首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Several regulated enzymes involved in aromatic amino acid synthesis were studied in Bacillus subtilis and B. licheniformis with reference to organization and control mechanisms. B. subtilis has been previously shown (23) to have a single 3-deoxy-d-arabinoheptulosonate 7-phosphate (DAHP) synthetase but to have two isozymic forms of both chorismate mutase and shikimate kinase. Extracts of B. licheniformis chromatographed on diethylaminoethyl (DEAE) cellulose indicated a single DAHP synthetase and two isozymic forms of chorismate mutase, but only a single shikimate kinase activity. The evidence for isozymes has been supported by the inability to find strains mutant in these activities, although strains mutant for the other activities were readily obtained. DAHP synthetase, one of the isozymes of chorismate mutase, and one of the isozymes of shikimate kinase were found in a single complex in B. subtilis. No such complex could be detected in B. licheniformis. DAHP synthetase and shikimate kinase from B. subtilis were feedback-inhibited by chorismate and prephenate. DAHP synthetase from B. licheniformis was also feedback-inhibited by these two intermediates, but shikimate kinase was inhibited only by chorismate. When the cells were grown in limiting tyrosine, the DAHP synthetase, chorismate mutase, and shikimate kinase activities of B. subtilis were derepressed in parallel, but only DAHP synthetase and chorismate mutase were derepressible in B. licheniformis. Implications of the differences as well as the similarities between the control and the pattern of enzyme aggregation in the two related species of bacilli were discussed.  相似文献   

2.
Chorismatic synthase was purified to apparent homogeneity from Bacillus subtilis. The enzyme required NADPH-dependent flavin reductase, Mg2+, NADPH, and flavin (FMN or FAD) for activity. The molecular weight of chorismate synthase was 24,000 as determined by sodium dedecyl sulfate (SDS)-gel electrophoresis. The enzyme was also isolated in a complex form associated with NADPH-dependent flavin reductase and another enzyme of the aromatic amino acid pathway, dehydroquinate synthase. On SDS-gel electrophoresis, this form was resolved into three bands with molecular weights of 13,000, 17,000, and 24,000. The enzyme complex was easily dissociated and the dissociation resulted in a change in the chromatographic properties of NADPH-dependent flavin reductase which was no longer retained on phosphocellulose whereas chorismate synthase was still adsorbed. Chorismate synthase activity was linear with time and protein concentration, whereas partially purified preparations showed a significant lag period before the reaction took place. Moreover, crude or partially purified enzyme preparations were completely inactivated by dilution and the activity could be recovered by addition of flavin reductase. A possible role of NADPH-dependent flavin reductase in the activation and regulation of chorismate synthase activity is discussed.  相似文献   

3.
Mutants have been isolated which correspond to every step concerned with the biosynthesis of the aromatic amino acids in Bacillus subtilis. Each mutant has been characterized, and the lesion it bore was analyzed by deoxyribonucleic acid transformation and PBS-1 mediated transduction. The biochemical analysis revealed that each of the mutations appears to have affected a single enzyme, except for two groups of pleiotropic mutations. All aroF mutants (chorismic acid synthetase) lack dehydroquinic acid synthetase (aroB) activity. The gene that specifies aroB is closely linked to the gene coding for the aroF enzyme. Both genes are a part of the aro cluster. Mutants lacking chorismate mutase activity also lack d-arabino-heptulosonic acid-7-phosphate synthetase and shikimate kinase activity, presumably as a result of these three activities forming a multi-enzyme complex. Another mutant, previously undescribed, had been isolated. The affected gene codes for the tyrosine and phenylalanine aminotransferase activity. All of the mutations have been located on the B. subtilis genome except those in the genes specifying shikimate kinase activity and tyrosine-phenylalanine aminotransferase activity.  相似文献   

4.
Pyruvate kinase (EC 2.7.1.40) from Streptococcus mutans strain JC2 was purified, giving a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of the native enzyme was 180,000 to 190,000, and the enzyme was considered to consist of four identical subunits. This enzyme was completely dependent on glucose 6-phosphate for activity, and the saturation curve for activation by glucose 6-phosphate was sigmoidal. In the presence of 0.5 mM glucose 6-phosphate, the saturation curves for the substrates phosphoenolpyruvate and ADP were hyperbolic, and the Km values were 0.22 and 0.39 mM, respectively. GDP, IDP, and UDP could replace ADP, and the Km for GDP (0.026 mM) was 0.067 of that for ADP. The enzyme required not only divalent cations, Mg2+ or Mn2+, but also monovalent cations, K+ or NH4+, for activity, and it was strongly inhibited by Pi. When the concentration of Pi was increased, the half-saturating concentration and Hill coefficient for glucose 6-phosphate increased. However, the enzyme was immediately inactivated in a solution without Pi. The intracellular concentration of glucose 6-phosphate, in cooperation with that of Pi, may regulate pyruvate kinase activity in S. mutans.  相似文献   

