首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional properties of heparan sulfate (HS) are generally ascribed to the sulfation pattern of the polysaccharide. However, recently reported functional implications of rare N-unsubstituted glucosamine (GlcNH(2)) residues in native HS prompted our structural characterization of sequences around such residues. HS preparations were cleaved with nitrous acid at either N-sulfated or N-unsubstituted glucosamine units followed by reduction with NaB(3)H(4). The labeled products were characterized following complementary deamination steps. The proportion of GlcNH(2) units varied from 0.7-4% of total glucosamine in different HS preparations. The GlcNH(2) units occurred largely clustered at the polysaccharide-protein linkage region in intestinal HS, also more peripherally in aortic HS. They were preferentially located within N-acetylated domains, or in transition sequences between N-acetylated and N-sulfated domains, only 20-30% of the adjacent upstream and downstream disaccharide units being N-sulfated. The nearest downstream (toward the polysaccharide-protein linkage) hexuronic acid was invariably GlcUA, whereas the upstream neighbor could be either GlcUA or IdoUA. The highly sulfated but N-unsubstituted disaccharide unit, -IdoUA2S-GlcNH(2)6S-, was detected in human renal and porcine intestinal HS, but not in HS from human aorta. These results are interpreted in terms of a biosynthetic mechanism, whereby GlcNH(2) residues are formed through regulated, incomplete action of an N-deacetylase/N-sulfotransferase enzyme.  相似文献   

2.
The anti-angiogenic activity of endostatin (ES) depends on interactions with heparan sulfate (HS). In the present study, intact HS chains of >/=15 kDa bound quantitatively to ES whereas N-sulfated HS decasaccharides, with affinity for several fibroblast growth factor (FGF) species, failed to bind. Instead, ES-binding oligosaccharides composed of mixed N-sulfated and N-acetylated disaccharide units were isolated from pig intestinal HS. A 10/12mer ES-binding epitope was identified, with two N-sulfated regions separated by at least one N-acetylated glucosamine unit (SAS-domain). Cleavage at the N-acetylation site disrupted ES binding. These findings point to interaction between discontinuous sulfated domains in HS and arginine clusters at the ES surface. The inhibitory effect of ES on vascular endothelial growth factor-induced endothelial cell migration was blocked by the ES-binding SAS-domains and by heparin oligosaccharides (12mers) similar in length to the ES-binding SAS-domains, but not by 6mers capable of FGF binding. We propose that SAS-domains modulate the biological activities of ES and other protein ligands with extended HS-binding sites. The results provide a rational explanation for the preferential interaction of ES with certain HS proteoglycan species.  相似文献   

3.
Heparan sulfate (HS) interacts with a variety of proteins and thus mediates numerous complex biological processes. These interactions critically depend on the patterns of O-sulfate groups within the HS chains that determine binding sites for proteins. In particular the distribution of 6-O-sulfated glucosamine residues influences binding and activity of HS-dependent signaling molecules. The protein binding domains of HS show large structural variability, potentially because of differential expression patterns of HS biosynthetic enzymes along with differences in substrate specificity. To investigate whether different isoforms of HS glucosaminyl 6-O-sulfotransferase (6-OST) give rise to differently sulfated domains, we have introduced mouse 6-OST1, 6-OST2, and 6-OST3 in human embryonic kidney 293 cells and compared the effects of overexpression on HS structure. High expression of any one of the 6-OST enzymes resulted in appreciably increased 6-O-sulfation of N-sulfated as well as N-acetylated glucosamine units. The increased 6-O-sulfation was accompanied by a decrease in nonsulfated as well as in iduronic acid 2-O-sulfated disaccharide structures. Furthermore, overexpression led to an altered HS domain structure, the most striking effect was the formation of extended 6-O-sulfated predominantly N-acetylated HS domains. Although the effect was most noticeable in 6-OST3-expressing cells, these results were largely independent of the particular 6-OST isoform expressed and mainly influenced by the level of overexpression.  相似文献   

