首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since bioenergetics models for 0+ fish have seldom been validated by field consumption estimates, field-based and indirectly estimated daily food rations were compared in larval perch Perca fluviatilis and zander Stizostedion lucioperca. Field-based estimates were calculated with linear and exponential evacuation rates based on gut fullness data during a 24-h cycle, with hourly field samplings instead of the normally recommended 3-h intervals. Indirect calculations used bioenergetics modelling with variable activity multipliers ( A ). Field-based estimates of daily rations ranged between 0·21 and 0·27 g g−1 day−1 in perch (mean L T 13·1 mm) and 0·31–0·40 g g−1 day−1 in zander (mean L T 10·6 mm). The higher values were calculated by using the exponential model. Daily rations calculated by bioenergetics modelling with A = 1 were only slightly higher than direct estimates in both species. However, if A values >1 were used, calculated daily rations were substantially higher than direct estimates. Estimates of daily ration based only on every third value ranged between 41 and 72% compared with 1-h intervals, mainly because of lower estimates of evacuation rate.  相似文献   

2.
SUMMARY. Food evacuation in roach (total body length, range 75–150 mm) was studied at temperatures between 4.2 and 24.0 °C. The rate of food evacuation was described by an exponential function and was similar for two different food items ( Daphnia and Chaoborus ). The relation between the instantaneous rate of food evacuation ( R ) and temperature was also described by an exponential function. A model developed for estimating food consumption rates in fish was tested in a simulation experiment and there was good agreement between estimated and actual values for food consumption.  相似文献   

3.
The species composition and feeding behaviour of fish larvae and juveniles was investigated in a shallow inlet of the Southern Baltic. The aim of the study was to examine if there was a predatory impact of young fish on the observed annual collapse of the copepod population. Dominant fish species were herring (Clupea harengus), perch (Perca fluviatilis) and roach (Rutilus rutilus). Roach larvae preferred shallower areas, whereas young herring and perch were found in open water. Highest consumption values were always observed in the evening. By computing complete evacuation of the digestive tract in approximately 3.5 hours, daily consumption in percent of fish fresh weight was 1.3, 4.7 and 5.5% for young herring, roach and perch, respectively. The impact of young fish on the dynamics of the population of the copepod species Eurytemora affinis is negligible.  相似文献   

4.
Laboratory growth and food consumption data for two size classes of age 2 year yellow perch Perca flavescens , each fed on two distinct feeding schedules at 21° C, were used to evaluate the abilities of the Wisconsin (WI) and Karas–Thoresson (KT) bioenergetics models to predict fish growth and cumulative consumption. Neither model exhibited consistently better performance for predicting fish body masses across all four fish size and feeding regime combinations. Results indicated deficiencies in estimates of resting routine metabolism by both models. Both the WI and KT models exhibited errors for predicting growth rates, which were strongly correlated with food consumption rate. Consumption-dependent prediction errors may be common in bioenergetics models and are probably the result of deficiencies in parameter values or assumptions within the models for calculating energy costs of specific dynamic action, feeding activity metabolism or egestion and excretion. Inter-model differences in growth and consumption predictions were primarily the result of differences in egestion and excretion costs calculated by the two models. The results highlighted the potential importance of parameters describing egestion and excretion costs to the accuracy of bioenergetics model predictions, even though bioenergetics models are generally regarded as being insensitive to these parameters. The findings strongly emphasize the utility and necessity of performing laboratory evaluations of all bioenergetics models for assurance of model accuracy and for facilitation of model refinement.  相似文献   

