBTg mice were crossed with mice expressing human LpL in muscle. LpL overexpression reduced plasma triglyceride, but not cholesterol, in male mice on WTD. Aortic root atherosclerosis assessed in 32-week-old mice on the WTD was not greater in diabetic mice. In summary, diabetes primarily increased plasma VLDL in HuBTg mice. LpL activity was not decreased in these animals. However, additional LpL expression eliminated the diabetic lipoprotein changes. These mice did not have more atherosclerosis with diabetes.  相似文献   

10.
The effects of intravenous salbutamol (4 mug/kg) were compared with those of aerosol salbutamol (200 mug) in 10 asthmatic patients in a double-blind placebo-controlled study. Both methods of administration produced equal bronchodilatation. Intravenous salbutamol caused significant increases in plasma insulin and glucose levels and a fall in serum potassium concentration in addition to tachycardia and tremor, whereas aerosol salbutamol produced only a small transient increase in the plasma glucose level. The initially raised non-esterified fatty acid levels decreased significantly after aerosol and placebo but not after intravenous salbutamol.  相似文献   

11.
Quantitative estimations were made of insulin receptors on liver cell membrane of DBA/2 mice infected with M variant of encephalomyocarditis virus. The virus produced an impairment of glucose metabolism on day 3 of infection, which lasted for 5 months. The fasting plasma insulin concentration was markedly decreased on day 14. The specific binding of 125-I insulin to the membrane receptor was significantly decreased on day 3 of infection. The binding inhibitions were stronger in male mice than in females. The number of insulin receptors began to decrease on day 1, was decreased remarkably by day 3, and returned on day 7 to the level before infection. A decrease of receptor affinity was also observed in infected animals. These results seem to show that changes in insulin receptors are one cause of the impairment of glucose metabolism in the initial phase of virus-induced diabetes.  相似文献   

12.
Monkeys (Macaca mulatta) of both sexes repeatedly immunized with a complex of glial antigens of the homologous brain demonstrated abnormalities of hormonal functions after 1 to 5 weeks. These abnormalities were marked by a decrease in the total serum tyroxine (after 1 week) and a rise in the concentration of 11-hydroxycorticosteroids (11-OHCS) that occurred after 5 weeks. The changes in tyroxine level were more stable than those in the concentration of 11-OHCS. The immunized animals manifested changes in the disc electrophoregram of the serum. Application of stress resulted in a consistent elevation of the concentration of 11-OHCS and in temporary changes in the number and intensity of individual fractions of serum proteins. The fractional composition of serum proteins was different in control and experimental monkeys.  相似文献   

13.
The effects of 30-min intravenous infusions of ethanol (about 50 mm blood concentration), acetaldehyde (about 100 μm blood concentration), and acetate (equimolar dose to acetaldehyde) were studied in normal and adrenalectomized rats. Blood glucose, plasma free fatty acids (FFA), plasma immunoreactive insulin, and glucagon and hepatic glycogen concentrations were measured. Ethanol itself in the presence of 4-methylpyrazole (4-MP) produced no marked changes in the parameters measured. Its infusion without 4-MP reduced plasma insulin by 35% in the normal rats, but not in the adrenalectomized rats, with no simultaneous changes in blood glucose. Acetaldehyde infusion produced hyperglycemia and relatively slight hyperinsulinemia in the normal rats, but not in the adrenalectomized rats. Equimolar acetate was not as potent a stimulator of glycogenolysis as acetaldehyde. Plasma FFA concentrations were markedly reduced by ethanol (without 4-MP), acetaldehyde and acetate both in the normal and adrenalectomized rats, but in the presence of 4-MP ethanol was without effect. The results indicate that metabolites of ethanol (mostly acetaldehyde) produced during ethanol oxidation in vivo are responsible for the stimulation of glycogenolysis through the release of catecholamines from the adrenal glands. The ethanol-induced decrease in plasma FFA is also attributable to the metabolites of ethanol, acetaldehyde having a more potent depressing action than acetate. The mode of inhibition of lipolysis is not related to hormonal factors.  相似文献   