5.
Shikimate kinase (EC 2.7.1.71) is a committed enzyme in the seven-step biosynthesis of chorismate, a major precursor of aromatic amino acids and many other aromatic compounds. Genes for all enzymes of the chorismate pathway except shikimate kinase are found in archaeal genomes by sequence homology to their bacterial counterparts. In this study, a conserved archaeal gene (gi1500322 in Methanococcus jannaschii) was identified as the best candidate for the missing shikimate kinase gene by the analysis of chromosomal clustering of chorismate biosynthetic genes. The encoded hypothetical protein, with no sequence similarity to bacterial and eukaryotic shikimate kinases, is distantly related to homoserine kinases (EC 2.7.1.39) of the GHMP-kinase superfamily. The latter functionality in M. jannaschii is assigned to another gene (gi591748), in agreement with sequence similarity and chromosomal clustering analysis. Both archaeal proteins, overexpressed in Escherichia coli and purified to homogeneity, displayed activity of the predicted type, with steady-state kinetic parameters similar to those of the corresponding bacterial kinases: K(m,shikimate) = 414 +/- 33 microM, K(m,ATP) = 48 +/- 4 microM, and k(cat) = 57 +/- 2 s(-1) for the predicted shikimate kinase and K(m,homoserine) = 188 +/- 37 microM, K(m,ATP) = 101 +/- 7 microM, and k(cat) = 28 +/- 1 s(-1) for the homoserine kinase. No overlapping activity could be detected between shikimate kinase and homoserine kinase, both revealing a >1,000-fold preference for their own specific substrates. The case of archaeal shikimate kinase illustrates the efficacy of techniques based on reconstruction of metabolism from genomic data and analysis of gene clustering on chromosomes in finding missing genes.  相似文献   

6.
Coding regions of a cDNA for precursor and mature chorismate synthase (CS), a plastidic enzyme, from Corydalis sempervirens were expressed in Escherichia coli as translational fusions to glutathione-S-transferase. Fusion proteins were purified, and precursor and mature forms of CS were then released by proteolytic cleavage with factor Xa. Although mature CS was enzymatically active after release, activity could be detected neither for the precursor CS nor for corresponding glutathione-S-transferase fusion proteins. In contrast, two other shikimate pathway enzymes (shikimate kinase and 5-enol-pyruvylshikimate-3-phosphate synthase) have previously been shown to be as enzymatically active as their respective higher molecular weight precursors. By expression of unfused, mature CS from C. sempervirens in E. coli, it was possible to obtain large quantities of enzymatically active CS protein compared to yields from plant cell cultures. Expression levels in E. coli approached 1% of total soluble protein. No differences were found between authentic CS isolated from cell cultures and CS expressed in and purified from E. coli, which made possible a more detailed biochemical characterization of CS. Quaternary structure analysis of the purified mature CS indicated that the enzyme exists as a dimer, in contrast to the active tetrameric structures determined for E. coli and Neurospora crassa enzymes.  相似文献   

7.
3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS) catalyzes the first step in the biosynthesis of a number of aromatic metabolites. Likely because this reaction is situated at a pivotal biosynthetic gateway, several DAHPS classes distinguished by distinct mechanisms of allosteric regulation have independently evolved. One class of DAHPSs contains a regulatory domain with sequence homology to chorismate mutase-an enzyme further downstream of DAHPS that catalyzes the first committed step in tyrosine/phenylalanine biosynthesis-and is inhibited by chorismate mutase substrate (chorismate) and product (prephenate). Described in this work, structures of the Listeria monocytogenes chorismate/prephenate regulated DAHPS in complex with Mn(2+) and Mn(2+) + phosphoenolpyruvate reveal an unusual quaternary architecture: DAHPS domains assemble as a tetramer, from either side of which chorismate mutase-like (CML) regulatory domains asymmetrically emerge to form a pair of dimers. This domain organization suggests that chorismate/prephenate binding promotes a stable interaction between the discrete regulatory and catalytic domains and supports a mechanism of allosteric inhibition similar to tyrosine/phenylalanine control of a related DAHPS class. We argue that the structural similarity of chorismate mutase enzyme and CML regulatory domain provides a unique opportunity for the design of a multitarget antibacterial.  相似文献   

