首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vibrio cholerae, the causative agent for cholera, infects its host by expressing a protein consisting of two subunits: the pentameric cholera toxin B (CTB) and cholera toxin A (CTA). CTB frequently is used as an indicator of the presence of pathogenic V. cholerae and typically is detected using enzyme-linked immunosorbent assays (ELISAs). In lieu of an enzyme-linked detection method, we have developed GM(1) ganglioside-functionalized fluorescent dye-encapsulating liposomes for the detection of CTB produced by V. cholerae in a simple microtiter plate assay. Liposomes were compared with fluorescein-labeled antibodies and enzyme-linked secondary antibodies for quantification of purified CTB. A limit of detection for CTB using the liposomes was 340pg/ml, which was comparable to that using the ELISA but 18 times lower than that using the fluorescein-labeled anti-CTB antibodies for the same purpose. The sensitivity of the assay provided by the liposomes was substantial, and the working range improved when compared with that of the fluorescein-labeled antibodies and the ELISA. In addition, the liposomes required shorter assay times, exhibited greater precision, and were less expensive compared with the ELISA. The liposomes were optimized with respect to phospholipid and ganglioside concentrations. The optimized liposomes were then used to probe culture supernatants from V. cholerae El Tor C6706 grown in Dulbecco's modified Eagle's medium and AKI medium for the presence of CTB.  相似文献   

2.
Role of membrane gangliosides in the binding and action of bacterial toxins   总被引:31,自引:0,他引:31  
Summary Gangliosides are complex glycosphingolipids that contain from one to several residues of sialic acid. They are present in the plasma membrane of vertebrate cells with their oligosaccharide chains exposed to the external environment. They have been implicated as cell surface receptors and several bacterial toxins have been shown to interact with them. Cholera toxin, which mediates its effects on cells by activating adenylate cyclase, bind with high affinity and specificity to ganglioside GM1. Toxin-resistant cells which lack GM1 can be sensitized to cholera toxin by treating them with GM1. Cholera toxin specifically protects GM1 from cell surface labeling procedures and only GM1 is recovered when toxin-receptor complexes are isolated by immunoadsorption. These results clearly demonstrate that GM1 is the specific and only receptor for cholera toxin. Although cholera toxin binds to GM1 on the external side of the plasma membrane, it activates adenylate cyclase on the cytoplasmic side of the membrane by ADP-ribosylation of the regulatory component of the cyclase. GM1 in addition to functioning as a binding site for the toxin appears to facilitate its transmembrane movement. The heat-labile enterotoxin ofE. coli is very similar to cholera toxin in both form and function and can also use GM1 as a cell surface receptor. The potent neurotoxin, tetanus toxin, has a high affinity for gangliosides GD1b and GT1b and binds to neurons which contain these gangliosides. It is not yet clear whether these gangliosides are the physiological receptors for tetanus toxin. By applying the techniques that established GM1 as the receptor for cholera toxin, the role of gangliosides as receptors for tetanus toxin as well as physiological effectors may be elucidated.  相似文献   

3.
Nicotiana tabacum var. Samsun was transformed via Agrobacterium-mediated transformation with a gene encoding the cholera toxin B subunit (CTB) of Vibrio cholerae, modified to contain a sequence coding for an endoplasmic reticulum retention signal (SEKDEL), under the control of the cauliflower mosaic virus 35S promoter. Total protein from the transgenic leaf tissue was isolated and an aliquot containing 5 g recombinant CTB was injected intradermally into Balb/c (H2Kd) mice. CTB-specific serum IgG was detected in animals that had been administered plant-expressed or native purified CTB. A T-cell proliferation study using splenocytes and cytokine estimations in supernatants generated by in vitro stimulation of macrophages isolated from the immuno-primed animals was carried out. Inhibition of proliferation of T lymphocytes was observed in splenic T lymphocytes isolated from animals injected with either native or plant-expressed CTB. Macrophages isolated from mice immunised with native or plant-expressed CTB showed enhanced secretion of interleukin-10 but secretion of lipopolysaccharide-induced interleukin-12 and tumor necrosis factor alpha was inhibited. These studies suggest that plant-expressed protein behaved like native CTB with regards to effects on T-cell proliferation and cytokine levels, indicating the suitability of plant expression systems for the production of bacterial antigens, which could be used as edible vaccine. The transgene was found to be inherited in the progeny and was expressed to yield a pentameric form of CTB as evident by its interaction with GM1 ganglioside.Abbreviations BAP 6-Benzylaminopurine - Con A Concanavilin A - CTB Cholera toxin B subunit - ctxB Gene encoding cholera toxin B subunit - ELISA Enzyme-linked immunosorbent assay - HRP Horseradish peroxidase - IL-10 Interleukin-10 - IL-12 Interleukin-12 - LPS Lipopolysaccharide - NAA Naphthaleneacetic acid - PBS Phosphate-buffered saline - TNF Tumour necrosis factor alphaCommunicated by H. Uchimiya  相似文献   

