首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The daily otolith increment growth of individuals in a cohort of fish larvae was simulated by a simple individual-based model over 30 days. The daily otolith growth of an individual larva was dependent on past growth, within fixed limits common to all larvae. The survival of a larva at the end of each day was either a linear function of larval growth or a random outcome, simulating growth-dependent and growth-independent mortality, respectively, The combined effect of the external environment on growth was also studied. Eleven environmental scenarios, favouring or hindering growth at different stages, were tested and compared to runs with no environmental effect on growth. Growth-dependent mortality induced an increase in the average otolith daily increment width amongst surviving larvae. Such an outcome, however, could be negated by an unfavourable environment. The increase in mean growth rate of the population generated by growth-dependent mortality was directly related to the inherent variability in daily otolith growth. With increased variability, the influence of the environment became relatively less important. The effect of the environment on growth was more critical during the early stages of development. A comparison of results generated by the model with patterns observed in data from a field survey of larval herring was consistent with the occurrence of growth-dependent mortality in the sea. The simulation model provided a useful insight into the way in which various processes controlling larval growth interact.  相似文献   

2.
SUMMARY 1. We used an individual based modelling approach for roach to (i) simulate observed diel habitat shifts between the pelagic and littoral zone of a mesotrophic lake; (ii) analyse the relevance of these habitat shifts for the diet, activity costs and growth of roach; and (iii) quantify the effects of a hypothetical piscivore-mediated (presence of pikeperch) confinement of roach to the littoral zone on roach diet, activity costs and growth.
2. The model suggests that in the presence of pikeperch, roach shifts from zooplankton as the primary diet to increased consumption of less nutritious food items such as macrophytes, filamentous algae and detritus.
3. The growth of roach between May and October was predicted to be significantly higher in the absence of pikeperch, although the net activity costs were about 60% higher compared with the scenario where pikeperch were present.
4. These modelling results provide quantitative information for interpreting diel horizontal migrations of roach as a result from a trade-off between food availability and predation risk in different habitats of a lake.
5. Altering the habitat selection mode of planktivorous roach by piscivore stocking has the potential to reduce zooplankton consumption by fish substantially, and could therefore be used as a biomanipulation technique complementing the reduction of zooplanktivorous fish.  相似文献   

3.
A bioenergetics-based model was used to investigate the effects of temperature, growth and dietary exposure on methylmercury dynamics in walleye (Stizostedion vitreum) and yellow perch (Perca flavescens) from two lakes sampled in northwestern Ontario. Orange Lake was smaller, warmer, had slower fish growth and higher mercury concentrations in yearling yellow perch and walleye (three fold difference in 40 cm walleye) than Trout Lake. The model was applied to test the hypothesis that higher water temperatures in Orange Lake increased metabolic needs, food consumption and mercury uptake in fish. The effects of different growths rates in the lakes were also considered. Temperature/metabolic effects and growth effects on internal methylmercury dynamics in walleye and perch were predicted to occur but be of secondary importance. Different dietary exposure to methylmercury was likely the dominant source of variation in fish mercury concentrations between the two lakes.  相似文献   

4.
Summary We present a mathematical model for predicting the expected fitness of phenotypically plastic organisms experiencing a variable environment. We assume that individuals experience two discrete environments probabilistically in time (as a Markov process) and that there are two different phenotypic states, each yielding the highest fitness in one of the two environments. We compare the expected fitness of a phenotypically fixed individual to that of an individual whose phenotype is induced to produce the better phenotype in each environment with a time lag between experiencing a new environment and realization of the new phenotype. Such time lags are common in organisms where phenotypically plastic, inducible traits have been documented. We find that although plasticity is generally adaptive when time lags are short (relative to the time scale of environmental variability), plasticity can be disadvantageous for longer lag times. Asymmetries in environmental change probabilities and/or the relative fitnesses of each phenotype strongly influence whether plasticity is favoured. In contrast to other models, our model does not require costs for plasticity to be disadvantageous; costs affect the results quantitatively, not qualitatively.  相似文献   