8.
Cell cultures of Morinda citrifolia L. are capable of accumulating substantial amounts of anthraquinones. Chorismate formed by the shikimate pathway is an important precursor of these secondary metabolites. Isochorismate synthase (EC 5.4.99.6), the enzyme that channels chorismate into the direction of the anthraquinones, is involved in the regulation of anthraquinone biosynthesis. Other enzymes of the shikimate pathway such as deoxy-D-arabino-heptulosonate 7-phosphate synthase (EC 4.1.2.15) and chorismate mutase (EC 5.4.99.5) do not play a regulatory role in the process. The accumulation of anthraquinones is correlated with isochorismate synthase activity under a variety of conditions, which indicates that under most circumstances the concentration of the branchpoint metabolite chorismate is not a rate-limiting factor. Anthraquinone biosynthesis in Morinda is strongly inhibited by 2,4-D, but much less by NAA. Both auxins inhibit the activity of isochorismate synthase proportionally to the concomitant reduction in the amount of anthraquinone accumulated. However, the correlation between enzyme activity and rate of biosynthesis is less clear when the activity of the enzyme is very high. In this case, a limiting concentration of precursor may determine the extent of anthraquinone accumulation. Partial inhibition of chorismate biosynthesis by glyphosate leads to less anthraquinone accumulation, but also to a reduction in ICS activity. The complexity of the interference of glyphosate with anthraquinone biosynthesis is illustrated by the effect of the inhibitor in cell cultures of the related species Rubia tinctorum L. in these cells, glyphosate leads to an increase in anthraquinone content and a concomitant rise in ICS activity. All data indicate that the main point of regulation in anthraquinone biosynthesis is located at the entrance of the specific secondary route.  相似文献   

9.
Pyruvate kinase isolated from Neurospora and purified to homogeneity has been shown to be a tetramer of molecular weight around 242 000 by gel filtration studies and 239 000 daltons by sedimentation equilibrium measurements. The monomer produced by treatment with guanidine hydrochloride is found to be 51 000-52 000 daltons by sedimentation equilibrium studies; a molecular weight of 62 000 was determined for the monomer generated by SDS treatment by electrophoresis in SDS-polyacrylamide gels. The enzyme has an isoelectric point of 6.35-6.41; Substrate saturation kinetics of PEP show a variable extent of cooperativity depending upon the buffer ions employed in the assay. ADP is the most effective phosphoryl group acceptor, GDP and IDP being poor substitutes. A divalent cation, Mg-2+, is required for activity. At low concentrations, Ca-2+ acts as an activator of pyruvate kinase but it is inhibitory at high concentrations. Fructose 1,6-diphosphate is the most potent allosteric activator, fructose 6-phosphate being next in order of effectiveness. Valine is a powerful inhibitor. Phenylalanine, tyrosine, and tryptophan are without any effect individually, but their simultaneous presence results in a considerable activation. Alanine does not affect this enzyme appreciably.  相似文献   

10.
Chorismate mutase of Brevibacterium flavum, a common enzyme in phenylalanine and tyrosine biosynthesis, was separted into two different component, A and B, with molecular weights of 250,000 and 25,000, respectively, by ammonium sulfate fractionation or gel-filtration. Both components were essential for the enzymatic activity. In the presence of the reaction substrate, chorismate, the two components associated reversibly to give an active enzyme complex with a molecular weight of 320,000. Binding sites of the feedback inhibitors, phenylalanine and tyrosine, on the enzyme were localized on component A as determined by hybridization experiments with the wild-type and mutant components. Tyrosine repressed the synthesis of component B much more strongly than that of component A, while phenylalanine did not show any significant repressive effect on either component. The wild-type strain No. 2247 had four times more component A than component B. Elution patterns in gel, DEAE-cellulose or hydroxyapatite column chromatography as well as the disc-gel electrophoretic pattern of chorismate mutase component A and 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthetase activities completely overlapped, suggesting the presence of a bifunctional protein having the two activities. In accord with this suggestion, chorismate mutase as well as DAHP synthetase was insensitive to feedback inhibition by phenylalanine and tyrosine in all the 3-fluorophenylalanine-resistant mutants tested that excreted both phenylalanine and tyrosine. All the phenylalanine and tyrosine double auxotrophs defective in chorismate mutase lacked component B but not A.  相似文献   