14.
Glycosuria is one of the well-documented characteristics in ClC-5 knockout (KO) mice and patients with Dent's disease. However, the underlying pathophysiology of its occurrence is unknown. In this study, we have compared ClC-5 KO mice with age and gender matched wild-type (WT) control mice to investigate if the underlying cause of manifested glycosuria is an impairment of glucose homeostasis and/or an alteration in expression levels of proximal tubule (PT) glucose transporters. We observed that, the blood glucose concentration (n=12, p<0.01) and the fractional excretion of glucose and insulin (n=6, p<0.05) were higher in KO mice. In contrast, the fasting blood glucose levels (n=7) were not significantly different in the two groups. Plasma glucose increased to a greater extent in KO mice (n=7, p<0.05) when challenged by an intraperitoneal injection of glucose. However, no peripheral tissue insulin resistance was observed following an intraperitoneal injection of insulin (n=9) in the KO mice. ELISA analysis demonstrated low plasma insulin concentrations after a 12 hour fasting period and also following glucose injection in KO mice. The total insulin released during a 2 hour period following glucose challenge was significantly lower in KO mice (n=6, p<0.05). By western blot, we observed a significant decrease in GLUT2 protein expression levels in isolated PT ((n=10, p<0.01)) of KO mice. This decrease in protein levels was corroborated by a significant decrease in GLUT2 mRNA levels estimated semi quantitatively by RT-PCR in isolated PT (n=10, p<0.01). No significant changes in mRNA expression levels of SGLT2, SGLT1 and GLUT1, as analyzed by RT-PCR, could be detected in the isolated PT (n=10). Also, we have shown by western blot analysis that expression of megalin is lower in the renal cortex of KO mice when compared to WT mice (n=3, p<0.05). Our results suggest that low plasma insulin concentration together with renal function changes observed in KO mice significantly contribute towards the glucose intolerance and documented glycosuria observed in this animal.  相似文献   

15.
Nitric oxide hemoglobin in mice and rats in endotoxic shock.   总被引:1,自引:0,他引:1  
Mice given ip bacterial endotoxin (LPS) at 10 mg/kg showed a statistically significant decrease in plasma glucose and an increase in hematocrit at 2 h after injection. Glucose was still decreased at 4 h, but the hematocrit had returned to control values. Nitrosylated hemoglobin (HbNO) was detected at 3, but not at 2 h. By 4 h it had increased 5-fold. When N-monomethylarginine (NMMA) at 100 mg/kg, ip was given 2 h after LPS in mice, the HbNO concentration at 4 h was significantly reduced, but the hypoglycemia was worsened because NMMA itself produced a significant hypoglycemia. Rats given iv LPS, 20 mg/kg, showed a fleeting, transient rise in mean arterial pressure (MAP) lasting only a few min. Thereafter, the MAP tended to drift slowly downward over 4 h, but when the MAP at 30 min intervals was compared to the pre-LPS MAP, there were no significant differences. Plasma glucose in unanesthetized rats was significantly elevated at 1 h, back to control at 2 h, and significantly decreased at 3 h. HbNO was detected as early as 1 h after injection. By 2 h the HbNO concentrations exceeded the highest levels found in mice, and they were still increasing as late as 5 h after injection. Unanesthetized rats showed toxic signs and 3/12 rats died within 4 hours of LPS administration. These results are consistent with a model for endotoxic shock in which LPS stimulates an inducible pathway for NO synthesis.  相似文献   

16.
To examine which branched-chain amino acids affect the plasma glucose levels, we investigated the effects of leucine, isoleucine, and valine (0.3 g/kg body weight p.o.) in normal rats using the oral glucose tolerance test (OGTT, 2 g/kg). A single oral administration of isoleucine significantly reduced plasma glucose levels 30 and 60 min after the glucose bolus, whereas administration of leucine and valine did not produce a significant decrease. Oral administration of valine significantly enhanced the plasma glucose level at 30 min after the glucose administration and leucine had a similar effect at 120 min. At each measurement timepoint, the insulin levels of the treated groups were lower than that of the control group. We then investigated the effects of leucine, isoleucine or valine at the same concentration (1 mM) on glucose metabolism in C(2)C(12) myotubes in the absence of insulin. Glucose consumption was elevated by 16.8% in the presence of 1 mM isoleucine compared with the control. Conversely, 1 mM leucine or valine caused no significant changes in glucose consumption in the C(2)C(12) myotubes. The 2-deoxyglucose uptake of C(2)C(12) myotubes significantly increased upon exposure to 1-10 mM isoleucine and 5-10 mM leucine. However, isoleucine caused no significant difference in glycogen synthesis in C(2)C(12) myotubes, although leucine and valine caused a significant increase in intracellular glycogen compared with the control. The isoleucine effect on glucose uptake was mediated by phosphatidylinositol 3-kinase (PI3K), but was independent of mammalian target of rapamycin (mTOR). These results suggest that isoleucine stimulates the insulin-independent glucose uptake in skeletal muscle cells, which may contribute to the plasma glucose-lowering effect of isoleucine in normal rats.  相似文献   

