共查询到20条相似文献,搜索用时 0 毫秒
1.
Tumor cell can be significantly influenced by various chemical groups of the extracellular matrix proteins. However, the underlying molecular mechanisms involved in the interaction between cancer cells and functional groups in the extracellular matrix remain unknown. Using chemically modified surfaces with biological functional groups (CH 3, NH 2, OH), it was found that hydrophobic surfaces modified with CH 3 and NH 2 suppressed cell proliferation and induced the number of apoptotic cells. Mitochondrial dysfunction, cytochrome c release, Bax upregulation, cleaved caspase-3 and PARP, and Bcl-2 downregulation indicated that hydrophobic surfaces with CH 3 and NH 2 triggered the activation of intrinsic apoptotic signaling pathway. Cells on the CH 3- and NH 2-modified hydrophobic surfaces showed downregulated expression and activation of integrin β1, with a subsequent decrease of focal adhesion kinase (FAK) activity. The RhoA/ROCK/PTEN signaling was then activated to inhibit the phosphorylation of PI3K and AKT, which are essential for cell proliferation. However, pretreatment of MDA-MB-231 cells with SF1670, a PTEN inhibitor, abolished the hydrophobic surface-induced activation of the intrinsic pathway. Taken together, the present results indicate that CH 3- and NH 2-modified hydrophobic surfaces induce mitochondria-mediated apoptosis by suppressing the PTEN/PI3K/AKT pathway, but not OH surfaces. These findings are helpful to understand the interaction between extracellular matrix and cancer cells, which might provide new insights into the mechanism potential intervention strategies for tumor prognosis. 相似文献
2.
Oxymatrine extracted from Sophora flavescens Ait as a natural polyphenolic phytochemical has been demonstrated to exhibit anti-tumor effects on various cancers, including Gallbladder carcinoma (GBC). However, its underlying mechanisms of function are largely unknown in GBC cells. The present study is conducted to investigate the anti-tumor effects and the underlying mechanisms of oxymatrine on GBC cells in vitro and in vivo. The results showed that oxymatrine inhibited cell viability, metastatic ability and induced cell apoptosis in dose-dependent manners. Furthermore, we found that the expression of p-AKT, MMP-2, MMP-9 and the ratio of Bcl-2/Bax were significantly down-regulated, while the expression of PTEN was up-regulated in GBC cells. In addition, pretreatment with a specific PI3K/AKT activator (IGF-1) significantly antagonized the oxymatrine-mediated inhibition of GBC–SD cells. Subsequently, our in vivo studies showed that administration of oxymatrine induced a significant dose-dependent decrease in tumor growth. In conclusion, these findings indicated that the inhibition of cells proliferation, migration, invasion and the induction of apoptosis in response to oxymatrine in GBC cells, may function through the suppression of PTEN/PI3K/AKT pathway, which was considered as the vital signaling pathway in regulating tumorigenesis. These results suggested that oxymatrine might be a novel effective candidate as chemotherapeutic agent against GBC. 相似文献
3.
Objective: It has been proved that lactate-4.25% dialysate could result in peritoneal fibrosis by inducing alternative activation of macrophages in our previous study, but the mechanism of high glucose-induced alternative activation has not been elucidated. This study was, therefore, to investigate the mechanism by high glucose stimuli. Methods: In this study, Raw264.7 (murine macrophage cell line) cells were cultured and stimulated by 4.25% glucose medium, and mannitol medium was used as osmotic pressure control. Cells were harvested at 0?h, 4?h, 8?h, and 12?h to examine the expression of Arg-1, CD206, and p-Akt. After blocking PI3K by LY294002, the expression of Arg-1, CD206, and p-Akt was examined again. Results: The expression of Arg-1 and CD206 was increased in a time-dependent manner induced by high glucose medium. On the contrary, there was mainly no Agr-1 or CD206 expressed in cells cultured in the mannitol medium with the same osmotic pressure. What’s more, Akt was phosphorylated at the eighth hour stimulated by high glucose medium, and LY294002 inhibited the expression of Arg-1 and CD206 by blocking the phosphorylation of Akt. Conclusions: Our study indicated that high glucose rather than high osmotic pressure induced M2 phenotype via PI3K/Akt signaling pathway. 相似文献
4.