5.
1. The relative importance of density‐dependent and density‐independent processes in explaining fluctuations in natural populations has been widely debated. In particular, the importance of larval supply and whether it may control the type of regulatory processes a population experiences has proved contentious. 2. Using surveys and field experiments conducted in streams in Canterbury, New Zealand, we investigated how variation in the survival of non‐migratory Galaxias vulgaris fry was affected by density‐dependent and density‐independent processes and how this variation influenced recruitment dynamics. 3. Fry populations with high settlement densities experienced a 70–80% reduction in population size from density‐related mortality during the first fourteen days after peak settlement but thereafter the influence of density‐dependent processes on fry was weak. The impact of environmental conditions on fry populations was dependent on fry size and the magnitude of the perturbation, such that flooding effects on fry survival were most severe when fry were small. 4. In streams not affected by flooding, the size and density of introduced trout (Salmo trutta and Oncorhynchus mykiss) were the most significant factors determining the abundance of eventual recruits. A field experiment manipulating brown trout access to fry populations revealed that trout as small as 110 mm may be capable of greatly reducing and possibly preventing galaxiid recruitment. 5. Overall, the results indicated density‐dependent population regulation was only possible at sites with high native fish densities because trout were likely to be suppressing the number of potential recruits at sites with low native fish numbers. Whilst density‐dependent processes had a strong effect on fry survival following the period of peak fry abundance, density‐independent processes associated with flow and predatory trout influences on fry survival largely determined recruitment variability among galaxiid populations. Focusing conservation efforts on improving habitat to increase fry retention and reducing the impacts of trout on galaxiids would ensure more native fish populations reached their potential abundance.  相似文献   

6.
In fish schools the density varies per location and often individualsare sorted according to familiarity and/or body size. High densityis considered advantageous for protection against predatorsand this sorting is believed to be advantageous not only toavoid predators but also for finding food. In this paper, welist a number of mechanisms and we study, with the help of anindividual-based model of schooling agents, which spatial patternsmay result from them. In our model, schooling is regulated bythe following rules: avoiding those that are close by, aligningto those at intermediate distances, and moving towards othersfurther off. Regarding kinship/familiarity, we study patternsthat come about when agents actively choose to be close to relatedagents (i.e., ‘active sorting’). Regarding bodysize, we study what happens when agents merely differ in sizebut behave according to the usual schooling rules (‘sizedifference model’), when agents choose to be close tothose of similar size, and when small agents avoid larger ones(‘risk avoidance’). Several spatial configurationsresult: during ‘active sorting’ familiar agentsgroup together anywhere in the shoal, but agents of differentsize group concentrically, whereby the small agents occupy thecenter and the large ones the periphery (‘size differencemodel’ and ‘active sorting’). If small agentsavoid the risk of being close to large ones, however, smallagents end up at the periphery and large ones occupy the center(‘risk avoidance’). Spatial configurations are alsoinfluenced by the composition of the group, namely the percentageof agents of each type. Furthermore, schools are usually oblongand their density is always greatest near the front. We explainthe way in which these patterns emerge and indicate how resultsof our model may guide the study of spatial patterns in realanimals.  相似文献   

7.
Individual-based computer models (IBM) feature prominently in current theoretical ecology but have only been applied in a small number of parasitological studies. Here we designed an IBM to simulate the infection dynamics of gyrodactylid parasites and immune defence of na?ve hosts (i.e. fish previously not exposed to these parasites). We compared the results of the model with empirical data from guppies (Poecilia reticulata) infected with Gyrodactylus parasites. The laboratory experiments on guppies showed that larger fish acquired a heavier parasite load at the peak of the infection. The survival probability declined with increased body size and no fish survived a parasite load of 80 or more worms in this experiment (i.e. lethal load). The model was a good predictor of the Gyrodactylus infection dynamics of guppies and the model output was congruent with previously published data on Gyrodactylus salaris infections of salmon (Salmo salar). Computer simulations indicated that the infections persisted longer on larger hosts and that the parasite load increased exponentially with the body size of the host. Simulations furthermore predicted that the parasite load of fish with a standard length in excess of 17mm (i.e. the size of adult guppies) reached a lethal load. This suggests that in the conditions of the experiment, the immune defence of na?ve guppies can offer moderate protection against gyrodactylid infections to juveniles, but not to na?ve adult guppies. The model is a useful tool to forecast the development of gyrodactylid infections on single hosts and make predictions about optimal life history strategies of parasites.  相似文献   