5.
The presence of and mechanisms behind density-dependent growth and resource limitation in larval and juvenile stages of organisms with high mortality such as fish are much debated. We compare observed consumption and growth rates with maximum consumption and growth rates to study the extent of resource limitation in young-of-the-year (YOY) roach (Rutilus rutilus) and perch (Perca fluviatilis). Diet, habitat use, consumption rate and growth rate were measured under varying YOY fish densities over 2 years in four lakes. In the first year, YOY roach and perch were studied under allopatric conditions. Experimental addition of perch roe in the second year also allowed study of YOY of the two species under sympatric conditions in two of the lakes. The diet of YOY roach was dominated by cladoceran zooplankton and YOY roach habitat use was restricted to the shore region in both years. This restricted habitat use did not involve any cost in foraging gain in the first year as consumption and growth rates were very close to maximum rates. During the second year, when the two species coexisted, resources were limited in late season, more so in the littoral than in the pelagic habitat in one lake while the reverse was the case in the other lake. The diet of YOY perch was also dominated by zooplankton, and with increasing perch size the proportion of macroinvertebrate prey in the diet increased. After hatching, YOY perch first utilized the pelagic habitat restricting their habitat use to the shore after 1 to several weeks in the pelagic zone. During the larval period, perch were not resource limited whereas juvenile perch were resource limited in both years. The fact that YOY perch were more resource limited than YOY roach was related to the higher handling capacity and lower attack rate of perch relative to roach, rendering perch more prone to resource limitation. Estimates of resource limitation based on consumption rates and growth rates yielded similar results. This supports the adequacy of our approach to measure resource limitation and suggests that this method is useful for studying resource limitation in organisms with indeterminate growth. Our results support the view that density-dependent growth is rare in larval stages. We suggest that density-dependent growth was absent because larval perch and roach were feeding at maximum levels over a wide range of larvae densities. Received: 14 June 1999 / Accepted: 29 October 1999  相似文献   

6.
In the Enonselkä and Laitialanselkä basins of Lake Vesijärvi, perch Perca fluviatilis and roach Rutilus rutilus were abundant in the littoral and in the pelagic zones throughout the summer. In the littoral zone, roach was always more numerous than perch, while perch dominated in the open water. Intraspecific diet overlap values were higher than interspecific values. In the pelagic zone, perch <155 mm fed mainly on the cladoceran Leptodora kindtii , while small bosminids were most important food items for roach. Large perch were piscivorous, feeding mainly on smelt Osmerus eperlanus . In the littoral zone small perch foraged on zooplankton and chironomid larvae and large perch on chironomids and fish (small perch). Small roach fed mainly on bosminids and detritus, while for roach <185 mm macrophytes ( Elodea Canadensis, Lemna trisulca ) were also of importance. Detritus was more common in the food of roach in Laitialanselkä than in Enonselkä. The slower growth rate of roach in Laitialanselkä compared with Enonselkä was probably connected with this. However, considering the latitude of the lake, the growth rate of both roach and perch was relatively fast in both basins. The results indicated that in a large lake both perch and roach are able to utilize effectively the different habitats and diverse food resources. By segregation in food resource utilization they are able to co-exist in large quantities, at the same time maintaining a relatively fast growth rate.  相似文献   

7.
In a small, 12 ha, mesotropic lake, roach Rutilus rutilus performed diel habitat shifts that clearly influenced the composition of their diet. During daytime, roach stayed in the littoral zone and concentrated on littoral prey. At night they were found in the pelagic zone, and pelagic prey items such as Daphnia spp. or Chaoborus flaricans dominated their food. On a seasonal scale, there were shifts in the importance of different food items and in the diel pattern of feeding intensity. Bioenergetics modelling in combination with an evacuation rate method for estimating daily rations allowed for changes in feeding modes to be taken into account, and so food item specific daily rations over the season could be determined. With the evacuation rate method applied on selected days, diel changes in diet compositions and feeding intensities could be quantitatively accounted for. When the 24 h integrated diet proportions were then used as an input parameter for bioenergetics modelling, food item specific consumption could be determined over the entire sampling season. The consideration of the diel diet shifts proved to be essential for the model output. If only the daytime or the night-time diet composition (derived from one single daily sampling) was taken into account for bioenergetics modelling, severe under- or overestimations of daily rations for specific food items resulted.  相似文献   

8.
Adult perch, Perca fluviatilis L., were sampled at 3-hourly intervals throughout 24-h periods from June-September 1971, and in June and August 1972. The wet weight of each major food component from the stomachs was expressed in parts per 10 000 of the fresh weight of the fish. From samples at capture, and others taken from caged fish at known time-intervals after capture, the rate of stomach evacuation was estimated. Food consumption between netting times was calculated as the increment between successive initial values of stomach contents, plus the amount evacuated in the interval. As the evacuation rate of caged fish was slower than that of free fish the estimates of food turnover are minimal ones. The perch were consuming 6.5 % of their wet body weight per day in June, and this ration had decreased to 3.2% by September.  相似文献   