Signaling through the PI3K/Akt/FOXO pathway plays an important role in vertebrates in protecting cells from programmed cell death. PI3K and Akt have been similarly shown to be involved in survival signaling in the invertebrate model organism Drosophila. However, it is not known whether PI3K and Akt execute this function by controlling a pro-apoptotic activity of Drosophila FOXO. In this study, we show that elevated signaling through PI3K and Akt can prevent developmentally controlled death in the salivary glands of the fruit fly. We further show that Drosophila FOXO is not required for normal salivary gland death and that the rescue of salivary gland death by PI3K occurs independent of FOXO. These results give support to the notion that FOXOs have acquired pro-apoptotic functions after separation of the vertebrate and invertebrate lineages. 相似文献
6.
ABSTRACTA decrease in oxygen concentration is a hallmark of inflammatory reactions resulting from infection or homeostasis disorders. Mast cells interact with extracellular matrix and other cells by adhesion receptors. We investigated the effect of hypoxia on integrin-mediated mast cell adhesion to fibronectin. We found that it was mediated by the α5/β1 receptor and that hypoxia significantly upregulated this process. Hypoxia-mediated increases in mast cell adhesion occurred without increased surface expression of integrins, suggesting regulation by inside-out integrin signaling. Hypoxia also mediated an increase in phosphorylation of Akt, and PI3’kinase inhibitors abolished hypoxia-mediated mast cell adhesion. Hypoxia upregulates the function of integrin receptors by PI3’ kinase-dependent signaling. This process might be important for the location of mast cells at inflammatory sites 相似文献
7.
Two related sublines derived from murine ascites hepatoma cell lines Hca‐F25, which were selected for their markedly different metastatic potential to lymph nodes, were found to be distinct in their ganglioside patterns. The low metastatic cell line (HcaP) contained a major ganglioside GM3, whereas the high metastatic cell line (HcaF) contained a major ganglioside GM2. Suppression of GM3 by P4 enhanced the mobility and migration of the low metastatic HcaP cells in vitro. Increase in GM3 content in high metastatic HcaF cells by addition of exogenous GM3 inhibited the mobility and migration. These results suggested that the differences in lymphatic metastasis potential between these two cell lines could be attributed to the differences in their ganglioside compositions, and GM3 could suppress the motility and migration of these cells. Further, we investigated the mechanism by which GM3 suppressed the cell mobility and migration. The results showed that suppression of GM3 synthesis by P4 in low metastatic HcaP cells promoted PKB/Akt phosphorylation at Ser473 and Thr308, and phosphorylation of EGFR at the Tyr1173. In contrast, increase in GM3 content in high metastatic HcaF cells by addition of exogenous GM3 into the culture medium suppressed phosphorylation of PKB/Akt and EGFR at the same residues. Taken together, these results suggested that the mechanism of GM3‐suppressed cell motility and migration may involve the inhibition of phosphorylation of EGFR and the activity of PI3K/AKT signaling pathway. J. Cell. Biochem. 114: 1616–1624, 2013. © 2013 Wiley Periodicals, Inc. 相似文献
8.
Gastric carcinoma (GC) is a malignant tumor that has high mortality and morbidity worldwide. Although many efforts have been focused on the development and progression of GC, the underlying functional regulatory mechanism of GC needs more clarification. Metallothionein 1G (MT1G) is a member of the metallothionein family (MTs), and hypermethylation of MT1G occurred in a variety of cancers, including gastric cancer. However, the functional mechanism of MT1G in GC remains unclear. Here, we demonstrated that MT1G was down-regulated in GC tissues and cells. Overexpression of MT1G inhibited cell proliferation, foci formation and cell invasion, while knockdown of MT1G increased cell proliferation, foci formation and cell invasion. In addition, MT1G overexpression inhibited cell cycle progression and MT1G deficiency exerted opposite phenotype. p-AKT was negatively regulated by MT1G. In summary, our study reveals that MT1G exerts crucial role in regulating of cell proliferation and migration of gastric cancer, providing new insights for MT1G-related pathogenesis and a basis for developing new strategies for treatment of GC. Keywords: MT1G, GC, PI3K/AKT signaling pathway, cell growth, EMT 相似文献
9.
