共查询到20条相似文献,搜索用时 15 毫秒
1.
E Mochan 《Biochimica et biophysica acta》1970,216(1):80-95
2.
Crystalline cytochrome c peroxidase and complex ES 总被引:3,自引:0,他引:3
3.
Crystal structure of cytochrome c peroxidase compound I 总被引:1,自引:0,他引:1
We have compared the 2.5-A crystal structure of yeast cytochrome c peroxidase (CCP) with that of its semistable two-equivalent oxidized intermediate, compound I, by difference Fourier and least-squares refinement methods. Both structures were observed at -15 degrees C. The difference Fourier map reveals that formation of compound I causes only small positional adjustments of a few tenths of an angstrom. The map's most pronounced feature is a pair of positive and negative peaks bracketing the heme iron position. Least-squares refinement shows that the iron atom moves about 0.2 A toward the distal side of the heme. No significant difference density is evident near the side chains of Trp-51 or Met-172, each of which has been proposed to be the site of the electron paramagnetic resonance (EPR) active radical in compound I. However, the second most prominent feature of difference density is a negative peak near the side chain of Thr-180, which, according to the results of least-squares refinement, moves by 0.15 A in the direction of Met-230. These observations, together with the results of mutagenesis experiments [Fishel, L. A., Villafranca, J. E., Mauro, J. M., & Kraut, J. (1987) Biochemistry 26, 351-360; Goodin, D. B., Mauk, A. G., & Smith, M. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 1295-1299] in which Trp-51 and Met-172 have been replaced without loss of the EPR radical signal in compound I, lead us to consider the possibility that the radical site lies within a cluster composed of the side chains of Met-230, Met-231, and Trp-191.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
A F Corin G McLendon Q Zhang R A Hake J Falvo K S Lu R B Ciccarelli D Holzschu 《Biochemistry》1991,30(49):11585-11595
Site-directed mutagenesis was employed to examine the role played by specific surface residues in the activity of cytochrome c peroxidase. The double charge, aspartic acid to lysine, point mutations were constructed at positions 37, 79, and 217 on the surface of cytochrome c peroxidase, sites purported to be within or proximal to the recognition site for cytochrome c in an electron-transfer productive complex formed by the two proteins. The resulting mutant peroxidases were examined for catalytic activity by steady-state measurements and binding affinity by two methods, fluorescence binding titration and cytochrome c affinity chromatography. The cloned peroxidases exhibit similar UV-visible spectra to the wild-type yeast protein, indicating that there are no major structural differences between the cloned peroxidases and the wild-type enzyme. The aspartic acid to lysine mutations at positions 79 and 217 exhibited similar turnover numbers and binding affinities to that seen for the "wild type-like" cloned peroxidase. The same change at position 37 caused more than a 10-fold decrease in both turnover of and binding affinity for cytochrome c. This empirical finding localizes a primary recognition region critical to the dynamic complex. Models from the literature proposing structures for the complex between peroxidase and cytochrome c are discussed in light of these findings. 相似文献
5.
M R?nnberg A M Lambeir N Ellfolk H B Dunford 《Archives of biochemistry and biophysics》1985,236(2):714-719
A quantitative yield of half-reduced (ferrous-ferric) cytochrome c peroxidase from Pseudomonas aeruginosa has been obtained by using either ascorbate or NADH as reductant of the resting (ferric-ferric) enzyme along with phenazine methosulfate as mediator. The formation of Compounds I and II from the half-reduced enzyme and hydrogen peroxide has been studied at 25 degrees C using rapid-scan spectrometry and stopped-flow measurements. The spectra of Compound I in the Soret and visible regions were recorded within 5 ms after mixing the half-reduced enzyme with H2O2. The spectrum of the primary compound at the Soret region had a maximum at 414 nm, and in the visible region at 528 and 556 nm. The spectrum of Compound I showed no bands in the 650-nm region, excluding the possibility of a pi-cation radical being part of the catalytic mechanism. Compound I was stable for at least 12 s when no reducing equivalents were present. In the presence of reduced azurin, half-reduced enzyme reacted with H2O2 to form Compound II within 50 ms. The spectrum of Compound II had a Soret maximum at 411 nm. In the visible region the Compound II spectrum was close to that of the totally oxidized, resting enzyme form. In the presence of excess azurin, Compound II was converted rapidly to the half-reduced enzyme form. The kinetics of Compound I formation was also followed with peracetic acid, ethylhydroperoxide, and m-chloroperbenzoic acid as electron acceptors. The rate constants of these reactions are diminished compared to that of hydrogen peroxide, indicating a closed structure for the heme pocket of the enzyme. 相似文献
6.