4.
We have analyzed the effect of sodium chlorate treatment of Madin-Darby canine kidney cells on the structure of heparan sulfate (HS), to assess how the various sulfation reactions during HS biosynthesis are affected by decreased availability of the sulfate donor 3'-phosphoadenosine 5'-phosphosulfate. Metabolically [(3)H]glucosamine-labeled HS was isolated from chlorate-treated and untreated Madin-Darby canine kidney cells and subjected to low pH nitrous acid cleavage. Saccharides representing (i) the N-sulfated domains, (ii) the domains of alternating N-acetylated and N-sulfated disaccharide units, and (iii) the N-acetylated domains were recovered and subjected to compositional disaccharide analysis. Upon treatment with 50 mM chlorate, overall O-sulfation of HS was inhibited by approximately 70%, whereas N-sulfation remained essentially unchanged. Low chlorate concentrations (5 or 20 mM) selectively reduced the 6-O-sulfation of HS, whereas treatment with 50 mM chlorate reduced both 2-O- and 6-O-sulfation. Analysis of saccharides representing the different domain types indicated that 6-O-sulfation was preferentially inhibited in the alternating domains. These data suggest that reduced 3'-phosphoadenosine 5'-phosphosulfate availability has distinct effects on the N- and O-sulfation of HS and that O-sulfation is affected in a domain-specific fashion.  相似文献   

5.
J A Cifonelli  J A King 《Biochemistry》1977,16(10):2137-2141
Structural properties of heparan sulfate preparations from hog mucosa and beef lung sources were obtained by application of Smith degradation and nitrous acid reactions. Products formed by these reactions indicated that most of the iduronic acid present in these mucopolysaccharides is ester sulfated, whereas N-sulfated glucosamine residues are ester sulfated much less frequently. Repeating units with sulfated iduronic acid found to occur almost entirely in single sequences. Futhermore, the iduronic acid moieties may be bound to either N-acetylated or N-sulfated glucosamine units, with these occuring at either end of the uronic acid unit.  相似文献   

6.
The sulfated glycosaminoglycan heparan sulfate (HS) is found ubiquitously on cell surfaces, in the extracellular matrix, and intracellularly as HS proteoglycans. Because of the structural heterogeneity of HS, tissue-derived HS preparations represent a mixture of HS chains originating from different cell types and tissue loci. Monoclonal anti-HS antibodies have been employed to detect the localization of specific HS epitopes in tissues, but limited information has been available on the saccharide structures recognized by the antibodies. We have studied the saccharide epitope structures of four anti-HS antibodies, HepSS1, JM13, JM403, and 10E4, which all recognize distinct HS species as demonstrated by different patterns of immunoreactivity upon staining of embryonic rat and adult human tissues. The epitopes recognized by JM13 and HepSS1 were found almost exclusively in basement membrane HS, whereas JM403 and 10E4 reacted also with cell-associated HS species. The binding of HepSS1, JM403, and 10E4 to HS was dependent on the GlcN N-substitution of the polysaccharide rather than O-sulfation. HepSS1 thus interacted with N-sulfated HS domains, JM403 binding was critically dependent on N-unsubstituted GlcN residues, and 10E4 bound to "mixed" HS domains containing both N-acetylated and N-sulfated disaccharide units. By contrast, JM13 binding seemed to require the presence of 2-O-sulfated glucuronic acid residues.  相似文献   

7.
Cell surface-associated heparan sulfate proteoglycans, predominantly perlecan, are involved in the process of binding and endocytosis of thrombospondin-1 (TSP-1) by vascular endothelial cells. To investigate the structural properties of heparan sulfate (HS) side chains that mediate this interaction, the proteoglycans were isolated from porcine endothelial cells and HS chains obtained thereof by beta-elimination. To characterize the structural composition of the HS chains and to identify the TSP-1-binding sequences, HS was disintegrated by specific chemical and enzymatic treatments. Cell layer-derived HS chains revealed the typical structural heterogeneity with domains of non-contiguously arranged highly sulfated disaccharides separated by extended sequences containing predominantly N-acetylated sequences of low sulfation. Affinity chromatography on immobilized TSP-1 demonstrated that nearly all intact HS chains possessed binding affinity, whereas after heparinase III treatment only a small proportion of oligosaccharides were bound with similar affinity to the column. Size fractioning of the bound and unbound oligosaccharides revealed that only a specific portion of deca- to tetradecasaccharides possessed TSP-1-binding affinity. The binding fraction contained over 40% di- and trisulfated disaccharide units and was enriched in the content of the trisulfated 2-O-sulfated L-iduronic acid-N-sulfated-6-O-sulfated glucosamine disaccharide unit. Comparison with the disaccharide composition of the intact HS chains and competition experiments with modified heparin species indicated the specific importance of N- and 6-O-sulfated glucosamine residues for binding. Further depolymerization of the binding oligosaccharides revealed that the glucosamine residues within the TSP-1-binding sequences are not continuously N-sulfated. The present findings implicate specific structural properties for the HS domain involved in TSP-1 binding and indicate that they are distinct from the binding sequence described for basic fibroblast growth factor, another HS ligand and a potential antagonist of TSP-1.  相似文献   