Cell proliferation and migration are crucial in many physiological processes including development, cancer, tissue repair, and wound healing. Cell migration is regulated by several signaling molecules. Identification of genes related to cell migration is required to understand molecular mechanism of non-healing chronic wounds which is a major concern in clinics. In the current study, the role of cytoglobin (CYGB) gene in f?broblast cell migration and proliferation was described. L929 mouse fibroblast cells were transduced with lentiviral particles for CYGB and GFP, and analyzed for cell proliferation and migration ability. Fibroblast cells overexpressing CYGB displayed decreased cell proliferation, colony formation capacity, and cell migration. Phosphorylation levels of mTOR and two downstream effectors S6 and 4E-BP1 which take part in PI3K/AKT/mTOR signaling declined in CYGB-overexpressing cells. Microarray analysis indicated that CYGB overexpression leads to downregulation of cell proliferation, migration, and tumor growth associated genes in L929 cell line. This study demonstrated the role of CYGB in fibroblast cell motility and proliferation. CYGB could be a promising candidate for further studies as a potential target for diseases related to cell migration such as cancer and chronic wound treatment. 相似文献
10.
The present study was initiated to examine the anticancer effects of Anhuienoside C (AC) against ovarian cancer and postulates the possible molecular mechanism of its action. 3-[4,5-Dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay was implemented for determination of the effects of AC on cell viability of the ovarian cancer OVACAR-3 cell line. To study cellular morphology, phase contrast microscopy was performed. Apoptosis was examined via acridine orange/ethidium bromide used staining assays. Flow cytometry was used to check the different phases of the cell cycle. Cell migration and invasion assays were performed via transwell chamber assay. The effects of AC on expression of phosphoinositide 3-kinases (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) protein in ovarian cell were assessed using western blotting assay. The results indicated that the cell proliferation rate lowered in AC-treated OVACAR-3 cells as compared to the untreated controls in a dose-dependent manner. Cell morphology changed substantially by the exposure to AC and remained dose dependent. These morphological changes were indicative of apoptotic cell death. Apoptosis analysis showed dose-dependent increase of apoptosis. The cell migration and invasion of OVACAR-3 cells was reduced to a minimum by AC in a dose-dependent manner. Finally, western blotting assay showed blocking of PI3K/AKT/mTOR signaling pathway with increasing AC doses. Taking all together, AC is a potential ovarian cancer inhibitor. It induces its anti-ovarian cancer effects via induction of apoptosis, delaying cell migration and invasion, and blocking PI3K/AKT/mTOR signaling pathway. 相似文献
11.
Uveal melanoma (UM) is a highly invasive intraocular malignancy with high mortality. Presently, there is no FDA-approved standard for the treatment of metastatic UM. Pristimerin is a natural quinine methide triterpenoid compound with anti-angiogenic, anti-cancer and anti-inflammatory activities. However, Pristimerin potential cytotoxic effect on UM was poorly investigated. In the present study, we found the migration and invasion of UM-1 cells were inhibited by Pristimerin which also caused a rapid increase of ROS, decreased mitochondrial membrane potential, induced the accumulation of cells in G0/G1 phase, ending with apoptotic cell death. Pristimerin inhibited Akt and FoxO3a phosphorylation and induced nuclear accumulation of FoxO3a in UM-1 cells, increased the expression of pro-apoptotic proteins Bim、p27 Kip1, cleaved caspase-3, PARP and Bax, and decreased the expression of Cyclin D1 and Bcl-2. LY294002 or Akt-siRNA inhibited the PI3K/Akt/FoxO3a pathway and promoted the Pristimerin-induced apoptosis, while Pristimerin effects were partially abolished in FoxO3a knockdown UM-1 cell cultures. Taken together, present results showed that Pristimerin induced apoptotic cell death through inhibition of PI3K/Akt/FoxO3a pathway in UM-1 cells. These findings indicate that Pristimerin may be considered as a potential chemotherapeutic agent for patients with UM. 相似文献
12.