4.
The binding of cholera toxin, tetanus toxin and pertussis toxin to ganglioside containing solid supported membranes has been investigated by quartz crystal microbalance measurements. The bilayers were prepared by fusion of phospholipid-vesicles on a hydrophobic monolayer of octanethiol chemisorbed on one gold electrode placed on the 5 MHz AT-cut quartz crystal. The ability of the gangliosides GM1, GM3, GD1a, GD1b, GT1b and asialo-GM1 to act as suitable receptors for the different toxins was tested by measuring the changes of quartz resonance frequencies. To obtain the binding constants of each ligand-receptor-couple Langmuir-isotherms were successfully fitted to the experimental adsorption isotherms. Cholera toxin shows a high affinity for GM1 (Ka = 1.8 ⋅ 108M–1), a lower one for asialo-GM1 (Ka = 1.0 ⋅ 107 M–1) and no affinity for GM3. The C-fragment of tetanus toxin binds to ganglioside GD1a, GD1b and GT1b containing membranes with similar affinity (Ka∼106 M–1), while no binding was observed with GM3. Pertussis toxin binds to membranes containing the ganglioside GD1a with a binding constant of Ka = 1.6 ⋅ 106 M–1, but only if large amounts (40 mol%) of GD1a are present. The maximum frequency shift caused by the protein adsorption depends strongly on the molecular structure of the receptor. This is clearly demonstrated by an observed maximum frequency decrease of 99 Hz for the adsorption of the C-fragment of tetanus toxin to GD1b. In contrast to this large frequency decrease, which was unexpectedly high with respect to Sauerbrey's equation, implying pure mass loading, a maximum shift of only 28 Hz was detected after adsorption of the C-fragment of tetanus toxin to GD1a. Received: 14 January 1997 / Accepted: 15 April 1997  相似文献   

5.
Cholera toxin (CT) is the primary virulence factor responsible for severe cholera. Vibrio cholerae strains unable to produce CT show severe attenuation of virulence in animals and humans. The pentameric B subunit of CT (CTB) contains the immunodominant epitopes recognized by antibodies that neutralize CT. Although CTB is a potent immunogen and a promising protective vaccine antigen in animal models, immunization of humans with detoxified CT failed to protect against cholera. We recently demonstrated however that pups reared from mice immunized intraperitoneally (IP) with 3 doses of recombinant CTB were well protected against a highly lethal challenge dose of V. cholerae N16961. The present study investigated how the route and number of immunizations with CTB could influence protective efficacy in the suckling mouse model of cholera. To this end female mice were immunized with CTB intranasally (IN), IP, and subcutaneously (SC). Serum and fecal extracts were analyzed for anti-CTB antibodies by quantitative ELISA, and pups born to immunized mothers were challenged orogastrically with a lethal dose of V. cholerae. Pups from all immunized groups were highly protected from death by 48 hours (64–100% survival). Cox regression showed that percent body weight loss at 24 hours predicted death by 48 hours, but we were unable to validate a specific amount of weight loss as a surrogate marker for protection. Although CTB was highly protective in all regimens, three parenteral immunizations showed trends toward higher survival and less weight loss at 24 hours post infection. These results demonstrate that immunization with CTB by any of several routes and dosing regimens can provide protection against live V. cholerae challenge in the suckling mouse model of cholera. Our data extend the results of previous studies and provide additional support for the inclusion of CTB in the development of a subunit vaccine against V. cholerae.  相似文献   