11.
Single step mutants of Bacillus subtilis which required either one or all of the aromatic amino acids for growth were isolated. The relevant gene defect was determined for each mutant by enzyme assays in vitro. A mutant deficient in each enzyme step of aromatic amino acid biosynthesis was found with the exceptions of the shikimate kinase and the phenylalanine and tyrosine transaminases. Representative mutants carrying the defective genes were mapped by deoxyribonucleic acid mediated transformation by reference to the aromatic amino acid gene (aro) cluster and, alternately, to any of the other unlinked aro genes. The genes coding for dehydroquinate synthetase, 3-enol pyruvylshikimate 5-phosphate synthetase, one form of chorismate mutase, and prephenate dehydrogenase are linked to the aro cluster. Except for the previously identified linkage between the genes of 3-deoxy-d-arabino heptulosonic acid 7-phosphate synthetase and one species of chorismate mutase, the other genes involved in this pathway are neither linked to the aro cluster nor to each other.  相似文献   

12.
Mitochondrial adenylate kinase has been purified 5400-fold from chicken liver extract in an overall yield of 36%. The purified enzyme has a specific activity of 810 U/mg, a molecular weight of 28 000, and the following amino acid composition: 21 aspartic acid or asparagine, 14 threonine, 17 serine, 27 glutamic acid or glutamine, 16 proline, 22 glycine, 22 alanine, 15 valine, 6 methionine, 11 isoleucine, 29 leucine, 5 tyrosine, 7 phenylalanine, 16 lysine, 7 histidine, 19 arginine, 3 half-cystine, and no tryptophan, totalling 257 residues. The purified enzyme has one disulfide bond and one sulfhydryl group. The disulfide bond is related to the active conformation of the enzyme, whereas the sulfhydryl group does not contribute to the enzyme activity. The sulfhydryl group is easily oxidized in the presence of Cu2+ resulting in the formation of dimer with about one half of the specific activity of the monomer. The enzyme is similar to porcine heart mitochondrial adenylate kinase in antigenicity but different from chicken cytosolic adenylate kinase. Mitochondrial adenylate kinase was synthesized in the mRNA-dependent rabbit reticulocyte lysate system programmed with total chicken liver RNA. The mobility in sodium dodecylsulfate gel electrophoresis of the product obtained in vitro was the same as that of the purified mitochondrial adenylate kinase. This evidence indicates that the mitochondrial adenylate kinase is synthesized as a polypeptide with a molecular weight indistinguishable from that of the mature protein.  相似文献   

13.
Dehydroquinate synthase, the enzyme which catalyzes the conversion of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate (DAHP) to 5-dehydroquinate, has been purified from Bacillus subtilis in association with chorismate synthase and NADPH-dependent flavin reductase. The enzyme was only active when associated with chorismate synthase, whereas the flavin reductase could be separated from the complex with retention of dehydroquinate synthase activity. The enzyme requires NAD and either Co2+ or Mn2+ for maximal activity. The activity was completely inhibited by EDTA. The Km of the enzyme for DAHP, NAD, and Co2+ were estimated to be 1.3 X 10(-4), 5.5 X 10(-5), and 5.5 X 10(-5) M, respectively. Enzyme activity was completely inhibited by NADH and the inhibition was not reversed by the addition of NAD, NADPH and NADP were not inhibitory. The enzyme was unstable to heat and lost all activity at 55 degrees C. A protein fraction which did not adsorb to phosphocellulose was found to inhibit the enzyme.  相似文献   

14.
Shikimate kinase was purified to near homogenity from spinach Spinacia oleracea L. chloroplasts and found to consist of a single 31 kilodalton polypeptide. The purified enzyme was unstable, but could be stabilized by a variety of added proteins, including oxidized and reduced thioredoxins. Whereas the isolated enzyme was stimulated by mono- and dithiol reagents, the enzyme in intact chloroplasts was unaffected by added thiols and showed only minor response to dark/light transitions. These results indicate that the previously reported stimulation of shikimate kinase activity by reduced thioredoxins is due to enzyme stabilization rather than to activation. In the current study, the purified enzyme was inhibited by added ADP and showed a strong response to energy charge. When intact chloroplasts were incubated in the dark in presence of shikimate, phosphoenolpyruvate and a source of ATP (dihydroxyacetone phosphate or ATP itself under appropriate conditions), aromatic amino acids were formed: phenylalanine and tyrosine. The data indicate that energy charge plays a role in regulating shikimate kinase, thereby controlling the shikimate pathway. An unidentified enzyme of the latter part of the pathway, leading from shikimate-3-phosphate to phenylalanine, appears to be activated by light.  相似文献   