8.
1. In addition to effects of direct predation by planktivorous fish, nutrient recycling by fish may also contribute to structuring foodwebs in lakes. There is little evidence, however, about whether underyearling fish undergoing several ontogenetic diet shifts may have a comparable bottom-up impact. 2. This study examined seasonal patterns of phosphorus (P) concentration and external load, phytoplankton, zooplankton and benthos, and diet shifts in three underyearling fish [perch (Perca fluviatilis), roach (Rutilus rutilus) and ruffe (Gymnocephalus cernuus)] in the shallow, hypertrophic biomanipulated Bautzen reservoir, Germany. Phosphorus metabolism of fish was calculated by a balanced bioenergetics model on the basis of fish diet, growth and water temperature. 3. The fish showed several shifts from planktivory to other food sources during the sampling period from May to September. These shifts were probably caused by the seasonal succession of the zooplankton community, mainly the midsummer decline of Daphnia galeata. 4. The diet shifts in fish also had consequences for the amount of P consumed and released. During periods of dominant zooplanktivory, the excretion of P did not exceed the removal of P stored in pelagic prey. By contrast, if benthivory dominated, fish subsidized the pelagic P pool by excreting more P from benthic prey than had been removed from the pelagic area. This occurred predominantly in perch and ruffe during periods of low zooplankton biomass, whereas the roach ate more algae and therefore excreted less P of benthic origin. 5. Phosphorus release by underyearling fish was estimated at a maximum of 0.1 mg m–3 JY day–1. This value was negligible compared with both the external load of P to Bautzen reservoir and the concentration of P in the pelagic area during summer. It is therefore concluded that both the predominance of underyearling zooplanktivorous fish and the high Daphnia biomass during certain periods of the year in the Bautzen reservoir may be the reason that nutrient release by the fish structured the foodweb only marginally. 6. This study suggests that biomanipulation has altered both top-down and bottom-up impacts of fish in Bautzen reservoir. The highest efficiency of foodweb manipulations may be obtained after reduction of the external P loading below a certain threshold. In turn, if external restoration of eutrophied lakes is not accompanied by changes in fish community, then the combined forces of strong zooplanktivory and high P recycling of dense stocks of zooplanktivorous and benthivorous fish may hold the water in a eutrophic-like stage, even if external load has been significantly reduced.  相似文献   

9.
General response patterns of fish populations tostress, originally proposed by Colby for fisheriesrehabilitation and later adapted by Munkittrick forcontaminants, were evaluated using an individual-basedsimulation model. General response patterns relatechanges in population-level variables to the type ofstress. The model follows the daily growth,mortality, and spawning of individual yellow perch andwalleye through their lifetime, and was corroboratedusing Oneida Lake data. Two versions of the model wereused: population (yellow perch only) and community(dynamic predation on yellow perch by walleye). Eightstresses were imposed on the population and communityversions of the model and 100-year simulations wereperformed. Response patterns were defined by changesin predicted yellow perch mean population abundance,mean age of adults, and mean adult growth (representedby mean length at age-7). Proposed response patternswere similar to those predicted using the populationversion of the model. Simulations using the communityversion of the model distorted the response patterns,either causing amplification, dampening, or reversalof many of the patterns. Predicted response patternsbecame unique when additional variables were included.Our model results suggest that caution is appropriatein interpreting general response patterns based onmean age, or when the population of interest plays amajor role in a relatively simple food web. The responsepattern approach may be better at identifying the lifestage impacted rather than the mechanism of the stress.  相似文献   

10.
Tumour invasion is driven by proliferation and importantly migration into the surrounding tissue. Cancer cell motility is also critical in the formation of metastases and is therefore a fundamental issue in cancer research. In this paper we investigate the emergence of cancer cell motility in an evolving tumour population using an individual-based modelling approach. In this model of tumour growth each cell is equipped with a micro-environment response network that determines the behaviour or phenotype of the cell based on the local environment. The response network is modelled using a feed-forward neural network, which is subject to mutations when the cells divide. With this model we have investigated the impact of the micro-environment on the emergence of a motile invasive phenotype. The results show that when a motile phenotype emerges the dynamics of the model are radically changed and we observe faster growing tumours exhibiting diffuse morphologies. Further we observe that the emergence of a motile subclone can occur in a wide range of micro-environmental growth conditions. Iterated simulations showed that in identical growth conditions the evolutionary dynamics either converge to a proliferating or migratory phenotype, which suggests that the introduction of cell motility into the model changes the shape of fitness landscape on which the cancer cell population evolves and that it now contains several local maxima. This could have important implications for cancer treatments which focus on the gene level, as our results show that several distinct genotypes and critically distinct phenotypes can emerge and become dominant in the same micro-environment.  相似文献   