6.
The B subunit of cholera toxin does not affect the growth of rat glioma C6 cells which are deficient of its receptor, ganglioside GM1. Insertion of ganglioside GM1 into the plasma membrane of C6 cells renders them susceptible to inhibition of DNA synthesis by the B subunit. Exposure of C6 cells to butyrate induces an elevation of ganglioside GM1 as measured by an increase in binding of iodinated cholera toxin and also results in an inhibition of DNA synthesis by the B subunit. The extent of inhibition of DNA synthesis correlated with the binding of B subunit and was independent of adenylate cyclase activation or increases in intracellular cAMP levels.  相似文献   

7.
Vibrio cholerae expresses two primary virulence factors, cholera toxin (CT) and the toxin-coregulated pilus (TCP). CT causes profuse watery diarrhea, and TCP (composed of repeating copies of the major pilin TcpA) is required for intestinal colonization by V. cholerae. Antibodies to CT or TcpA can protect against cholera in animal models. We developed a TcpA holotoxin-like chimera (TcpA-A2-CTB) to elicit both anti-TcpA and anti-CTB antibodies and evaluated its immunogenicity and protective efficacy in the infant mouse model of cholera. Adult female CD-1 mice were immunized intraperitoneally three times with the TcpA-A2-CTB chimera and compared with similar groups immunized with a TcpA+CTB mixture, TcpA alone, TcpA with Salmonella typhimurium flagellin subunit FliC as adjuvant, or CTB alone. Blood and fecal samples were analyzed for antigen-specific IgG or IgA, respectively, using quantitative ELISA. Immunized females were mated; their reared offspring were challenged orogastrically with 10 or 20 LD50 of V. cholerae El Tor N16961; and vaccine efficacy was assessed by survival of the challenged pups at 48 hrs. All pups from dams immunized with the TcpA-A2-CTB chimera or the TcpA+CTB mixture survived at both challenge doses. In contrast, no pups from dams immunized with TcpA+FliC or CTB alone survived at the 20 LD50 challenge dose, although the anti-TcpA or anti-CTB antibody level elicited by these immunizations was comparable to the corresponding antibody level achieved by immunization with TcpA-A2-CTB or TcpA+CTB. Taken together, these findings comprise strong preliminary evidence for synergistic action between anti-TcpA and anti-CTB antibodies in protecting mice against cholera. Weight loss analysis showed that only immunization of dams with TcpA-A2-CTB chimera or TcpA+CTB mixture protected their pups against excess weight loss from severe diarrhea. These data support the concept of including both TcpA and CTB as immunogens in development of an effective multivalent subunit vaccine against V. cholerae.  相似文献   

8.
The cholera toxin B subunit (CTB), a nontoxic molecule with potent biological properties, is a powerful mucosal and parenteral adjuvant that induces a strong immune response against co-administered or coupled antigens. A gene encoding CTB, which was modified based on the optimized codon usage in the plant, was synthesized and fused to the endoplasmic reticulum retention signal KDEL to enhance its expression level in plants. The synthetic CTB (sCTB) gene was introduced into a plant expression vector adjacent to the CaMV 35S promoter, and was transformed into tomato using an Agrobacterium-mediated transformation method. The integration of the sCTB gene into the genomic DNA of transgenic plants was confirmed by genomic DNA PCR amplification. The synthesis and assembly of CTB protein in transgenic plants was demonstrated through immunoblot analysis and GM1-ELISA. The highest amount of CTB protein produced in transgenic tomatoes was approximately 0.9% of total soluble fruit protein which was 10-fold greater than the previously 0.081%. GM1-ELISA indicated that plant-synthesized CTB protein bound specifically to GM1-gangliosides, suggesting that the CTB subunits formed active pentamers.  相似文献   