A hypothetical model of the cytochrome c peroxidase . cytochrome c electron transfer complex 总被引:11,自引:0,他引:11
A hypothetical three-dimensional model of the cytochrome c peroxidase . tuna cytochrome c complex is presented. The model is based on known x-ray structures and supported by chemical modification and kinetic data. Cytochrome c peroxidase contains a ring of aspartate residues with a spatial distribution on the molecular surface that is complementary to the distribution of highly conserved lysines surrounding the exposed edge of the cytochrome c heme crevice, namely lysines 13, 27, 72, 86, and 87. These lysines are known to play a functional role in the reaction with cytochrome c peroxidase, cytochrome oxidase, cytochrome c1, and cytochrome b5. A hypothetical model of the complex was constructed with the aid of a computer-graphics display system by visually optimizing hydrogen bonding interactions between complementary charged groups. The two hemes in the resulting model are parallel with an edge separation of 16.5 A. In addition, a system of inter- and intramolecular pi-pi and hydrogen bonding interactions forms a bridge between the hemes and suggests a mechanism of electron transfer. 相似文献
7.
β-Lactoglobulin forms a soluble complex with cytochrome c in mildly alkaline solutions of low ionic strength. Sedimentation velocity experiments suggest that the complex (maximum s20 = 3.7) consists of one cytochrome c molecule per β-lactoglobulin monomer unit. At pH 8 or higher, the presence of β-lactoglobulin causes reduction of ferri- to ferrocytochrome c. The initial rate of reduction at a single temperature depends primarily on the concentration of β-lactoglobulin, although the final percentage ferrocytochrome c obtained is constant at molar ratios of three or more β-lactoglobulin monomers to one cytochrome c molecule. The temperature dependence of the initial rate of iron reduction resembles that for alkaline denaturation of β-lactoglobulin. The displacement of N-dansylaziridine, a sulfhydryl specific dye, from bovine β-lactoglobulin during iron reduction, and the formation of nonreducing complexes between the analogous swine protein (no sulfhydryls) and cytochrome c suggest that the sulfhydryl group of β-lactoglobulin is the electron donor. 相似文献
8.
Purification and properties of a cross-linked complex between cytochrome c and cytochrome c peroxidase. 总被引:4,自引:2,他引:2 下载免费PDF全文
Cytochrome c (horse heart) was covalently linked to yeast cytochrome c peroxidase by using the cleavable bifunctional reagent dithiobis-succinimidyl propionate in 5 mM-sodium phosphate buffer, pH 7.0. A cross-linked complex of molecular weight 48 000 was purified in approx. 10% yield from the reaction mixture, which contained 1 mol of cytochrome c and 1 mol of cytochrome c peroxidase/mol. Of the total 40 lysine residues, four to six were blocked by the cross-linking agent. Dithiobis-succinimidylpropionate can also cross-link cytochrome c to ovalbumin, but cytochrome c peroxidase is the preferred partner for cytochrome c in a mixture of the three proteins. The cytochrome c cross-linked to the peroxidase can be rapidly reduced by free cytochrome c-557 from Crithidia oncopelti, and the equilibrium obtained can be used to calculate a mid-point oxidation-reduction potential for the cross-linked cytochrome of 243 mV. Mitochondrial NADH-cytochrome c reductase will reduce the bound cytochrome only very slowly, but the rate of reduction by ascorbate at high ionic strength approaches that for free cytochrome c. Bound cytochrome c reduced by ascorbate can be re-oxidized within 10s by the associated peroxidase in the presence of equimolar H2O2. In the standard peroxidase assay the cross-linked complex shows 40% of the activity of the free peroxidase. Thus the intrinsic ability of each partner in the complex to take part in electron transfer is retained, but the stable association of the two proteins affects access of reductants. 相似文献
9.