11.
We investigate the persistence of a mosquito-borne disease (malaria) in a system where mosquitoes and hosts are grouped in patches containing any number of individuals. A mosquito from any one of vector patches can bite, and take blood meals, in any one of m host patches. We confirm our earlier result (C. Dye and G. Hasibeder, 1986, Trans. R. Soc. Trop. Med. Hyg. 80, 69-77) that nonhomogeneous host selection by mosquitoes leads to basic reproductive rates (which measure the persistence of infection in the system) greater than or equal to those obtained under uniform host selection. We find, in addition, that strong associations between particular groups of mosquitoes and hosts lead to still higher basic reproductive rates. Exacting fieldwork would be required to find out how much higher.  相似文献   

12.
13.
14.
15.
Seasonal changes in aboveground and belowground tissues ofPhalaris arundinacea L. were studied in a population colonizing an ancient meander of the Garonne river (France) submitted to important fluctuations of the permanent water table. Waterlogged conditions in spring stopped the growth of rhizomes and promoted the translocation of nutrient to the shoots. The early senescence of plants after flowering could be related to the withdrawal of the water table. It was characterized by a distribution of nutrients in belowground tissues and a release in litter and soil. Aerated conditions in late summer permitted the growth of belowground tissues. At this time a partition of resources between aboveground and belowground biomass of a new generation of plants was observed. Rising water and decreasing temperatures in winter induced the death of aboveground parts. Reconstitution of nutrient stocks in rhizomes and losses by leaching then occured. Beside a very high primary production this strategy confers toPhalaris arundinacea a great interest in different uses, especially in the removal of nutrients from water in riparian zones as in artificial sites.  相似文献   

16.
17.
In this work, we develop an age-structured model (based on delay-differential equations) to investigate the dynamics of host-parasitoid systems in which adults are the target of parasitism. The rare previous work dealing with such interactions assumes that hosts are functionally dead as soon as they are attacked. We relax this assumption and show that low reproduction rates of parasitized hosts can promote stability at the expense of cyclic behavior (either long term or generation cycles). Higher reproduction rates make the regulation of the host population by parasitoids impossible. As it is the case in models in which adults are subjected to attacks but do not reproduce, our model generates generation cycles for a larger set of parameter values than in models in which juveniles are attacked.  相似文献   

18.
From zebra to starlings, herring and even tadpoles, many creatures move in an organized group. The emergent behaviour arises from simple underlying movement rules, but the evolutionary pressure which favours these rules has not been conclusively identified. Various explanations exist for the advantage to the individual of group formation: reduction of predation risk; increased foraging efficiency or reproductive success. Here, we adopt an individual-based model for group formation and subject it to simulated predation and foraging; the haploid individuals evolve via a genetic algorithm based on their relative success under such pressure. Our work suggests that flock or herd formation is likely to be driven by predator avoidance. Individual fitness in the model is strongly dependent on the presence of other phenotypes, such that two distinct types of evolved group can be produced by the same predation or foraging conditions, each stable against individual mutation. We draw analogies with multiple Nash equilibria theory of iterated games to explain and categorize these behaviours. Our model is sufficient to capture the complex behaviour of dynamic collective groups, yet is flexible enough to manifest evolutionary behaviour.  相似文献   

19.
Both the size of Daphnia galeata primiparae and the average egg volume were smaller in individuals reared from neonata in water inhabited for the preceding 24 hours by Y-O-Y roach when compared with control animals reared in the same water with the exclusion of fish. The smaller size of experimental primiparae resulted from smaller increments in some instars and from the earlier maturation of about two-thirds of those that matured in the 4th instar, while the rest of the experimental animals and all the controls matured in the 5th instar. There were larger clutches and smaller eggs in experimentals when compared with the similar sized controls, but the difference hasn't proved to be statistically significant.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号