共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Secreted Wnt proteins have numerous signaling functions during development, mediated by Frizzled molecules that act as Wnt receptors on the cell surface. In the genome of Drosophila, seven Wnt genes (including wingless; wg), and five frizzled genes have been identified. Relatively little is known about signaling and binding specificities of different Wnt and Frizzled proteins. We have developed an assay to determine the strength of binding between membrane-tethered Wnts and ligand binding domains of the Frizzled receptors. We found a wide spectrum of binding affinities, reflecting known genetic interactions. Most Wnt proteins can bind to multiple Frizzleds and vice versa, suggesting redundancy in vivo. In an extension of these experiments, we tested whether two different subdomains of the Wg protein would by themselves bind to Frizzled and generate a biological response. Whereas these two separate domains are secreted from cells, suggesting that they form independently folded parts of the protein, they were only able to evoke a response when co-transfected, indicating that both are required for function. In addition to the Frizzleds, members of the LRP family (represented by the arrow gene in Drosophila) are also necessary for Wnt signal transduction and have been postulated to act as co-receptors. We have therefore examined whether a soluble form of the Arrow molecule can bind to Wingless and Frizzled, but no interactions were detected. 相似文献
6.
TIR, CARD and PYRIN: three domains for an antimicrobial triad 总被引:1,自引:0,他引:1
Innate immunity to microorganisms in mammals has gained a substantial interest during the last decade. The discovery of the Toll-like receptor (TLR) family has allowed the identification of a class of membrane-spanning receptors dedicated to microbial sensing. TLRs transduce downstream signaling via their intracellular Toll-interleukin-1 receptor (TIR) domain. More recently, the role of intracellular microbial sensors has been uncovered. These molecules include the Nod-like receptors Nod1, Nod2, Ipaf and Nalps, together with the helicase domain-containing antiviral proteins RIG-I and Mda-5. The intracellular microbial sensors lack the TIR domain, but instead transduce downstream signals via two domains also implicated in homophilic protein-protein interactions, the caspase activation and recruitment domain (CARD) and PYRIN domains. In light with these recent findings, we propose that TIR, CARD and PYRIN domains represent the three arms of innate immune detection of microorganisms in mammals. 相似文献
7.
The SH3 domain is a versatile protein interaction motif that generally recognizes proline rich sequences (PRS). Recently, it has been shown that some SH3 domains in the endocytotic pathway can bind to ubiquitin. Moreover, Phe73 in the SH3 domain has been proposed to be an important determinant of the interaction, as the SH3 domains having Tyr73, either naturally or by mutation, failed to bind. Since SH3 domains are also important in immune receptor signaling, we investigated the interactions between immunologically relevant SH3 domains and ubiquitin. We observed that some of these SH3 domains can also bind to ubiquitin. Interestingly, we found that Nck2-SH3-3 bound to ubiquitin despite its Tyr at residue 73 (Tyr56 in our actual construct), but that CD2BP1-SH3 failed to bind, even though it has Phe at an equivalent position. Through detailed NMR binding studies on SH3 domains with Phes and Tyrs at the 73 position, we found that the two types of SH3 domains exhibit mechanistic differences in ubiquitin binding. We showed that the relative contribution of each binding sub-region in both SH3 domains and ubiquitin is quite different in the two binding modes. Such results raise the possibility that the mechanistic variety of these immunologically relevant SH3 domains might contribute to their functional diversity. 相似文献
8.
Park HH 《Apoptosis : an international journal on programmed cell death》2011,16(3):209-220
The death domain (DD), which is a versatle protein interaction module, is the prime mediator of the interactions necessary
for apoptosis, innate immunity and the necrosis signaling pathway. Because DD mediated signaling events are associated with
critical human diseases, studies in these areas are of great biological importance. Accordingly, many biochemical and structural
studies of DD have been conducted in the past decade to investigate apoptotic and innate immune signaling. Evaluation of the
molecular structure of DD and their interactions with partners have shown the underlying molecular basis for the assembly
of DD mediated complexes and for the regulation of apoptosis and innate immunity. This review summarizes the structure and
function of various DDs and DD:DD complexes involved in those signaling pathways. 相似文献
9.