9.
A deoxyribonucleic acid (DNA) fragment encoding the cholera toxin B subunit (CTB) was linked 5′ to the simian immunodeficiency virus (SIVmac) Gag p27 capsid gene (CTB-Gag). The fusion gene was transferred into Solanum tuberosum cells by Agrobacterium tumefaciens-mediated transformation methods and transformed plants regenerated. The CTB-Gag gene fusion was detected in transformed potato leaf genomic DNA by polymerase chain reaction-mediated DNA amplification. The results of immunoblot analysis with anti-CTB and anti-Gag antibodies verified the synthesis of biologically active CTB-Gag fusion protein in transformed leaf and tuber tissues. Synthesis and assembly of the CTB-Gag fusion protein into oligomeric structures of pentamer size was confirmed by GM1-ganglioside-enzyme-linked immunosorbent assay (GM1-ELISA) of transformed potato tuber tissue extracts. The binding of CTB-Gag fusion protein oligomers to intestinal epithelial cell membrane receptors quantified by GM1-ELISA showed that CTB-Gag fusion protein made up approx 0.016–0.022% of the total soluble tuber protein. The synthesis of CTB-Gag monomers and their assembly into biologically active CTB-Gag fusion protein oligomers in potato tuber tissues provides the opportunity for employment of the carrier and adjuvant properties of CTB for the development of edible plant-based subunit mucosal vaccines for enhanced mucosal immunity against SIV in macaques.  相似文献   

10.
《Autophagy》2013,9(4):363-365
Vibrio cholerae is the causative agent of cholera in humans. In addition to the critical virulence factors cholera toxin and toxin co-regulated pilus, V. cholerae secretes V. cholerae cytolysin (VCC), a pore-forming exotoxin able to induce cell lysis and extensive vacuolation. We have shown that this vacuolation is related to the activation of autophagy in response to VCC action. Furthermore, we found that the autophagic pathway was required to protect cells upon VCC intoxication. Based on additional data presented here, we propose a model aimed to explain the mechanism of cell protection. We postulate that VCC-induced autophagic vacuoles, which display features of multivesicular bodies and enclose the toxin, are implicated in cell defense through VCC degradation involving fusion with lysosomes.

Addendum to:

Protective Role of Autophagy Against Vibrio cholerae Cytolysin, a Pore-Forming Toxin from V. cholerae

M.G. Gutierrez, H.A. Saka, I. Chinen, F.C.M. Zoppino, T. Yoshimori, J.L. Bocco and M.I. Colombo

Proc Natl Acad Sci USA 2007; 104:1829-34  相似文献   

11.
The synthetic cholera toxin B subunit (CTB) gene, modified according to the optimized codon usage of plant genes, was introduced into a plant expression vector and expressed under the control of the Bx17 HMW (high molecular weight) wheat endosperm-specific promoter containing an intron of the rice act1. The recombinant vector was transformed into rice plants using a biolistic-mediated transformation method. Stable integration of the synthetic CTB gene into the chromosomal DNA was confirmed by PCR amplification analysis. A high level of CTB (2.1% of total soluble protein) was expressed in the endosperm tissue of the transgenic rice plants. The synthetic CTB produced only in the rice endosperm demonstrated strong affinity for GM1-ganglioside, thereby suggesting that the CTB subunits formed an active pentamer. The successful expression of CTB genes in transgenic plants makes it a powerful tool for the development of a plant-derived edible vaccine.  相似文献   

12.
Summary The B subunit (CTB) of cholera toxin (CT) can be used as a carrier protein for conjugate vaccines designed to elicit antipolysaccharide antibodies. A defined medium, AGM4, was designed to grow a high-producing mutant of Vibrio cholerae expressing only the B subunit of CT: V. cholerae 0395-NI. AGM4 contains four amino acids, asparagine, glutamic acid, arginine and serine, salts and a trace element solution. The carbon source is glucose. The fermentations performed in AGM4 indicated that CTB production paraleled the growth of the organism but that there was a maximal release of CTB during the stationary phase. There was a clear optimum of productivity at pH 8.0 and 30°C. The pH had an influence on CTB production and not only on its release. Analysis of the amino acids present in the medium showed a correlation between their consumption rates and CTB productivity. Offprint requests to: J. Shiloach  相似文献   