15.
G Le Bras  J R Garel 《Biochemistry》1982,21(26):6656-6660
Limited proteolysis of Escherichia coli phosphofructokinase by subtilisin yields a homogeneous derivative. This proteolyzed protein is composed of four polypeptide chains, with a molecular weight of 32 000 as compared to 37 000 for the original enzyme. Removal on each chain of about 5 kdaltons maintains the enzymatic activity and does not change the apparent affinity for the substrates ATP and fructose 6-phosphate. Limited proteolysis, however, affects the cooperativity of fructose 6-phosphate binding: the Hill coefficient is reduced from almost 4 in the native enzyme to only 2 in its proteolyzed derivative. Also, the proteolyzed protein is no longer sensitive to allosteric effectors, activator, or inhibitor. These changes in regulatory properties upon proteolysis are apparently due to the destruction of the effector binding site. The allosteric effector GDP protects phospho-fructokinase against proteolysis and irreversible thermal inactivation; GDP is, however, inefficient in protecting the proteolyzed protein against thermal denaturation. These results suggest that phosphofructokinase may function as a dimer of dimers, in which homotropic and heterotropic allosteric effects are not mediated by the same sets of quaternary interactions.  相似文献   

16.
The plant shikimate pathway directs bulk carbon flow toward biosynthesis of aromatic amino acids (AAAs, i.e. tyrosine, phenylalanine, and tryptophan) and numerous aromatic phytochemicals. The microbial shikimate pathway is feedback inhibited by AAAs at the first enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DHS). However, AAAs generally do not inhibit DHS activities from plant extracts and how plants regulate the shikimate pathway remains elusive. Here, we characterized recombinant Arabidopsis thaliana DHSs (AthDHSs) and found that tyrosine and tryptophan inhibit AthDHS2, but not AthDHS1 or AthDHS3. Mixing AthDHS2 with AthDHS1 or 3 attenuated its inhibition. The AAA and phenylpropanoid pathway intermediates chorismate and caffeate, respectively, strongly inhibited all AthDHSs, while the arogenate intermediate counteracted the AthDHS1 or 3 inhibition by chorismate. AAAs inhibited DHS activity in young seedlings, where AthDHS2 is highly expressed, but not in mature leaves, where AthDHS1 is predominantly expressed. Arabidopsis dhs1 and dhs3 knockout mutants were hypersensitive to tyrosine and tryptophan, respectively, while dhs2 was resistant to tyrosine-mediated growth inhibition. dhs1 and dhs3 also had reduced anthocyanin accumulation under high light stress. These findings reveal the highly complex regulation of the entry reaction of the plant shikimate pathway and lay the foundation for efforts to control the production of AAAs and diverse aromatic natural products in plants.

Characterization of Arabidopsis 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase enzymes and mutants revealed highly complex metabolite-mediated feedback regulation of the plant shikimate pathway.  相似文献   

17.
Chorismate mutase catalyzes a key step in the shikimate biosynthetic pathway towards phenylalanine and tyrosine. Curiously, the intracellular chorismate mutase of Mycobacterium tuberculosis (MtCM; Rv0948c) has poor activity and lacks prominent active‐site residues. However, its catalytic efficiency increases >100‐fold on addition of DAHP synthase (MtDS; Rv2178c), another shikimate‐pathway enzyme. The 2.35 Å crystal structure of the MtCM–MtDS complex bound to a transition‐state analogue shows a central core formed by four MtDS subunits sandwiched between two MtCM dimers. Structural comparisons imply catalytic activation to be a consequence of the repositioning of MtCM active‐site residues on binding to MtDS. The mutagenesis of the C‐terminal extrusion of MtCM establishes conserved residues as part of the activation machinery. The chorismate‐mutase activity of the complex, but not of MtCM alone, is inhibited synergistically by phenylalanine and tyrosine. The complex formation thus endows the shikimate pathway of M. tuberculosis with an important regulatory feature. Experimental evidence suggests that such non‐covalent enzyme complexes comprising an AroQδ subclass chorismate mutase like MtCM are abundant in the bacterial order Actinomycetales.  相似文献   