Juncong Xie Bolong Liu Jialiang Chen Yuancheng Xu Hailun Zhan Fei Yang Wenbiao Li Xiangfu Zhou 《Biochemical and biophysical research communications》2018,495(1):546-552
Interstitial cystitis (IC) is a bladder syndrome characterized by pelvic pain and urinary frequency without infection or other identifiable pathology. There are no effective treatments to cure IC. This study investigated the effects of human umbilical cord-derived mesenchymal stem cells (UC-MSCs) injection on IC rat model. Furthermore, we used a coculture system to find the possible molecular mechanism on the human uroepithelial cells (SV-HUC-1), which was the cell model of IC. A rat model of IC was established via systemic injection with cyclophosphamide (CYP) and a cell model of IC was induced by being exposed to tumor necrosis factor (TNF)-α (10 ng/ml). After one week, UC-MSCs injection significantly ameliorated the bladder voiding function in IC rat model. And the Histo- and immunohistochemical analyses showed that UC-MSCs can repair impaired bladder, reduce mast cell infiltration and inhibit apoptosis of urothelium. ELISA results showed that UC-MSCs can decrease IL-1β, IL-6 and TNF-α in bladder. In the coculture system, UC-MSCs can promote proliferation of impaired SV-HUC-1 cells, and inhibit apoptosis. However, while knocked down EGF secreted by UC-MSCs with siRNA, the effects would be weaken. Western blot showed that UC-MSCs increase protein expression levels of p-AKT and p-mTOR in SV-HUC-1 cells, and decrease the levels of cleaved caspase-3. Taken together, we provide evidence that UC-MSCs therapy can successfully alleviate IC in a preclinical animal Model and cell model by alleviating inflammation, promoting proliferation and inhibiting apoptosis. In addition, we demonstrate that the AKT/mTOR signaling pathway was activated. 相似文献
10.
Sayers TJ 《Cancer immunology, immunotherapy : CII》2011,60(8):1173-1180
The extrinsic apoptosis pathway is triggered by the binding of death ligands of the tumor necrosis factor (TNF) family to
their appropriate death receptors (DRs) on the cell surface. One TNF family member, TNF-related apoptosis-inducing ligand
(TRAIL or Apo2L), seems to preferentially cause apoptosis of transformed cells and can be systemically administered in the
absence of severe toxicity. Therefore, there has been enthusiasm for the use of TRAIL or agonist antibodies to the TRAIL DR4
and DR5 in cancer therapy. Nonetheless, many cancer cells are very resistant to TRAIL apoptosis in vitro. Therefore, there
is much interest in identifying compounds that can be combined with TRAIL to amplify its apoptotic effects. In this review,
I will provide a brief overview of apoptosis signaling by TRAIL and discuss apoptosis-sensitizing agents, focusing mainly
on the proteasome inhibitor bortezomib (VELCADE) and some novel sensitizers that we have recently identified. Alternative
ways to administer TRAIL or DR agonist antibodies as therapeutic agents will also be described. Finally, I will discuss some
of the gaps in our understanding of TRAIL apoptosis signaling and suggest some research directions that may provide additional
information for optimizing the targeting of the extrinsic apoptosis pathway for future cancer therapy. 相似文献
11.