8.
A high molecular weight chondroitin sulfate proteoglycan (Mr 240,000) is released from platelet surface during aggregation induced by several pharmacological agents. Some details on the structure of this compound are reported. beta-Elimination with alkali and borohydride produces chondroitin sulfate chains with a molecular weight of 40,000. The combined results indicate a proteoglycan molecule containing 5-6 chondroitin sulfate chains and a protein core rich in serine and glycine residues. Degradation with chondroitinase AC shows that a 4-sulfated disaccharide is the only disaccharide released from this chondroitin sulfate, characterizing it as a chondroitin 4-sulfate homopolymer. It is shown that this proteoglycan inhibits the aggregation of platelets induced by ADP. Analysis of the sulfated glycosaminoglycans not released during aggregation revealed the presence of a heparan sulfate in the platelets. Degradation by heparitinases I and II yielded the four disaccharide units of heparan sulfates: N,O-disulfated disaccharide, N-sulfated disaccharide, N-acetylated 6-sulfated disaccharide, and N-acetylated disaccharide. The possible role of the sulfated glycosaminoglycans on cell-cell interaction is discussed in view of the present findings.  相似文献   

9.
Heparan sulfate (HS) proteoglycans play critical roles in a wide variety of biological processes such as growth factor signaling, cell adhesion, wound healing, and tumor metastasis. Functionally important interactions between HS and a variety of proteins depend on specific structural features within the HS chains. The fruit fly (Drosophila melanogaster) is frequently applied as a model organism to study HS function in development. Previous structural studies of Drosophila HS have been restricted to disaccharide composition, without regard to the arrangement of saccharide domains typically found in vertebrate HS. Here, we biochemically characterized Drosophila HS by selective depolymerization with nitrous acid. Analysis of the generated saccharide products revealed a novel HS design, involving a peripheral, extended, presumably single, N-sulfated domain linked to an N-acetylated sequence contiguous with the linkage to core protein. The N-sulfated domain may be envisaged as a heparin structure of unusually low O-sulfate content.  相似文献   

10.
The structural properties of fibroblast heparan sulfate (HS) that are necessary for it to bind strongly to basic fibroblast growth factor (bFGF) have been investigated using bFGF affinity chromatography. Specific enzymic and chemical scission of HS, together with chemical N-desulfation, revealed that N-sulfate groups and iduronate-2-sulfates (IdoA(2-OSO3)) were essential for the interaction. bFGF-affinity chromatography of sulfated oligosaccharides released from HS by treatment with heparitinase led to the identification of an oligosaccharide component (oligo-H), seven disaccharides in length, with a similar affinity for bFGF as the parent molecule. Heparinase treatment of this fraction abolished the high affinity binding to bFGF. Analysis of oligo-H indicated that 74% of the disaccharide units had the structure IdoA(2-OSO3)alpha 1,4GlcNSO3; the remainder comprised N-acetylated and N-sulfated units, the majority of which were devoid of O-sulfate groups. Oligo-H was fully degraded to disaccharides by treatment with nitrous acid. These results indicate that the sequence of oligo-H is as shown below. delta GlcA beta 1,4GlcNSO3 alpha 1,4[IdoA(2-OSO3)alpha 1,4GlcNSO3]5 alpha 1, 4IdoA alpha 1,4GlcNAc Sulfated oligosaccharides of similar size but with a lower affinity for bFGF had a reduced concentration of IdoA(2-OSO3) but significant quantities of GlcNSO3(6-OSO3) and GlcNAc(6-OSO3). The data indicate a primary role for contiguous sequences of IdoA(2-OSO3)alpha 1,4GlcNSO3 in mediating the high affinity binding between fibroblast HS and bFGF.  相似文献   