17.
Plasma triglyceride concentrations were significantly lowered by a single feeding of glucose to rats that had been fasted for 22 hr. Three feedings of glucose produced a similar effect. In the glucose-refed animals mobilization of free fatty acids from adipose tissue was impaired more rapidly than hepatic lipogenesis was restored from its low fasting level. These effects of glucose were shown by both a 50% fall in plasma free fatty acid concentration and an 84% decrease in free fatty acid release by isolated epididymal fat pads within 30 min after a single refeeding of glucose. Hepatic lipogenesis from either acetate-1-(14)C or glucose-U-(14)C was not restored even after glucose had been fed three times at hourly intervals. Triton-induced hypertriglyceridemia was used to measure the hepatic triglyceride secretory rate; it was found that glucose refeeding decreased this rate in all but one of several experiments. This decreased secretion rate was sufficient to account for the nearly complete disappearance of triglyceride in very low density lipoproteins (d < 1.019) that occurred within 1 hr after a single glucose intubation.  相似文献   

18.
In this study, the long-term (6 months) biochemical effects of varying levels of Catha edulis leaves on the plasma concentration of glucose, triglycerides, cholesterol, HDL-cholesterol, total protein, albumin, uric acid, urea and creatinine were examined. Our results demonstrated a significant decrease in plasma cholesterol throughout the treatment period by all levels of C. edulis leaves tested. This significant decrease in plasma cholesterol was halved at the end of the treatment period and corresponded with a significant increase in plasma HDL-cholesterol and a significant decrease in plasma glucose and triglycerides concentrations. Moreover, C. edulis treatment increased plasma uric acid significantly, in a time-dependent manner with the higher concentrations (20% and 30%) of C. edulis leaves. Only plasma albumin was decreased significantly at the end of the treatment period, with no significant effect on plasma total protein. This also coincided with a significant, dose-dependent decrease in plasma urea at month 6, with no significant effect on plasma creatinine concentration.  相似文献   

19.
We aimed to investigate the effect of turpentine-induced inflammation in an atherosclerosis-prone murine model. We have induced a chronic aseptic inflammation in apolipoprotein E-deficient mice, with or without a dietary supplement of aspirin (n = 10, each), by the injection of a mixture (1:1) of turpentine and olive oil in the hind limb twice weekly for a period of 12 weeks. Control animals were injected with olive oil alone (n = 10). The control mice did show any alteration neither in plasma nor at the site of injection. Turpentine-treated mice showed a significant increase in plasma TNF-alpha and SAA concentrations which indicated a systemic inflammatory response that was not substantially affected by aspirin. Also, turpentine injections significantly reduced the plasma cholesterol concentration, probably decreasing intestinal cholesterol re-absorption, and attenuated the size of atherosclerotic lesion. Both effects were minimally influenced by aspirin. The burden of atherosclerosis correlated with plasma lipid levels but not with plasma inflammatory markers. Finally, there was a concomitant decrease in the expression of the hepatic mdr1b gene that correlated with the decrease in plasma cholesterol concentration. Therefore, we conclude that mdr1 is an additional factor to consider in the complexity of alterations in cholesterol metabolism that occur in this model.  相似文献   

20.
《Autophagy》2013,9(7):727-736
Both anabolism and catabolism of the amino acids released by starvation-induced autophagy are essential for cell survival, but their actual metabolic contributions in adult animals are poorly understood. Herein, we report that, in mice, liver autophagy makes a significant contribution to the maintenance of blood glucose by converting amino acids to glucose via gluconeogenesis. Under a synchronous fasting-initiation regimen, autophagy was induced concomitantly with a fall in plasma insulin in the presence of stable glucagon levels, resulting in a robust amino acid release. In liver-specific autophagy (Atg7)-deficient mice, no amino acid release occurred and blood glucose levels continued to decrease in contrast to those of wild-type mice. Administration of serine (30 mg/animal) exerted a comparable effect, raising the blood glucose levels in both control wild-type and mutant mice under starvation. Thus, the absence of the amino acids that were released by autophagic proteolysis is a major reason for a decrease in blood glucose. Autophagic amino acid release in control wild-type livers was significantly suppressed by the prior administration of glucose, which elicited a prompt increase in plasma insulin levels. This indicates that insulin plays a dominant role over glucagon in controlling liver autophagy. These results are the first to show that liver-specific autophagy plays a role in blood glucose regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号