Role of the mitochondrial signaling pathway in murine coronavirus-induced oligodendrocyte apoptosis 下载免费PDF全文
A previous study demonstrated that infection of rat oligodendrocytes by mouse hepatitis virus (MHV) resulted in apoptosis, which is caspase dependent (Y. Liu, Y. Cai, and X. Zhang, J. Virol. 77:11952-11963, 2003). Here we determined the involvement of the mitochondrial pathway in MHV-induced oligodendrocyte apoptosis. We found that caspase-9 activity was 12-fold higher in virus-infected cells than in mock-infected cells at 24 h postinfection (p.i.). Pretreatment of cells with a caspase-9 inhibitor completely blocked caspase-9 activation and partially inhibited the apoptosis mediated by MHV infection. Analyses of cytochrome c release further revealed an activation of the mitochondrial apoptotic pathway. Stable overexpression of the two antiapoptotic proteins Bcl-2 and Bcl-xL significantly, though only partially, blocked apoptosis, suggesting that activation of the mitochondrial pathway is partially responsible for the apoptosis. To identify upstream signals, we determined caspase-8 activity, cleavage of Bid, and expression of Bax and Bad by Western blotting. We found a drastic increase in caspase-8 activity and cleavage of Bid at 24 h p.i. in virus-infected cells, suggesting that Bid may serve as a messenger to relay the signals from caspase-8 to mitochondria. However, treatment with a caspase-8 inhibitor only slightly blocked cytochrome c release from the mitochondria. Furthermore, we found that Bax but not Bad was significantly increased at 12 h p.i. in cells infected with both live and UV-inactivated viruses and that Bax activation was partially blocked by treatment with the caspase-8 inhibitor. These results thus establish the involvement of the mitochondrial pathway in MHV-induced oligodendrocyte apoptosis. 相似文献
12.
细胞凋亡作为一种生命体的主要细胞死亡方式,在清除多余或受感染细胞中发挥重要作用.尽管在组织或胚胎正常发育过程中,细胞凋亡诱导免痉反应比较温和,但在病毒感染或者对死亡受体(death receptor.DR)进行刺激时凋亡可以触发强烈的天然和获得性免疫反应.凋亡信号途径中的分子与免疫系统有着复杂的相互作用.本文综述了有关凋亡性死亡在诱导炎症,维持免疫系统动态平衡,促进免疫应答以及凋亡信号途径和免疫系统抗病毒机制相互关系等方面的研究成果,分析细胞凋亡所诱发免疫效应的机制. 相似文献
13.
V. G. Tyazhelova 《Biology Bulletin》2007,34(2):99-109
The data of recent years on apoptosis were revisited to demonstrate that the functioning of signaling proteins during apoptosis depends on their localization on mitochondria or in the cytosol. The major effect of signaling proteins depends on the number of pro-and antiapoptotic domains in their structure, which is observed after cleavage, oligomerization, and complexing with other proteins. The structure of known signaling proteins was analyzed. The effect of complexing with phosphatases and 14-3-3 proteins was demonstrated by the example of Bad protein. Detailed data on the proapoptotic factors and their inhibitors affecting caspase activation and released from mitochondria with cytochrome c are given. 相似文献
14.
16.
Idaira Hueso-Falcón Natalia Girón Pilar Velasco Juan M. Amaro-Luis Angel G. Ravelo Beatriz de las Heras Sonsoles Hortelano Ana Estevez-Braun 《Bioorganic & medicinal chemistry》2010,18(4):1724-1735
Thirty one ent-kaurane derivatives were prepared from kaurenoic acid (1), grandiflorenic acid (16), 15α-acetoxy-kaurenoic acid (26) and 16α-hydroxy-kaurenoic acid (31). They were tested for their ability to inhibit cell viability in the mouse leukemic macrophagic RAW 264.7 cell line. The most effective compounds were 12, 20, 21, and 23. These were selected for further evaluation in other human cancer cell lines such as Hela, HepG2, and HT-29. Similar effects were obtained although RAW 264.7 cells were more sensitive. In addition, these compounds were significantly less cytotoxic in non-transformed cells. The apoptotic potential of the most active compounds was investigated and they were able to induce apoptosis with compound 12 being the best inducer. The caspase-3, -8 and -9 activities were measured. The results obtained showed that compounds 12, 21, and 23 induce apoptosis via the activation of caspase-8, whereas compound 20 induces apoptosis via caspase-9. Immunoblot analysis of the expression of p53, Bax, Bcl-2, Bcl-xl, and IAPs in RAW 264.7 cells was also carried out. When cells were exposed to 5 μM of the different compounds, expression levels of p53 and Bax increased whereas levels of antiapoptotic proteins such as Bc1-2, Bc1-x1, and IAPs decreased. In conclusion, kaurane derivatives (12, 20, 21, and 23) induce apoptosis via both the mitochondrial and membrane death receptor pathways, involving the Bcl-2 family proteins. Taken together these results provide a role of kaurane derivatives as apoptotic inducers in tumor cells. 相似文献
17.