11.
The heparan sulfate (HS) chains of heparan sulfate proteoglycans (HSPG) are “ubiquitous” components of the cell surface and the extracellular matrix (EC) and play important roles in the physiopathology of developmental and homeostatic processes. Most biological properties of HS are mediated by interactions with “heparin-binding proteins” and can be modulated by exogenous heparin species (unmodified heparin, low molecular weight heparins, shorter heparin oligosaccharides and various non-anticoagulant derivatives of different sizes). Heparin species can promote or inhibit HS activities to different extents depending, among other factors, on how closely their structure mimics the biologically active HS sequences. Heparin shares structural similarities with HS, but is richer in “fully sulfated” sequences (S domains) that are usually the strongest binders to heparin/HS-binding proteins. On the other hand, HS is usually richer in less sulfated, N-acetylated sequences (NA domains). Some of the functions of HS chains, such as that of activating proteins by favoring their dimerization, often require short S sequences separated by rather long NA sequences. The biological activities of these species cannot be simulated by heparin, unless this polysaccharide is appropriately chemically/enzymatically modified or biotechnologically engineered. This mini review covers some information and concepts concerning the interactions of HS chains with heparin-binding proteins and some of the approaches for modulating HS interactions relevant to inflammation and cancer. This is approached through a few illustrative examples, including the interaction of HS and heparin-derived species with the chemokine IL-8, the growth factors FGF1 and FGF2, and the modulation of the activity of the enzyme heparanase by these species. Progresses in sequencing HS chains and reproducing them either by chemical synthesis or semi-synthesis, and in the elucidation of the 3D structure of oligosaccharide–protein complexes, are paving the way for rational approaches to the development of HS-inspired drugs in the field of inflammation and cancer, as well in other therapeutic fields.  相似文献   

12.
A new assay was developed to measure the N-deacetylase activity of the glucosaminyl N-deacetylase/N-sulfotransferases (NDSTs), which are key enzymes in sulfation of heparan sulfate (HS)/heparin. The assay is based on the recognition of NDST-generated N-unsubstituted glucosamine units in Escherichia coli K5 capsular polysaccharide or in HSs by monoclonal antibody JM-403. Substrate specificity and potential product inhibition of the NDST isoforms 1 and 2 were analyzed by comparing lysates of human 293 kidney cells stably transfected with mouse NDST-1 or -2. We found HSs to be excellent substrates for both NDST enzymes. Both NDST-1 and -2 N-deacetylate heparan sulfate from human aorta ( approximately 0.6 sulfate groups/disaccharide) with comparable high efficiency, apparent Km values of 0.35 and 0.76 microM (calculation based on [HexA]) being lower (representing a higher affinity) than those for K5 polysaccharide (13.3 and 4.7 microM, respectively). Comparison of various HS preparations and the unsulfated K5 polysaccharide as substrates indicate that both NDST-1 and -2 can differentially N-sulfate polysaccharides already modified to some extent by various other enzymes involved in HS/heparin synthesis. Both enzymes were equally inhibited by N-sulfated sequences (>or=6 sugar residues) present in N-sulfated K5, N-deacetylated N-resulfated HS, and heparin. Our primary findings were confirmed in the conventional N-deacetylase assay measuring the release of 3H-acetate of radiolabeled K5 or HS as substrates. We furthermore showed that NDST N-deacetylase activity in crude cell/tissue lysates can be partially blocked by endogenous HS/heparin. We speculate that in HS biosynthesis, some NDST variants initiate HS modification/sulfation reactions, whereas other (or the same) NDST isoforms later on fill in or extend already modified HS sequences.  相似文献   