9.
SUMMARY. Perch were sampled for their stomach contents at regular intervals throughout 24 h from June until October in 1973 and from February 1975 until January 1976. They were found to feed on benthic organisms from November until April, on benthos and plankton during May and June and on perch fry and zooplankton from July until October. Perch over a wide size range feed on similar prey. Fish showed great variability in the weight of their stomach contents. A method based on a points system was developed to estimate the weight of food in the stomach for a given weight of fish at a known time. A diel feeding pattern which varied with the season was apparent from these data. Rates of gastric evacuation were assumed to be exponential and were calculated from the drop in night-time stomach content weights when food intake was assumed to be zero. The rates ranged from 0.18 mg h−1 at a mean water temperature of 11°C in May to 0.35 mg h−1 at a mean water temperature of 17°C in July. Assuming that food consumption followed a linear rate of intake, the standard Bajkov method was considered an adequate model to calculate daily food consumption. Daily food consumption (mg dry weight) was calculated for 150 g perch for all months of the year (November to April and September and October being combined). A second series of values was calculated making corrections for the time spent in the fishing gears when food intake was zero but gastric evacuation continued. Daily food consumption figures for 150g male perch based on Winberg's hypotheses (1956) and growth data showed no significant differences from this second series of values, when both were expressed in energy terms. When certain assumptions have been tested, growth data and Winberg's equations together may be a suitable method for calculating an energy budget for the Windermere perch population.  相似文献   

10.
Food consumption, standard metabolism, and growth of juvenile snakehead, Channa striatus, a cannibalistic and air-breathing fish were measured at 24–26 °C under controlled laboratory condition. Snakehead weighing 3.2–29.5 g were evaluated, and were fed smaller snakehead. Based on our observations, we determined bioenergetics relationships between specific food consumption, metabolic rates, and body weight. These values, along with other published parameter values allowed us to construct a bioenergetics model for snakehead. We then verified our model with growth and food consumption measurements from an independent feeding trial. Predicted fish growth closely matched observed growth. Our model underestimated cumulative food consumption when a constant activity value was used, but consumption estimates improved when we used non-constant activity values (1-5 times of standard metabolism). Predicted fish maintenance ration was 1.7% of body weight per day. Food conversion efficiency was greatest (0.59) when fed 2% body weight daily, but declined when daily consumption exceeded 6% body weight. This model provides a useful approach for assessing food requirements of snakehead under controlled condition. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
W. Wieser  N. Medgyesy 《Oecologia》1991,87(4):500-505
Summary Energy budgets of juvenile pike and perch (weighing approximately 3 g) were determined in experiments lasting up to 4 days, by simultaneously measuring oxygen consumption, food consumption, and growth of individual fish. Although the basic pattern of energy allocation was identical in the two species, perch subjected to constant light (PEL) showed faster growth, higher assimilation and conversion efficiency, and higher oxygen consumption than perch subjected to a short daylength regime (PED). The efficiency with which food energy was converted into body mass was 39±5% in PED but 49±4% in PEL. However, the “work coefficient” (increment of body mass/post-prandial increase of oxygen consumption: mg · μmol O inf2 sup−1 ) differed only insignificantly between the two groups of perch, indicating that the metabolic cost of growth was unaffected by the manipulation of experimental conditions. This identifies the higher assimilation efficiency, i.e. the increased flow of food energy into the tissues as being the cause of accelerated growth of perch under the constant-light regime. In both species the maximum feeding-induced metabolic rate was 4 times higher than the lowest preprandial rate. In perch (which were kept on low rations before the experiments) the post-prandial metabolic rate increased steadily from day to day during the 4-day experiments, so that on the last day the rate of oxygen consumption exceeded the rate on the first day by about 41%. This investigation provides further evidence that the allocation of metabolic energy in fish is based on a flexible strategy which responds sensitively to changes in both internal and external conditions.  相似文献   

