首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
从理论上推导出以着色导管数计算导管长度的关系式,为注入颜料法测定植物导管长度分布规律了理论基础,并推导了导管长度分布规律,以及着色导管数与样品长度关系。以香梓、梧桐为试材,研究了导管长主工分布规律,实验结果与理论结果完全一致,表明理论推导和实验结果是可靠的。  相似文献   

2.
The structural response of a posterior leaf spring, ankle-foot orthosis (AFO) was studied both experimentally and with a simple theoretical model. The theoretical model, which was compared with other analytical solutions and experimental data, predicted the bending and twisting of the AFO due to unit loads. The simple theoretical model utilized beam equations and small deflection theory. Excellent agreement between test and predicted values was achieved, indicating that the simple theoretical model, which was relatively easy to implement computationally, could serve as the major component of a computer-aided design program.  相似文献   

3.
Two models of the hydrogenase reaction cycle were investigated by means of theoretical calculations and model simulations. The first model is the widely accepted triangular hydrogenase reaction cycle with minor modifications; the second is a modified triangular model, where we have introduced an autocatalytic step into the reaction cycle. Both models include a one-step activation reaction. The theoretical calculations and model simulations corroborate the assumed autocatalytic reaction step concluded from the experimental characteristics of the hydrogenase reaction.  相似文献   

4.
在杀虫剂作用下的一类具有Allee效应的天敌-害虫模型   总被引:4,自引:0,他引:4  
对一类具有Allee效应的天敌-害虫模型作了理论分析,同时对在杀虫剂作用下的此系统又作了理论分析,比较了二者之间的区别,从而从理论上获知利用杀虫剂控制虫害的利弊.  相似文献   

5.
6.
7.
Nasal carriage of antibiotic-resistant Staphylococcus aureus is often used as an index of cross-infection in hospitals. In this paper, a deterministic model of the epidemiology of Staphylococcal nasal carriage was derived employing the concepts of epidemic theory. This theoretical model was tested against experimental data gathered from a large survey. When the association between nasal carriage of tetracycline-resistant Staphylococci and length of stay in hospital derived from the survey was compared with theoretical figures derived from the model, the validity of the model in a real situation was confirmed.  相似文献   

8.
A novel fluorescence-microscopy-based image analysis method for classification of singlet and doublet latex particles is demonstrated and applied to a particle-based immunoagglutination assay for quantification of biomolecules in microliter-volume bulk samples. The image analysis method, verified by flow cytometric agglutination analysis, is based on a pattern recognition algorithm employing Gaussian-base-function fitting which allows robust identification and counting of singlets, doublets, and higher agglomerates of fluorescent microparticles. The immunoagglutination assay is experimentally modeled by a biotin-streptavidin interaction, with the goal of both theoretically and experimentally investigating the performance of a general immunoagglutination-based assay. For this purpose a theoretical model of the initial agglutination kinetics, based on particle diffusion combined with a steric factor determined by the level of specific and nonspecific agglutination, was developed. The theoretical model combined with the experimental data can be used to optimize an agglutination-based assay with regard to sensitivity and dynamic range and to estimate the affinity, receptor surface density, molecular and binding site sizes, and level of nonspecific binding that is present in the assay. The experimental results are in good agreement with the theoretical model, indicating the usefulness of the model for immunoagglutination assay optimization.  相似文献   

9.
An allometric model for trees   总被引:1,自引:0,他引:1  
  相似文献   

10.
Theoretical calculations are presented, describing the kinetics of a solid-phase immunoassay where reactants are allowed to diffuse through a gel wedge in the bottom of a circular basin. The analysis is based on the assumption of a diffusion rate limited reaction at the underlaying surface. The influence of initial concentration, incubation time, temperature and the effect of stirring are predicted by the theoretical model. Experimental data are found to follow the theoretical model with parameters consistent with previous values.  相似文献   

11.
The temporal behaviour of the nonlinear compartmental model we have developed for rat calcium metabolism is discussed with respect to the theoretical properties of the self-oscillating autocatalytic subunit around which the model is constructed. Depending on the approximations made, this subunit is described by a minimal two-variable model, SU2, or by a three-variable one, SU3. The diversity of the theoretical dynamic behaviours possible with SU2 is greatly increased with SU3. But the identification of SU3 parameter values in three different experimental situations reveals that biological constraints efficiently preserve a simple circadian rhythm for bone metabolism. This analysis indicates the significant contribution of the available bone crystal pool to the dynamic organization of this tissue, and hence to extracellular calcium homeostasis.  相似文献   