13.
Chai W  Leteux C  Westling C  Lindahl U  Feizi T 《Biochemistry》2004,43(26):8590-8599
Heparin lyases are valuable tools for generating oligosaccharide fragments and in sequence determination of heparan sulfate (HS). Heparin lyase III is known to cleave the linkages between N-acetylglucosamine (GlcNAc) or N-sulfated glucosamine (GlcNS) and glucuronic acid (GlcA) as the primary sites and the linkages between GlcNAc, GlcNAc(6S), or GlcNS and iduronic acid as secondary sites. N-Unsubstituted glucosamine (GlcN) occurs as a minor component in HS, and it has been associated with various bioactivities. Here we investigate the specificity of heparin lyase III toward the GlcN-GlcA linkage using a recombinant enzyme of high purity and as substrates the partially de-N-acetylated polysaccharide of Escherichia coli K5 strain and derived hexasaccharides. The specificity of lyase III toward the GlcN-GlcA linkage is deduced by sequencing of the oligosaccharide products using electrospray mass spectrometry with collision-induced dissociation and MS/MS scanning. The results demonstrate that under controlled conditions for partial digestion, lyase III does not act at the GlcN-GlcA linkage, whereas GlcNAc-GlcA is cleaved. Even under forced conditions for exhaustive digestion, the GlcN-GlcA linkage is only partly cleaved. It is this property of lyase III that has enabled the isolation of a unique, nonsulfated antigenic determinant DeltaUA-GlcN-UA-GlcNAc from HS and from partially de-N-acetylated K5 polysaccharide. It was unexpected that pentasaccharide fragments were also detected among the digestion products of the K5 polysaccharide used. It is possible that these are products of an additional glycosidase activity of lyase III, although other mechanisms cannot be completely ruled out.  相似文献   

14.
Cell-associated heparan sulfate (HS) is endowed with the remarkable ability to bind numerous proteins. As such, it represents a unique system that integrates signaling from circulating ligands with cellular receptors. This polysaccharide is extraordinary complex, and examples that define the structure-function relationship of HS are limited. In particular, it remains difficult to understand the structures by which HS interact with proteins. Among them, interferon-gamma (IFNgamma), a dimeric cytokine, binds to a complex oligosaccharide motif encompassing a N-acetylated glucosamine-rich domain and two highly sulfated sequences, each of which binds to one IFNgamma monomer. Based on this template, we have synthesized a set of glycoconjugate mimetics and evaluated their ability to interact with IFNgamma. One of these molecules, composed of two authentic N-sulfated octasaccharides linked to each other through a 50-Angstroms-long spacer termed 2O(10), displays high affinity for the cytokine and inhibits IFNgamma-HS binding with an IC(50) of 35-40 nm. Interestingly, this molecule also inhibits the binding of IFNgamma to its cellular receptor. Thus, in addition to its ability to delocalize the cytokine from cell surface-associated HS, this compound has direct anti-IFNgamma activity. Altogether, our results represent the first synthetic HS-like molecule that targets a cytokine, strongly validating the HS structural determinants for IFNgamma recognition, providing a new strategy to inhibit IFNgamma in a number of diseases in which the cytokine has been identified as a target, and reinforcing the view that it is possible to create"tailor-made"sequences based on the HS template to isolate therapeutic activities.  相似文献   

15.
We have already determined the primary structure of the endogenous inhibitor for calcium-dependent protease (CANP inhibitor, calpastatin) from the cDNA sequence and revealed that the CANP inhibitor contains four internally repeating units which could be responsible for its multiple reactive sites (Emori, Y., Kawasaki, H., Imajoh, S., Imahori, K., and Suzuki, K. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 3590-3594). Restriction fragments of the cDNA corresponding to each of the four domains (encoding 104-156 amino acid residues of the total 718 residues) were subcloned into the multicloning site of pUC9 or pUC18 in a direction and frame matched to the lacZ' open reading frame of the vector. Under the lac operator-promoter system, we succeeded in producing truncated fragments of the CANP inhibitor in Escherichia coli. The CANP inhibitor fragments were partially purified, and the inhibitory activities toward calcium-dependent protease (CANP) were examined. All fragments containing well conserved regions of about 30 amino acid residues (domains I-IV) located in the middle of the four units exhibited the inhibitory activity. However, their inhibitory activities varied considerably. Further truncation experiments revealed that small fragments containing 30-70 amino acid residues of the CANP inhibitor still retained inhibitory activity. From these experimental results the following conclusions can be drawn: 1) each of the four repeating units of the CANP inhibitor (about 140 amino acid residues) is a real functional unit and can inhibit CANP activity independently; and 2) domains corresponding to well conserved sequences of about 30 amino acid residues containing a consensus Thr-Ile-Pro-Pro-X-Tyr-Arg sequence are essential for the inhibitory activity, and the bordering regions are important for its modulation.  相似文献   

