首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The two types of the rat kininogen genes show different modes of mRNA production. The K gene encodes two distinct mRNAs for high molecular weight (HMW) and low molecular weight (LMW) kininogens. These two mRNAs are generated by differential usage of the 3'-terminal exon (LMW exon) and the one next to this exon (HMW exon) through alternative polyadenylation and splicing. In contrast, the two T genes selectively generate the LMW form of the mRNA, although the T genes are extremely homologous to the K gene, including the sequence (psi HMW region) corresponding to the HMW exon of the K gene. In this study, we constructed a series of chimeric kininogen genes by exchanging equivalent restriction fragments of the K and T genes and examined the sequences and the mechanisms governing the different expression patterns of the kininogen genes by introducing the chimeric genes into heterologous COS cells. The results indicate that the formation of the two forms of the mRNA is controlled by two separate 3' sequences of the kininogen genes. One is located within the internal sequence of the HMW/psi HMW region, whereas the other is within the LMW exon and its preceding region. Our data also suggest that the different expression patterns of the kininogen genes are primarily governed by differing splicing efficiency.  相似文献   

2.
During an adenovirus infection the expression of mRNA from late region L1 is temporally regulated at the level of alternative 3' splice site selection to produce two major mRNAs encoding the 52,55K and IIIa polypeptides. The proximal 3' splice site (52,55K) is used at all times of the infectious cycle whereas the distal site (IIIa) is used exclusively late after infection. We show that a single A branch nucleotide located at position -23 is used in 52,55K splicing and that two A's located at positions -21 and -22 are used in IIIa splicing. Both 3' splice sites were active in vitro in nuclear extracts prepared from uninfected HeLa cells. However, the efficiency of IIIa splicing was only approximately 10% of 52,55K splicing. This difference in splice site activity correlated with a reduced affinity of the IIIa, relative to the 52,55K, 3' splice site for polypyrimidine tract binding proteins. Reversing the order of 3' splice sites on a tandem pre-mRNA resulted in an almost exclusive IIIa splicing indicating that the order of 3' splice site presentation is important for the outcome of alternative L1 splicing. Based on our results we suggest a cis competition model where the two 3' splice sites compete for a common RNA splicing factor(s). This may represent an important mechanism by which L1 alternative splicing is regulated.  相似文献   

3.
D L Black  B Chabot  J A Steitz 《Cell》1985,42(3):737-750
Two different experimental approaches have provided evidence that both U2 and U1 snRNPs function in pre-mRNA splicing. When the U2 snRNPs in a nuclear extract are selectively degraded using ribonuclease H and either of two deoxyoligonucleotides complementary to U2 RNA, splicing activity is abolished. Mixing an extract in which U2 has been degraded with one in which U1 has been degraded recovers activity. Use of anti-(U2)RNP autoantibodies demonstrates that U2 snRNPs associate with the precursor RNA during in vitro splicing. At 60 min, but not at 0 min, into the reaction intron fragments that include the branch-point sequence are immunoprecipitated by anti-(U2)RNP. At all times, U1 snRNPs bind the 5' splice site of the pre-mRNA. Possible interactions of the U2 snRNP with the U1 snRNP and with the pre-mRNA during splicing are considered.  相似文献   

4.
5.
6.
7.
The flanking sequences of three U2 genes (or pseudogenes) and one U1 gene of Drosophila melanogaster have been determined. Comparison of the sequences reveals a remarkable homology between position ?30 and ?65 upstream from the structural genes, starting with a TATA box-like sequence. The 3′ flanking regions are also conserved in all genes and contain a canonical A-A-T-A-A-A polyadenylation signal.  相似文献   

8.
9.
Previous studies of alternative splicing of the rat beta-tropomyosin gene have shown that nonmuscle cells contain factors that block the use of the skeletal muscle exon 7 (Guo, W., Mulligan, G. J., Wormsley, S., and Helfman, D. M. (1991) Genes & Dev. 5, 2095-2106). Using an RNA mobility-shift assay we have identified factors in HeLa cell nuclear extracts that specifically interact with sequences responsible for exon blockage. Here we present the purification to apparent homogeneity of a protein that exhibits these sequence specific RNA binding properties. This protein is identical to the polypyrimidine tract binding protein (PTB) which other studies have suggested is involved in the recognition and efficient use of 3'-splice sites. PTB binds to two distinct functional elements within intron 6 of the beta-tropomyosin pre-mRNA: 1) the polypyrimidine tract sequences required for the use of branch points associated with the splicing of exon 7, and 2) the intron regulatory element that is involved in the repression of exon 7. Our results demonstrate that the sequence requirements for PTB binding are different than previously reported and shows that PTB binding cannot be predicted solely on the basis of pyrimidine content. In addition, PTB fails to bind stably to sequences within intron 5 and intron 7 of beta-TM pre-mRNA, yet forms a stable complex with sequences in intron 6, which is not normally spliced in HeLa cells in vitro and in vivo. The nature of the interactions of PTB within this regulated intron reveals several new details about the binding specificity of PTB and suggests that PTB does not function exclusively in a positive manner in the recognition and use of 3'-splice sites.  相似文献   