Conformational changes in cytochrome c and cytochrome oxidase upon complex formation: a resonance Raman study 总被引:1,自引:0,他引:1
The fully oxidized complex of cytochrome c and cytochrome oxidase formed at low ionic strength was studied by resonance Raman spectroscopy. The spectra of the complex and of the individual components were compared over a wide frequency range using Soret band excitation. In both partners of the complex, structural changes occur in the heme groups and in their immediate protein environment. The spectra of the complex in the 1600-1700 cm-1 frequency range were dominated by bands from the cytochrome oxidase component, whereas those in the 300-500 cm-1 range were dominated by bands from the cytochrome c component, hence allowing separation of the contributions from the two individual species. For cytochrome c, spectral changes were observed which correspond to the induction of the conformational state I and the six-coordinated low-spin configuration of state II on binding to cytochrome oxidase. While in state I the structure of cytochrome c is essentially the same as in solution, state II is characterized by a structural rearrangement of the heme pocket, leading to a weakening of the axial iron-methionine bond and an opening of the heme crevice which is situated in the center of the binding domain for cytochrome oxidase. The relative contributions of the two cytochrome c states were estimated to be approximately in the ratio 1:1 in the complex.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
10.
Measurement of complex III activity is critical to the diagnosis of human mitochondrial disease and the study of mitochondrial pathobiology. Activity is measured as the maximal rate of antimycin A-sensitive reduction of exogenous cytochrome c by detergent-solubilized mitochondria. Complex III activity exhibited an unexpected variation based upon the commercial source of cytochrome c owing to an increase in the antimycin A-insensitive background reduction of cytochrome c and variable increases in total activity. Analysis of cytochrome c (producing a high-background) by fast protein liquid chromatography yielded a contaminant peak containing a lipid extractable component with redox spectra and mass spectroscopy fragmentation suggestive of a quinol. Measurement of inhibitor-sensitive rates are critical for the accurate and reproducible measurement of complex III activity and serve as a key quality control to screen for non-enzymatic reactions that obscure complex III activity. 相似文献
11.
Horseradish peroxidase. XLI. Complex formation with nitrate and its effect upon compound I formation
Tsunehisa Araiso H.Brian Dunford 《Biochemical and biophysical research communications》1980,94(4):1177-1182
Ferric horseradish peroxidase reacts with nitrate and acetate in acidic solution to form weakly bound complexes. Competitive binding experiments with cyanide show that the nitrate binding site is not at the sixth coordination position of the heme iron. The nitrate inhibits compound I formation apparently by binding inside the heme pocket. One physical manifestation of this binding is to increase the apparent pKa value of the conjugate acid of a catalytic distal group. 相似文献
12.
Interaction of cytochrome c peroxidase with cytochrome c 总被引:1,自引:0,他引:1
13.
The kinetic properties of a 1:1 covalent complex between horse-heart cytochrome c and yeast cytochrome c peroxidase (ferrocytochrome-c:hydrogen-peroxide oxidoreductase, EC 1.11.1.5) have been investigated by transient-state and steady-state kinetic techniques. Evidence for heterogeneity in the complex is presented. About 50% of the complex reacts with hydrogen peroxide with a rate 20–40% faster than that of native enzyme; 20% of the complex exists in a conformation which does not react with hydrogen peroxide but converts to the reactive form at a rate of 20 ± 5 s−1; 30% of the complex does not react with hydrogen peroxide to form the oxidized enzyme intermediate, cytochrome c peroxidase Compound I. Intramolecular electron transfer between covalently bound ferrocytochrome c and an oxidized site in cytochrome c peroxidase Compound I is too fast to measure, but a lower limit of 600 s−1 can be estimated at 5°C in a 10 mM potassium phosphate buffer at pH 7.5. Free ferrocytochrome c reduces cytochrome c peroxidase Compound I covalently bound to ferricytochrome c at a rate 10−4 to 10−5-times slower than for free Compound I. The transient-state ferrocytochrome c reduction rates of Compound I covalently linked to ferricytochrome c are about 70-times too slow to account for the steady-state catalytic properties of the 1:! covalent complex. This indicates that hydrogen peroxide can interact with the 1:1 complex at sites other than the heme of cytochrome c peroxidase, generating additional species capable of oxidizing free ferrocytochrome c. 相似文献
14.