12.
The paper presents the results of theoretical and experimental studies of the radiative properties of plasmas produced by heating and compression of various materials to high energy densities. The specific features of the theoretical plasma model known as the ion model, which is used to calculate the radiative characteristics of plasmas of complex chemical composition, are discussed. The theoretical approach based on this model is applied to the plasma produced during the explosion of the X-pinch wires. The theoretical estimate of the radiation efficiency is compared with the experimental data on the total energy yield from an X-pinch made of two different wires (NiCr and Alloy 188). The radiative characteristics of (C12 H16 O8) and (C8 H12 O6) plasmas are calculated for the temperature diagnostics of plasmas produced from porous targets employed in inertial confinement fusion experiments with the use of laser radiation and heavy-ion beams.  相似文献   

13.
The theoretical autocorrelation of the cat ganglion cell discharge under stationary and dynamic conditions of light stimulus is compared with the autocorrelation determined experimentally. To obtain the theoretical autocorrelation, the stationary discharge is described by a stationary random point process of independent intervals equally distributed according to a gamma function, and the dynamic behaviour is described by a model defined in a previous paper. Comparison shows that the model predicts the experimental results. Finally, the power density spectrum is analysed and the relevance of the results to signal transmission by the retinal system is discussed.  相似文献   

14.
The topic of this study mainly concerns a representative model of the behavior of flexible ducts such as elastic tubes or veins. This model is based on a phenomenological approach of the inflation and collapse of the tube. It leads to a single "universal" analytical expression of the tube law, valid fir a wide range of' positive and negative transmural pressures, which presents a significant improvement compared to previous theoretical studies defined with different expressions on restricted ranges of pressure. Moreover, the theoretical approaches most often require simplif'ing hypotheses--no longitudinal tension, no surrounding tissues--which are quite unrealistic both in the physiological case and in the experimental setup. These theoretical models can therefore be expected only roughly to describe the actual behavior of such vessels. The representative model, on the contrary, allows one to account for the deformation--inflating as well as collapse--of elastic tubes or veins with better accuracy. The tube law is a function of six parameters chosen in order to fit the experimental data. A comparison between results obtained in our laboratory using silicone tubes and representative models is presented. The model is then applied to physiological data obtained in vivo on human leg veins.  相似文献   

15.
Fluorescence recovery after photobleaching (FRAP) is used to obtain quantitative information about molecular diffusion and binding kinetics at both cell and tissue levels of organization. FRAP models have been proposed to estimate the diffusion coefficients and binding kinetic parameters of species for a variety of biological systems and experimental settings. However, it is not clear what the connection among the diverse parameter estimates from different models of the same system is, whether the assumptions made in the model are appropriate, and what the qualities of the estimates are. Here we propose a new approach to investigate the discrepancies between parameters estimated from different models. We use a theoretical model to simulate the dynamics of a FRAP experiment and generate the data that are used in various recovery models to estimate the corresponding parameters. By postulating a recovery model identical to the theoretical model, we first establish that the appropriate choice of observation time can significantly improve the quality of estimates, especially when the diffusion and binding kinetics are not well balanced, in a sense made precise later. Secondly, we find that changing the balance between diffusion and binding kinetics by changing the size of the bleaching region, which gives rise to different FRAP curves, provides a priori knowledge of diffusion and binding kinetics, which is important for model formulation. We also show that the use of the spatial information in FRAP provides better parameter estimation. By varying the recovery model from a fixed theoretical model, we show that a simplified recovery model can adequately describe the FRAP process in some circumstances and establish the relationship between parameters in the theoretical model and those in the recovery model. We then analyze an example in which the data are generated with a model of intermediate complexity and the parameters are estimated using models of greater or less complexity, and show how sensitivity analysis can be used to improve FRAP model formulation. Lastly, we show how sophisticated global sensitivity analysis can be used to detect over-fitting when using a model that is too complex.  相似文献   