18.
Luteolin is an antioxidative, antitumor and anti-inflammatory flavone. It has been shown to reduce endothelial dysfunction, but the mechanism is not clear. We set out to explore the effects of luteolin on apoptosis and its mechanism of action in endothelial cells. The effect of luteolin on pyrogallol-induced superoxide stress and the subsequent apoptosis was studied in the mouse heart capillary endothelial cell line H5V and human umbilical vein endothelial cells, by the use of flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide, Hoechst staining, and western blot. Pyrogallol (0-400 μm) dose-dependently induced reactive oxygen species production, cytotoxicity, an annexin V-fluorescein isothiocyanate increase, mitochondrial transmembrane depolarization and DNA condensation in both H5V and human umbilical vein endothelial cells; these actions were reversed by luteolin (0.78-50 μm) in a concentration-dependent manner. Luteolin suppressed the poly (ADP-ribose) polymerase activation, caspase-8 cleavage and p38 mitogen-activated protein kinase activation triggered by pyrogallol, and stimulated the extracellular signal-regulated kinase signaling pathway to counteract the pyrogallol-induced apoptotic signals. Luteolin is an effective agent for the protection of endothelial cells from superoxide stress-induced apoptosis via the extracellular signal-regulated kinase signaling pathway. 相似文献
19.
Xiao Zhu Yi Jiang Peng-Fei Shan Jie Shen Qiu-Hua Liang Rong-Rong Cui Yuan Liu Guan-Ying Liu Shan-Shan Wu Qiong Lu Hui Xie You-Shuo Liu Ling-Qing Yuan Er-Yuan Liao 《Amino acids》2013,44(3):961-968
It has been hypothesized that adipocytokines originating from adipose tissue may have an important role in bone metabolism. Vaspin is a novel adipocytokine isolated from visceral white adipose tissue, which has been reported to have anti-apoptotic effects in vascular endothelial cells. However, to the best of our knowledge there is no information regarding the effects of vaspin on osteoblast apoptosis. This study therefore examined the possible effects of vaspin on apoptosis in human osteoblasts (hOBs). Our study established that vaspin inhibits hOBs apoptosis induced by serum deprivation, as determined by ELISA and TUNEL assays. Western blot analysis revealed that vaspin upregulates the expression of Bcl-2 and downregulates that of Bax in a dose-dependent manner. Vaspin stimulated the phosphorylation of ERK, and pretreatment of hOBs with the ERK inhibitor PD98059 blocked the vaspin-induced activation of ERK, however, vaspin did not stimulate the phosphorylation of p38, JNK or Akt. Vaspin protects hOBs from serum deprivation-induced apoptosis, which may be mediated by activating the MAPK/ERK signaling pathway. 相似文献
20.
Weber AN Moncrieffe MC Gangloff M Imler JL Gay NJ 《The Journal of biological chemistry》2005,280(24):22793-22799
In Drosophila, the signaling pathway mediated by the Toll receptor is critical for the establishment of embryonic dorso-ventral pattern and for innate immune responses to bacterial and fungal pathogens. Toll is activated by high affinity binding of the cytokine Sp?tzle, a dimeric ligand of the cystine knot family. In vertebrates, a related family of Toll-like receptors play a critical role in innate immune responses. Despite the importance of this family of receptors, little is known about the biochemical events that lead to receptor activation and signaling. Here, we show that Sp?tzle binds to the N-terminal region of Toll and, using biophysical methods, that the binding is complex. The two binding events that cause formation of the cross-linked complex are non-equivalent: the first Toll ectodomain binds Sp?tzle with an affinity 3-fold higher than the second molecule suggesting that pathway activation involves negative cooperativity. We further show that the Toll ectodomains are able to form low affinity dimers in solution and that juxtamembrane sequences of Toll are critical for the activation or derepression of the pathway. These results, taken together, suggest a mechanism of signal transduction that requires both ligand-receptor and receptor-receptor interactions. 相似文献