16.
Many of the biological functions attributed to cell surface heparan sulfate (HS) proteoglycans, including the Syndecan family, are elicited through the interaction of their HS chains with soluble extracellular molecules. Tightly controlled, cell-specific sulfation and epimerization of HS precursors endows these chains with highly sulfated, iduronate-rich regions, which are major determinants of cytokine and matrix-protein binding and which are interspersed by N-acetylated, poorly sulfated regions. Until this study, there have been no comprehensive structural comparisons made on HS chains decorating simultaneously expressed, but different, syndecan core proteins. In this paper we demonstrate that the HS chains on affinity-purified syndecan-1 and -4 from murine mammary gland cells are essentially identical by a number of parameters. Size determination, disaccharide analyses, enzymatic and chemical scission methods, and affinity co-electrophoresis all failed to reveal any significant differences in fine structure, domain organization, or ligand-binding properties of these HS species. These findings lead us to suggest that the imposition of the fine structure onto HS occurs independently of the core protein to which it is attached and that these core proteins, in addition to the HS chains, may play a pivotal role in the various biological functions ascribed to these macromolecules.  相似文献   

17.
Heparan sulfate (HS) serves as a cell-surface co-receptor for growth factors, morphogens, and chemokines. These HS and protein binding events depend on the fine structure and distribution of domains along an HS chain. A given domain can vary in terms of uronic acid epimer, N- and O-sulfate, and N-acetate content. The most highly sulfated regions of HS chains, N-sulfated (NS) domains, play prominent roles in HS and protein binding. We have analyzed HS oligosaccharides from various mammalian sources and provide evidence that NS domains residing at the nonreducing end (NRE) are, on average, longer than those residing in the internal regions of the chain. Additionally, they are more highly sulfated than their internal counterparts. These features are independent of the sulfation pattern of the bulk HS chains. From disaccharide analysis, it is clear that NS domains do not always occupy HS NREs. However, when they do, they tend to terminate in a subset of N-sulfated disaccharides. Our observations are consistent with a significant role of NRE NS domains in HS-growth factor interactions.  相似文献   

18.
Heparan sulfate species expressed by different cell and tissue types differ in their structural and functional properties. Limited information is available on differences in regulation of heparan sulfate biosynthesis within a single tissue or cell population under different conditions. We have approached this question by studying the effect of cell differentiation on the biosynthesis and function of heparan sulfate in human colon carcinoma cells (CaCo-2). These cells undergo spontaneous differentiation in culture when grown on semipermeable supports; the differentiated cells show phenotypic similarity to small intestine enterocytes. Metabolically labeled heparan sulfate was isolated from the apical and basolateral media from cultures of differentiated and undifferentiated cells. Compositional analysis of disaccharides, derived from the contiguous N-sulfated regions of heparan sulfate, indicated a greater proportion of 2-O- sulfated iduronic acid units and a smaller amount of 6-O-sulfated glucosamine units in differentiated than in undifferentiated cells. By contrast, the overall degree of sulfation, the chain length and the size distribution of the N-acetylated regions were similar regardless the differentiation status of the cells. The structural changes were found to affect the binding of heparan sulfate to the long isoform of platelet-derived growth factor A chain but not to fibroblast growth factor 2. These findings show that heparan sulfate structures change during cell differentiation and that heparan sulfate-growth factor interactions may be affected by such changes.   相似文献   

19.
Heparan sulfate (HS) proteoglycans influence embryonic development as well as adult physiology through interactions with various proteins, including growth factors/morphogens and their receptors. The interactions depend on HS structure, which is largely determined during biosynthesis by Golgi enzymes. A key step is the initial generation of N-sulfated domains, primary sites for further polymer modification and ultimately for functional interactions with protein ligands. Such domains, generated through action of a bifunctional GlcNAc N-deacetylase/N-sulfotransferase (NDST) on a [GlcUA-GlcNAc](n) substrate, are of variable size due to regulatory mechanisms that remain poorly understood. We have studied the action of recombinant NDSTs on the [GlcUA-GlcNAc](n) precursor in the presence and absence of the sulfate donor, 3'-phosphoadenosine 5'-phosphosulfate (PAPS). In the absence of PAPS, NDST catalyzes limited and seemingly random N-deacetylation of GlcNAc residues. By contrast, access to PAPS shifts the NDST toward generation of extended N-sulfated domains that are formed through coupled N-deacetylation/N-sulfation in an apparent processive mode. Variations in N-substitution pattern could be obtained by varying PAPS concentration or by experimentally segregating the N-deacetylation and N-sulfation steps. We speculate that similar mechanisms may apply also to the regulation of HS biosynthesis in the living cell.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号