12.
Horizontal and vertical heterogeneity as a result of size‐structured processes are important factors influencing indirect effects in food webs. In a whole‐lake experiment covering 5 years, we added the intermediate consumer roach (Rutilus rutilus) to two out of four lakes previously inhabited by the omnivorous top predator perch (Perca fluviatilis). We focused our study on the direct consumption effect of roach presence on zooplankton (and indirectly phytoplankton) versus the indirect effect of roach on zooplankton (and phytoplankton) mediated via effects on perch reproductive performance. The patterns in zooplankton and phytoplankton abundances were examined in relation to population density of roach and perch including young‐of‐the‐year (YOY) perch in the light of non‐equilibrium dynamics. The presence of roach resulted in changed seasonal dynamics of zooplankton with generally lower biomasses in May–June and higher biomasses in July–August in roach lakes compared to control lakes. Roach presence affected perch recruitment negatively and densities of YOY perch were on average higher in control lakes than in treatment lakes. In years when perch recruitment did not differ between lakes as a result of experimental addition of perch eggs, total zooplankton biomass was lower in treatment lakes than in control lakes. Phytoplankton biomass showed a tendency to increase in roach lakes compared to control lakes. Within treatment variation in response variables was related to differences in lake morphometry in treatment lakes. Analyses of the trophic dynamics of each lake separately showed strong cascading effects of both roach and YOY perch abundance on zooplankton and phytoplankton dynamics. Consideration of the long transients in the dynamics of top predators (fish) in aquatic systems that are related to their long life span involving ontogenetic niche shifts is essential for making relevant interpretations of experimental perturbations. This conclusion is further reinforced by the circumstance that the intrinsic dynamics of fish populations may in many cases involve high amplitude dynamics with long time lags.  相似文献   

13.
Feeding of fish in Lake Glubokoe   总被引:1,自引:1,他引:0  
O. S. Boikova 《Hydrobiologia》1986,141(1-2):95-111
Lake Glubokoe is inhabited by 13 species of fish. The commonest are roach, bream, perch and ruff. Comparison of seine catches for 1950 and 1984 revealed a considerable decrease in the share of perch (from 31% to 2%) and ruff (from 18.5 to less than 0.1%) in 1984. The richest food resource in the lake is crustacean plankton. In summer, it is mostly consumed by roach. Estimation of the electivity shows that, unlike perch, roach selectively consumes small crustaceans (Bosmina and Polyphemus). Poor growth rate of all common species of fish points to their food limitation. In summer the diets of common species of fish are differentiated to a considerable extent. Of 36 pairs of combinations a high food overlap was found only in 2 cases: 1) O + perch and Leucaspius delineatus, 2) yearlings and adult roach. Low diet overlap in fish during intensive feeding in summer probably reflects a feedback between the volume and intensity of food competition. The populations of bream and ruff probably compete for chironomid larvae which inhabit the sublittoral, as perch, roach and Leucaspius delineatus probably do for large littoral insects. However, intraspecific competition appears to be more important than interspecific for the roach and bream populations (the two most numerous species in the lake).  相似文献   

14.
Fish respiration rates that are presumed to represent standard metabolic rates (SMR) may sometimes include an unspecified energy expenditure associated with activity and digestion. This situation may introduce a bias in bioenergetics models because standard metabolism, digestion, and activity may not be affected by the same environmental conditions. The aim of this study was to (1) develop a SMR model for juvenile yellow perch, Perca flavescens (Mitchill), that represent the minimum energy expenditure required to maintain life and (2) compare the results of this study with published perch metabolic rates and bioenergetics models. SMR was estimated for yellow perch over a range of body␣mass (4.4–24.7 g) and water temperature (12–20°C). The intercept of the relationship between fish respiration and swimming velocity obtained during forced swimming experiments was used to determine SMR. SMR estimated by the present study were comparable to values presented by two published studies on Eurasian perch, Perca fluviatilis L. However, estimated SMR were 4.1–20.9 times lower than values of a third respirometry study and predictions of bioenergetics models for perch. The present study suggests that published SMR models may sometimes include a significant fraction of energy expenditures (39.2–75.9%) associated with digestion and activity. This may complicate the implementation and the interpretation of fish bioenergetics models. The present study indicates that the intercept of respiration-velocity relationships and long-term respiration rates during starvation experiments may provide similar and reliable SMR values.  相似文献   

15.
SUMMARY. The rate of gastric evacuation in perch (Perca fluviatilis) (89–170 mm length) fed on fish larvae was studied at temperatures between 12.0 and 21.7°C. Gastric evacuation rates were usually described by an exponential function. The instantaneous rate of gastric evacuation ( R ) was constant for a large number of different meal sizes. At higher food rations, a lag phase in digestion was found during the first part of digestion, and this ration size was smaller for smaller perch (89–110 mm) than for bigger perch (120–170 mm). Below these larger meal sizes, gastric evacuation was similar for the different size classes studied. The relation between R and temperature was described by an exponential function. The effects of meal size, number of food items, fish size and temperature on the rate of gastric evacuation are discussed.  相似文献   