High-resolution crystal structures and spectroscopy of native and compound I cytochrome c peroxidase
Bonagura CA Bhaskar B Shimizu H Li H Sundaramoorthy M McRee DE Goodin DB Poulos TL 《Biochemistry》2003,42(19):5600-5608
Cytochrome c peroxidase (CCP) is a 32.5 kDa mitochondrial intermembrane space heme peroxidase from Saccharomyces cerevisiae that reduces H(2)O(2) to 2H(2)O by oxidizing two molecules of cytochrome c (cyt c). Here we compare the 1.2 A native structure (CCP) with the 1.3 A structure of its stable oxidized reaction intermediate, Compound I (CCP1). In addition, crystals were analyzed by UV-vis absorption and electron paramagnetic resonance spectroscopies before and after data collection to determine the state of the Fe(IV) center and the cationic Trp191 radical formed in Compound I. The results show that X-ray exposure does not lead to reduction of Fe(IV) and only partial reduction of the Trp radical. A comparison of the two structures reveals subtle but important conformational changes that aid in the stabilization of the Trp191 cationic radical in Compound I. The higher-resolution data also enable a more accurate determination of changes in heme parameters. Most importantly, when one goes from resting state Fe(III) to Compound I, the His-Fe bond distance increases, the iron moves into the porphyrin plane leading to shorter pyrrole N-Fe bonds, and the Fe(IV)-O bond distance is 1.87 A, suggesting a single Fe(IV)-O bond and not the generally accepted double bond. 相似文献
15.
The crystal structure of cytochrome c peroxidase 总被引:6,自引:0,他引:6
T L Poulos S T Freer R A Alden S L Edwards U Skogland K Takio B Eriksson N Xuong T Yonetani J Kraut 《The Journal of biological chemistry》1980,255(2):575-580
16.
Reversible acidic-alkaline transition of the carbon monoxide complex of cytochrome c peroxidase 总被引:1,自引:0,他引:1
The Soret absorption band of the ferrous carbon monoxide (CO) complex of cytochrome c peroxidase exhibited a blue shift from 423.7 to 420 nm upon an increase in pH from 6.5 to 8.5. The spectral change was reversible with an isosbestic point at 422 nm. The pH dependence of this spectral change gave a sigmoidal curve fitted well to a theoretical curve of a cooperative release of two protons with a pK value of 7.5, indicating the existence of the acidic and alkaline forms of the ferrous CO enzyme. Upon irradiation of light flash (100 J of power and 30-microseconds), the heme-bound CO was readily dissociated in both acidic and alkaline forms with a quantum yield of approximately unity. On the other hand, the rate of recombination of the dissociated CO with the heme iron was significantly different between these two forms; the recombination rate constants were 1.1 X 10(3) and 3.0 X 10(4) M-1 S-1 at 25 degrees C for the acidic and alkaline forms, respectively. At intermediate pH values, kinetics of recombination were biphasic, consisting of the slow and fast processes with the appropriate rate constants mentioned above. When the fraction of the fast process was plotted against pH, the pH profile coincided with the spectrophotometric pH titration curve described above. Thus, it was concluded that the acidic and alkaline forms of the enzyme were responsible for the slow and fast processes, respectively. In infrared spectroscopy, the acidic form showed a narrow CO stretching band at 1922 cm-1 with a half-band width of 12.5 cm-1, while the alkaline form exhibited a broad CO-stretching band at 1948 cm-1 with a half-band width of 33 cm-1. Significance of these results are discussed in relation to the structure of the heme vicinity on the CO complex of cytochrome c peroxidase. 相似文献
17.