Iron overload is a common stress in the development of cells. Growing evidence has indicated that iron overload is associated with osteoporosis. Therefore, enhancing the understanding of iron overload would benefit the development of novel approaches to the treatment of osteoporosis. The purpose of the present study was to analyze the effect of iron overload on osteoblast cells, via the MC3T3-E1 cell line, and to explore its possible underlying molecular mechanisms. Ferric ammonium citrate (FAC) was utilized to simulate iron overload conditions in vitro. FAC-induced iron overload strongly suppressed proliferation of osteoblast cells and induced apoptosis. Moreover, iron overload strongly suppressed the expression of dual-specificity phosphatase 14 (DUSP14). Additionally, overexpression of DUSP14 protected osteoblast cells from the deleterious effects of iron overload, and this protective effect was mediated by FOXO3a. Additionally, matrine rescued the function of DUSP14 in osteoblast cells. Most importantly, our analysis demonstrated the essential role of the PI3K/AKT/FOXO3a/DUSP14 signaling pathway in the defense against iron overload in osteoblast cells. Overall, our results not only elucidate deleterious effects of iron overload, but also unveil its possible signaling pathway in osteoblast cells. 相似文献
13.
Proliferation is one of the significant hallmarks of gallbladder cancer, which is a relatively rare but fatal malignance. Aim of this study was to examine the biological impact and molecular mechanism of the candidate hub-gene on the proliferation and tumorigenesis of gallbladder cancer. We analyzed the differentially expressed genes and the correlation between these genes with MKI67, and showed that KIF11 is one of the major upregulated regulators of proliferation in gallbladder cancer (GBC). The Gene Ontology, Gene Sets Enrichment Analysis and KEGG Pathway analysis indicated that KIF11 may promote GBC cell proliferation through the ERBB2/PI3K/AKT signaling pathway. Gain-of-function and loss-of-function assay demonstrated that KIF11 regulated GBC cell cycle and cancer cell proliferation in vitro. GBC cells exhibited G2M phase cell cycle arrest, cell proliferation and clone formation ability reduction after treatment with Monastrol, a specific inhibitor of KIF11. Xenograft model showed that KIF11 promotes GBC growth in vivo. Rescue experiments showed that KIF11-induced GBC cell proliferation dependented on ERBB2/PI3K/AKT pathway. Moreover, we found that H3K27ac signals are enriched among the promoter region of KIF11 in the UCSC Genome Browser Database. Differentially expressed analysis showed that EP300, a major histone acetyltransferase modifying H3K27ac signal, is highly expressed in gallbladder cancer and correlation analysis illustrated that EP300 is positively related with KIF11 in almost all the cancer types. We further found that KIF11 was significantly downregulated in a dose-dependent and time-dependent manner after histone acetylation inhibitor treatment. The present results highlight that high KIF11 expression promotes GBC cell proliferation through the ERBB2/PI3K/AKT signaling pathway. The findings may help deepen our understanding of mechanism underlying GBC cancer development and development of novel diagnostic and therapeutic target. 相似文献
17.
目的探讨妊娠中期的七氟醚暴露对神经干细胞凋亡过程的影响和作用机制。
方法将孕中期大鼠随机分为3组,每组48只孕鼠:对照组,低浓度七氟醚组,高浓度七氟醚组。在妊娠第14天,以2﹪或3.5﹪七氟醚麻醉怀孕大鼠2?h。通过免疫荧光检查神经干细胞凋亡,收集麻醉后6、24和48?h以及出生后第0天(P?0),第14天(P?14)和第28天(P?28)的脑组织进行Nestin-TUNEL免疫荧光双标染色以及Nestin、血管内皮生长因子(VEGF)和磷酸肌醇3-激酶(PI3K)AKT通路相关蛋白的免疫印迹检测。采用单因素方差分析和Bonferroni事后检验进行统计学分析。