16.
A bioenergetics model was developed for Eurasian perch ( Perca fluviatilis L.) by revising an existing model for yellow perch and walleye. Data were gathered from field studies and the literature. Besides adjusting the original parameters of the model, effects of season on consumption and metabolic rates were added. The predictive capability of the revised model was high both concerning the levels of growth and its seasonal development in the Baltic coastal waters to which the model was applied. Perch young-of-the-year attained almost maximum consumption and growth except in the highest temperatures experienced. In larger fish, the model estimated consumption to be about 50 per cent of the maximum possible rate.  相似文献   

17.
Oxygen consumption of juvenile and adult burbot Lota lota was measured in an intermittent-flow respirometer to determine the effect of temperature and fish body mass on metabolic rate. These results were combined with data from earlier experiments and the 'Wisconsin bioenergetics' model was constructed. The model was validated under laboratory conditions by comparing observed and predicted food consumption and growth of burbot fed on dead vendace Coregonus albula . There was a good correspondence between observed and estimated growth and food consumption under experimental conditions: the mean absolute per cent errors of growth and food consumption were 4·8 and 24·0%. Estimated values with the new model were an improvement over the Atlantic cod Gadus morhua model previously used for burbot. In the field, the reliability of food consumption estimates was verified by using polychlorinated biphenyls (PCB) accumulation as an indirect indicator of the food consumption rate. The total PCB concentration of nine out of 13 burbot was estimated accurately. Thus, the burbot model produced good estimates of food consumption, even under field conditions.  相似文献   

18.
SUMMARY. The rate of gastric evacuation in perch Perca fluviatilis was studied at different mean temperatures (range 4.0–21.7°C). Gastric evacuation rates were empirically described by an exponential function and the relationship between the instantaneous evacuation rate ( R ) and temperature was also exponential. Evacuation rates were not significantly different ( P > 0.1) for the following food organisms: Gammarus pulex, Chaoborus , chironomids and zooplankton. The effects of temperature, different food organisms and fish size on the evacuation rates in different fish species are discussed.  相似文献   

19.
鱼类的胃排空率及其影响因素   总被引:13,自引:1,他引:13  
张波  孙耀  唐启升 《生态学报》2001,21(4):665-670
鱼类的胃排空率是研究鱼类能量学的重要参数,近年来国外有关研究结果表明,鱼类的胃排空率除了受鱼体自身生理状况和实验方法的影响以外,还受许多其它因素,如:鱼的种类,鱼体重,温度,食物,摄食频率以及饥饿时间等的影响。这些资料将为我国开展该方面的研究工作提供有价值的参考作用。  相似文献   

20.
1. Research has often focused on the pelagic areas of lakes; the littoral zone has received less attention. The few studies concerning fish distribution in littoral habitats have concentrated on stands of submersed macrophytes, whereas other littoral habitat types have seldom been investigated. 2. This study aimed to predict the occurrence of juvenile fish in several littoral habitats of a shallow lake as a function of food availability, complexity of habitat structure, water depth and substrate. Habitats comprising reed, woody structures, and two open water areas differing in depth were sampled for fish and invertebrate biomasses on two shores, over 6 months and during both daylight and at night. 3. The juvenile fish community consisted almost exclusively of 0+ and 1+ roach and perch. There was a strong diel component in habitat use, with a predominant occurrence of fish in complex habitats (mainly woody structures) during the day, and a partial migration towards the open habitats at night, more strongly expressed in roach than in perch. 4. The diet of all fish groups was relatively constant over the seasonal cycle, and was independent of habitat. There was a higher degree of planktivory in roach than in perch, but both species fed on benthic macroinvertebrates to a substantial extent. 5. According to a logistic regression model, the biomass of potential food organisms in the different habitats had little predictive effect on the spatial distribution of the fish, whereas the structural complexity of the habitats combined with the diel cycle explained about 28% of the occurrence patterns in 0+ and 1+ perch and 1+ roach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号