A covalent complex between recombinant yeast iso-1-cytochrome c and recombinant yeast cytochrome c peroxidase (rCcP), in which the crystallographically defined cytochrome c binding site [Pelletier, H., and Kraut, J. (1992) Science 258, 1748-1755] is blocked, was synthesized via disulfide bond formation using specifically engineered cysteine residues in both yeast iso-1-cytochrome c and yeast cytochrome c peroxidase [Papa, H. S., and Poulos, T. L. (1995) Biochemistry 34, 6573-6580]. Previous studies on similar covalent complexes, those that block the Pelletier-Kraut crystallographic site, have demonstrated that samples of the covalent complexes have detectable activities that are significantly lower than those of wild-type yCcP, usually in the range of approximately 1-7% of that of the wild-type enzyme. Using gradient elution procedures in the purification of the engineered peroxidase, cytochrome c, and covalent complex, along with activity measurements during the purification steps, we demonstrate that the residual activity associated with the purified covalent complex is due to unreacted CcP that copurifies with the covalent complex. Within experimental error, the covalent complex that blocks the Pelletier-Kraut site has zero catalytic activity in the steady-state oxidation of exogenous yeast iso-1-ferrocytochrome c by hydrogen peroxide, demonstrating that only ferrocytochrome c bound at the Pelletier-Kraut site is oxidized during catalytic turnover. 相似文献
18.
The structure of an electron transfer complex containing a cytochrome c and a peroxidase 总被引:1,自引:0,他引:1
Pettigrew GW Prazeres S Costa C Palma N Krippahl L Moura I Moura JJ 《The Journal of biological chemistry》1999,274(16):11383-11389
Efficient biological electron transfer may require a fluid association of redox partners. Two noncrystallographic methods (a new molecular docking program and 1H NMR spectroscopy) have been used to study the electron transfer complex formed between the cytochrome c peroxidase (CCP) of Paracoccus denitrificans and cytochromes c. For the natural redox partner, cytochrome c550, the results are consistent with a complex in which the heme of a single cytochrome lies above the exposed electron-transferring heme of the peroxidase. In contrast, two molecules of the nonphysiological but kinetically competent horse cytochrome bind between the two hemes of the peroxidase. These dramatically different patterns are consistent with a redox active surface on the peroxidase that may accommodate more than one cytochrome and allow lateral mobility. 相似文献
19.
Structure of an electron transfer complex. I. Covalent cross-linking of cytochrome c peroxidase and cytochrome c 总被引:3,自引:0,他引:3
Cytochrome c peroxidase and cytochrome c form a noncovalent electron transfer complex in the course of the peroxidase-catalyzed reduction of H2O2. The two hemoproteins were cross-linked in 40% yield to a covalent 1:1 complex with the aid of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The covalent complex was found to be a valid model of the noncovalent electron transfer complex for the following reasons. The covalent complex had only 5% residual peroxidase activity toward exogeneous ferrocytochrome c indicating that the cross-linked cytochrome c covers the electron-accepting site of cytochrome c peroxidase. The residual peroxidase activity was almost independent of ionic strength indicating that the electron-accepting site is much less accessible even when ionic bonds between the two cross-linked hemoproteins are severed. The rate of reduction of heme c by ascorbate is 15 times slower in the covalent complex than in free cytochrome c and is independent of ionic strength. Although the covalent complex may not have been entirely pure with respect to the number and location of the cross-links, two major cross-links could be localized to within a few residues. One is from Lys 13 of cytochrome c to an acidic residue in positions 32, 33, 34, 35, or 37 of cytochrome c peroxidase, the other from Lys 86 of cytochrome c to a carboxyl group in the same cluster of acidic residues. The result stresses the importance of a peculiar stretch of acidic residues of cytochrome c peroxidase and of Lys 13 and 86 of cytochrome c. 相似文献
20.
Cytochrome c peroxidase compound I: formation of covalent protein crosslinks during the endogenous reduction of the active site 总被引:1,自引:0,他引:1
Cytochrome c peroxidase (ferrocytochrome-c:hydrogen-peroxide oxidoreductase, EC 1.11.1.5) was oxidized by hydrogen peroxide in the absence of exogenous electron donor. Higher molecular weight species were observed in the decay products at pH 4.5. Monomer and dimer were separated by gel filtration and purified by anion-exchange chromatography. Peptide mapping of tryptic digests of the dimer indicated a tyrosine crosslink localized between residues 32 and 48 of the native enzyme. 相似文献