16.
Pulse wave evaluation is an effective method for arteriosclerosis screening. In a previous study, we verified that pulse waveforms change markedly due to arterial stiffness. However, a pulse wave consists of two components, the incident wave and multireflected waves. Clarification of the complicated propagation of these waves is necessary to gain an understanding of the nature of pulse waves in vivo. In this study, we built a one-dimensional theoretical model of a pressure wave propagating in a flexible tube. To evaluate the applicability of the model, we compared theoretical estimations with measured data obtained from basic tube models and a simple arterial model. We constructed different viscoelastic tube set-ups: two straight tubes; one tube connected to two tubes of different elasticity; a single bifurcation tube; and a simple arterial network with four bifurcations. Soft polyurethane tubes were used and the configuration was based on a realistic human arterial network. The tensile modulus of the material was similar to the elasticity of arteries. A pulsatile flow with ejection time 0.3 s was applied using a controlled pump. Inner pressure waves and flow velocity were then measured using a pressure sensor and an ultrasonic diagnostic system. We formulated a 1D model derived from the Navier-Stokes equations and a continuity equation to characterize pressure propagation in flexible tubes. The theoretical model includes nonlinearity and attenuation terms due to the tube wall, and flow viscosity derived from a steady Hagen-Poiseuille profile. Under the same configuration as for experiments, the governing equations were computed using the MacCormack scheme. The theoretical pressure waves for each case showed a good fit to the experimental waves. The square sum of residuals (difference between theoretical and experimental wave-forms) for each case was <10.0%. A possible explanation for the increase in the square sum of residuals is the approximation error for flow viscosity. However, the comparatively small values prove the validity of the approach and indicate the usefulness of the model for understanding pressure propagation in the human arterial network.  相似文献   

17.
In this work a mechanistic explanation of the classical algae growth model built by M. R. Droop in the late sixties is proposed. We first recall the history of the construction of the "predictive" variable yield Droop model as well as the meaning of the introduced cell quota. We then introduce some theoretical hypotheses on the biological phenomena involved in nutrient storage by the algae that lead us to a "conceptual" model. Though more complex than Droop's one, our model remains accessible to a complete mathematical study: its confrontation to the Droop model shows both have the same asymptotic behavior. However, while Droop's cell quota comes from experimental bio-chemical measurements not related to intra-cellular biological phenomena, its analogous in our model directly follows our theoretical hypotheses. This new model should then be looked at as a re-interpretation of Droop's work from a theoretical biologist's point of view.  相似文献   

18.
We demonstrate a broadband light absorber with its absorption being able to reach as high as 90 % and above ranging from the ultraviolet to the visible regimes. A theoretical model is given for the purpose of analyzing the physical mechanism of the absorption. By applying the equivalent T circuit model of metamaterial layers to the analysis of our designed absorber, our calculated results are in good agreement to that of the theoretical model and satisfy the perfect-absorption condition very well.  相似文献   

19.
In vitro evolution is a new, important laboratory method to evolve molecules with desired properties. It has been used in a variety of biological studies and drug development. In this paper, we study one important mutagenesis method used in in vitro evolution experiments called DNA shuffling. We construct a mathematical model for DNA shuffling and study the properties of molecules after DNA shuffling experiments based on this model. The model for DNA shuffling consists of two parts. First we apply the Lander-Waterman model for physical mapping by fingerprinting random clones to model the distribution of regions that can be reassembled through DNA shuffling. Then we present a model for recombination between different DNA species with different mutations. We compare our theoretical results with experimental data. Finally we propose novel applications of the theoretical results to the optimal design of DNA shuffling experiments and to physical mapping using DNA shuffling.  相似文献   

20.
This is the story of how a small team of experimentalists and theoreticians collaborated to develop a theoretical model for vesicle formation during endocytosis. In telling our story, we hope to distil some general conclusions about the purpose and value of theoretical models and how best to navigate collaborations between experimentalists and theoreticians. We encountered challenges in building and publishing our model, but through our experiences we gained insight into how such collaborations can be profitably conducted. We also developed opinions about how theoretical models should be evaluated by peer reviewers and editors. During the evolution of our theoretical model, we educated each other, organized our thoughts and our data, developed a conceptual framework for understanding the mechanochemistry of endocytosis, and generated testable hypotheses that stimulated new experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号