18.
p-Hydroxybenzoic acid (pHBA) is the major monomer in liquid crystal polymers. In this study, the Escherichia coli ubiC gene that codes for chorismate pyruvate-lyase (CPL) was integrated into the tobacco (Nicotiana tabacum) chloroplast genome under the control of the light-regulated psbA 5' untranslated region. CPL catalyzes the direct conversion of chorismate, an important branch point intermediate in the shikimate pathway that is exclusively synthesized in plastids, to pHBA and pyruvate. The leaf content of pHBA glucose conjugates in fully mature T1 plants exposed to continuous light (total pooled material) varied between 13% and 18% dry weight, while the oldest leaves had levels as high as 26.5% dry weight. The latter value is 50-fold higher than the best value reported for nuclear-transformed tobacco plants expressing a chloroplast-targeted version of CPL. Despite the massive diversion of chorismate to pHBA, the plastid-transformed plants and control plants were indistinguishable. The highest CPL enzyme activity in pooled leaf material from adult T1 plants was 50,783 pkat/mg of protein, which is equivalent to approximately 35% of the total soluble protein and approximately 250 times higher than the highest reported value for nuclear transformation. These experiments demonstrate that the current limitation for pHBA production in nuclear-transformed plants is CPL enzyme activity, and that the process becomes substrate-limited only when the enzyme is present at very high levels in the compartment of interest, such as the case with plastid transformation. Integration of CPL into the chloroplast genome provides a dramatic demonstration of the high-flux potential of the shikimate pathway for chorismate biosynthesis, and could prove to be a cost-effective route to pHBA. Moreover, exploiting this strategy to create an artificial metabolic sink for chorismate could provide new insight on regulation of the plant shikimate pathway and its complex interactions with downstream branches of secondary metabolism, which is currently poorly understood.  相似文献   

19.
The phenylalanine-sensitive isozyme of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli was inactivated by the sulfhydryl modifying reagents 5,5-dithiobis-(2-nitrobenzoate), bromopyruvate, and N-ethylmaleimide and protected from inactivation by the presence of its metal activator, Mn2+, and substrate, phosphoenolpyruvate. Inactivation by 5,5-dithiobis-(2-nitrobenzoate) was correlated with modification of two of the seven cysteine sulfhydryls of the enzyme monomer. The kinetics of 5,5-dithiobis-(2-nitrobenzoate) modification were altered significantly and distinctively by both substrates (phosphoenolpyruvate and erythrose 4-phosphate), by Mn2+, and by L-phenylalanine, suggesting that ligand binding has significant effects on the conformation of the enzyme. Site-directed mutagenesis was used to create multiple substitutions at the two invariant cysteine residues of the polypeptide, Cys-61 and Cys-328. Analysis of purified mutant enzymes indicated that Cys-61 is essential for catalytic activity and for metal binding. Cys-328 was found to be nonessential for catalytic activity, although mutations at this position had significant negative effects on Vmax, KmMn, and KmPEP.  相似文献   

20.
Phosphatidylinositol kinase was solubilized and purified from porcine liver microsomes to apparent homogeneity. The purification procedure includes: solubilization of microsomes by 2% Triton X-100, ammonium sulfate precipitation (20-35% saturation), Reactive blue agarose chromatography, DEAE-Sephacel chromatography and two consecutive hydroxyapatite chromatographies. A total of 4900-fold purification with 8% recovery of enzyme activity was achieved. The molecular weight of the enzyme as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 55000. The enzyme is stimulated in a decreasing order by Mg2+, Fe2+, Mn2+, Fe3+ and Co2+. Ca2+ inhibited Mg2+-stimulated activity with an I50 of 0.4 mM. Apparent Km values for phosphatidylinositol and ATP are 120 and 60 microM, respectively. The enzyme is inhibited by adenosine (I50 = 70 microM), ADP (I50 = 120 microM) and quercetin (I50 = 100 microM). The enzyme is also sensitive to sulfhydryl inhibitors. Using the purified enzyme as an immunogen, we have successfully prepared antibodies for phosphatidylinositol kinase in rabbits. The antibodies appear to recognize an antigen of Mr 55000 on SDS-polyacrylamide gel electrophoresis from various porcine tissues in Western blot analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号