结果麻醉后6、24和48?h以及P?0,P?14和P?28,脑组织中Nestin和TUNEL阳性细胞的百分比增加[6?h:对照组0.91±0.07,低浓度组1.01±0.08,高浓度组2.62±0.21(F?=?399,P?0.01);24?h:对照组0.96±0.04,低浓度组1.09±0.13,高浓度组2.49±0.17(F?=?364.37,P?0.01);48?h:对照组0.95±0.05,低浓度组1.24±0.11,高浓度组2.51±0.13(F?=?524.52,P?0.01);P?0:对照组0.97±0.03,低浓度组1.01±0.09,高浓度组2.21±0.15(F?=?378.31,P?0.01);P?14:对照组0.96±0.03,低浓度组1.22±0.12,高浓度组1.89±0.14(F?=?158.33,P?0.01);P?28:对照组0.95±0.05,低浓度组1.09±0.13,高浓度组1.69±0.19(F?=?66.83,P?0.01)。但高浓度组Nestin蛋白水平降低[6?h:对照组0.95±0.08,低浓度组0.81±0.11,高浓度组0.62±0.13(F?=?18.60,P?0.01);24?h:对照组0.92±0.06,低浓度组0.85±0.13,高浓度组0.74±0.12(F?=?5.66,P?=?0.0108);48?h:对照组0.95±0.04,低浓度组0.80±0.08,高浓度组0.72±0.14(F?=?11.86,P?0.01);P?0:对照组0.97±0.06,低浓度组0.72±0.09,高浓度组0.67±0.09(F?=?31.31,P?0.01);P?14:对照组0.94±0.03,低浓度组0.69±0.07,高浓度组0.65±0.13(F?=?26.11,P?0.01);P?28:对照组0.95±0.08,低浓度组0.91±0.12,高浓度组0.58±0.13(F?=?26.25,P?0.01)]。并且在麻醉后6?h,胎鼠大脑中VEGF,PI3K和磷酸化AKT(p-AKT)水平降低。但在低浓度七氟醚暴露组中并未出现变化。
结论妊娠中期暴露于高浓度的七氟醚会降低VEGF,PI3K和p-AKT蛋白水平并诱导神经干细胞发生凋亡,从而导致后代的学习和记忆功能障碍。 相似文献
19.
MicroRNAs (miRNAs) have been established to regulate skeletal muscle development in mammals. However, few studies have been conducted on the regulation of proliferation and differentiation of bovine myoblast cells by miRNAs. The aim of our study was to explore the function of miR-483 in cell proliferation and differentiation of bovine myoblast. Here, we found that miR-483 declined in both proliferation and differentiation stages of bovine myoblast cells. During the proliferation phase, the overexpression of miR-483 downregulated the cell cycle–associated genes cyclin-dependent kinase 2 ( CDK2), proliferating cell nuclear antigen ( PCNA) messenger RNA (mRNA), and the protein levels. At the cellular level, cell cycle, cell counting kit-8, and 5-ethynyl-2´-deoxyuridine results indicated that the overexpression of miR-483 block cell proliferation. During differentiation, the overexpression of miR-483 led to a decrease in the levels of the myogenic marker genes MyoD1 and MyoG mRNA and protein. Furthermore, the immunofluorescence analysis results showed that the number of MyHC-positive myotubes was reduced. In contrast, the opposite experimental results were obtained concerning both proliferation and differentiation after the inhibition of miR-483. Mechanistically, we demonstrated that miR-483 target insulin-like growth factor 1 ( IGF1) and downregulated the expression of key proteins in the PI3K/ AKT signaling pathway. Altogether, our findings indicate that miR-483 acts as a negative regulator of bovine myoblast cell proliferation and differentiation. 相似文献
20.
ABSTRACT Parabens are generally used as preservatives in foods, pharmaceuticals, and various other commercial products. Among them, ethylparaben has weaker estrogenic characteristics than endogenous estrogen. However, growing evidence indicates that ethylparaben has an adverse effect on various human tissues. Here, we investigated whether ethylparaben induces cell death by affecting cell viability, cell proliferation, cell cycle, and apoptosis using the human placenta cell line BeWo. Ethylparaben significantly decreased cell viability in a dose-dependent manner. It caused cell cycle arrest at sub-G1 by reducing the expression of cyclin D1, whereas it decreased the cell proportion at the G0/G1 and S phases. Furthermore, we verified that ethylparaben induces apoptotic cell death by enhancing the activity of Caspase-3. Taken together, our results suggest that ethylparaben exerts cytotoxic effects in human placental BeWo cells via cell cycle arrest and apoptotic pathways. 相似文献
|