10.
During the differentiation of chondroprogenitors into mature chondrocytes, the alternative splicing of collagen genes switches from longer isoforms to shorter ones. To investigate the underlying mechanisms, we infected mouse ATDC5 chondroprogenitor cells with retrovirus for stable expression of two closely related SR splicing factors. RT-PCR analysis revealed that TASR-1, but not TASR-2, influenced alternative splicing of type II and type XI collagens in ATDC5 cells. The effect of TASR-1 on splicing could be reversed with the addition of insulin. Results from our microarray analysis of ATDC5 cells showed that TASR-1 and TASR-2 differentially affect genes involved in the differentiation of chondrocytes. Of special interest is the finding that TASR-1 could down-regulate expression of type X collagen, a hallmark of hypertrophic chondrocytes. Immunohistostaining demonstrated that TASR-1 protein is more abundantly expressed than TASR-2 in mouse articular chondrocytes, raising the possibility that TASR-1 might be involved in phenotype maintenance of articular chondrocytes.  相似文献   

11.
12.
13.
A multicomponent complex is involved in the splicing of messenger RNA precursors   总被引:134,自引:0,他引:134  
P J Grabowski  S R Seiler  P A Sharp 《Cell》1985,42(1):345-353
A multicomponent complex termed spliceosome (splicing body) is unique to the splicing of messenger RNA precursors in vitro. This 60S RNA-protein complex contains RNAs from the previously characterized bipartite splicing intermediate, the 5' exon RNA, and the lariat intervening sequence-3' exon RNA, as well as some intact 455 nucleotide precursor RNA. This complex contains snRNPs, particularly U1 RNP, as shown by immunoprecipitation with specific antisera. Formation of the 60S complex appears to be an early and essential step in splicing, because the 60S complex forms during the early stage, or lag time, of the reaction before the first covalent modification, cleavage at the 5' splice site of precursor RNA. The 60S complex forms only under conditions that permit splicing; both ATP and a precursor RNA containing authentic 5' and 3' splice sites are required for formation, while antiserum specific for U1 RNP inhibits its formation. RNA within the 60S complex, predominantly precursor RNA, was chased into products with accelerated kinetics and more complete conversion than purified precursor RNA.  相似文献   

14.
15.
Scavenger receptor class B type I (SR-BI) is a major receptor of the high-density lipoprotein that mediates cholesterol efflux and reverse cholesterol transport. Alternative splicing of the scavenger receptor class B (SR-B) gene is observed and different splice forms, SR-BI and scavenger receptor class B type II (SR-BII), have been shown to function and localize in distinct ways. We have previously shown that SR-B alternative splicing regulation is associated with splicing factor ASF/SF2. In this study, using a SR-B minigene as a model, we determined the critical regulatory regions in the upstream intron, intron 11, by serial deletion and mutation analyses. We also further characterized the regulatory elements in intron 11 as well as in the skipped exon, exon 12. Moreover, we studied the interactions of these elements with the splicing factor ASF/SF2. This study provides new insights into the mechanism of SR-B splicing and it is important for further study on the mechanism of SR-B alternative splicing regulation, such as its regulation by estrogen.  相似文献   

16.
17.
β-site APP cleaving enzyme 1 (BACE1) is the transmembrane aspartyl protease that catalyzes the first cleavage step during proteolysis of the β-amyloid precursor protein, a process involved in the pathogenesis of Alzheimer disease. BACE1 pre-mRNA undergoes complex alternative splicing, and cis -acting elements important for its regulation have not been identified. We constructed and compared several BACE1 minigenes and found that BACE1 sequence from exon 3 through exon 5 was required for minigenes to undergo correct splicing. Minigene splicing was validated by showing specific splicing inhibition upon splice site mutation. Furthermore, we showed that mutation of the minigene at a predicted exonic splicing enhancer in exon 4 of BACE1 increased exon 4 skipping. Therefore, we have for the first time found evidence of a regulatory site involved in BACE1 alternative splicing, and these data indicate that minor sequence changes can dramatically alter BACE1 alternative splicing.  相似文献   

18.
The Fox-1 protein regulates alternative splicing of tissue-specific exons by binding to GCAUG elements. Here, we report the solution structure of the Fox-1 RNA binding domain (RBD) in complex with UGCAUGU. The last three nucleotides, UGU, are recognized in a canonical way by the four-stranded beta-sheet of the RBD. In contrast, the first four nucleotides, UGCA, are bound by two loops of the protein in an unprecedented manner. Nucleotides U1, G2, and C3 are wrapped around a single phenylalanine, while G2 and A4 form a base-pair. This novel RNA binding site is independent from the beta-sheet binding interface. Surface plasmon resonance analyses were used to quantify the energetic contributions of electrostatic and hydrogen bond interactions to complex formation and support our structural findings. These results demonstrate the unusual molecular mechanism of sequence-specific RNA recognition by Fox-1, which is exceptional in its high affinity for a defined but short sequence element.  相似文献   

19.
20.
The polypyrimidine tract-binding protein (PTB) is an important regulator of alternative splicing. PTB-regulated splicing of α-tropomyosin is enhanced by Raver1, a protein with four PTB-Raver1 interacting motifs (PRIs) that bind to the helical face of the second RNA recognition motif (RRM2) in PTB. We present the crystal structures of RRM2 in complex with PRI3 and PRI4 from Raver1, which--along with structure-based mutagenesis--reveal the molecular basis of their differential binding. High-affinity binding by Raver1 PRI3 involves shape-matched apolar contacts complemented by specific hydrogen bonds, a new variant of an established mode of peptide-RRM interaction. Our results refine the sequence of the PRI motif and place important structural constraints on functional models of PTB-Raver1 interactions. Our analysis indicates that the observed Raver1-PTB interaction is a general mode of binding that applies to Raver1 complexes with PTB paralogues such as nPTB and to complexes of Raver2 with PTB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号