13.
This paper describes the isolation ofEscherichia coli heat-labile enterotoxin (LT) by affinity chromatography on an anti-cholera toxin immunoglobulin-Sepharose column, and the subunit composition of crude and affinity-isolated LT. LT and its subunits were assayed with ganglioside (GM1)-ELISA, immunodiffusion, skin toxicity, and broken cell adenylate cyclase activation methods. The results show that the immunoaffinity method, applied to LT of different strains and batches, yielded about 100-fold purification with approximately 50% recovery of LT antigen. LT was shown to contain a GM1-ganglioside binding subunit as well as another subunit which does not bind to GM1 but activates adenylate cyclase. Immunodiffusion tests showed that the two LT subunits were immunologically related to but not identical with, respectively, the B and A subunits of cholera toxin. The LT “A” and “B” subunits were present in similar proportions in the affinity-isolated and crude LT preparations, but in the purified fraction they had only partially reassociated into holotoxin.  相似文献   

14.
Cholera toxin B subunit (CTB) has been extensively studied as immunogen, adjuvant, and oral tolerance inductor depending on the antigen conjugated or coadministered. It has been already expressed in several bacterial and yeast systems. In this study, we synthesized a versatile gene coding a 6XHis-tagged CTB (359 bp). The sequence was designed according to codon usage of Escherichia coli, Lactobacillus casei, and Salmonella typhimurium. The gene assembly was based on a polymerase chain reaction, in which the polymerase extends DNA fragments from a pool of overlapping oligonucleotides. The synthetic gene was amplified, cloned, and expressed in E. coli in an insoluble form, reaching levels about 13 mg of purified active pentameric rCTB per liter of induced culture. Western blot and ELISA analyses showed that recombinant CTB is strongly and specifically recognized by polyclonal antibodies against the cholera toxin. The ability to form the functional pentamers was observed in cell culture by the inhibition of cholera toxin activity on Y1 adrenal cells in the presence of recombinant CTB. The 6XHis-tagged CTB provides a simple way to obtain functional CTB through Ni2+-charged resin after refolding and also free of possible CTA contaminants as in the case of CTB obtained from Vibrio cholerae cultures.  相似文献   

15.
CHOLERA TOXIN   总被引:2,自引:0,他引:2  
1. Death in several infectious diseases is caused by protein toxins secreted by invading bacteria. Cholera toxin is a simple protein secreted by Vibrio cholerae colonizing the gut; it is responsible for the massive diarrhoea that is cholera. 2. The primary action of cholera toxin is an activation of adenylate cyclase, an enzyme found on the inner membrane of eukaryotic cells that catalyses the conversion of ATP to cyclic AMP. Consequent increases in the intracellular concentration of cyclic AMP are responsible for other manifestations of cholera toxin including the diarrhoea. The toxin is active on almost all eukaryotic cells. 3. The toxin can be purified from culture filtrates of V. cholera. It has a molecular weight of 82000; and is composed of one subunit A (itself two polypeptide chains joined by a disulphide bond: AI (22000) and A2 (5000)) and five subunits B (11500). These can be separated in dissociating solvents such as detergents or 6 M guanidine hydrochloride. An amino-acid sequence of subunit B has been published. The five B subunits (sometimes found by themselves in the filtrate and known as ‘choleragenoid’) are probably arranged in a ring with the subunit A in the middle joined to them non-covalently by peptide A2. 4. The first action of cholera toxin on a cell is to bind to the membrane strongly and irreversibly. Several thousand molecules of toxin bind to each cell and the binding constants are of the order of 10-10 M. The binding is rapid, but is followed by a lag phase of about an hour before the intracellular cyclic AMP concentration begins to increase. 5. Ganglioside GM1, a complex amphiphilic lipid found in cell membranes, binds tightly to the toxin which shows an enzyme-like specificity for this particular ganglioside. Toxin that has already bound ganglioside can no longer bind to cells and is therefore inactive. This and other experiments using cells depleted of endogenous ganglioside suggest that ganglioside GM1 is the natural receptor of the toxin on the cell surface. The binding is followed by a lateral movement of the toxin-ganglioside complex in the cell surface forming a ‘cap’ at one pole of the cell. 6. The binding of ganglioside by toxin is a function exclusively of subunit B; Subunit A does not bind and can be eluted with 8 M urea from an insolubilized toxin-ganglioside complex. Subunit B is not by itself active, and so preincubation with B can protect cells or even whole gut from the action of toxin by occupying all the ganglioside binding sites. 7. Subunit A is responsible for activation of adenylate cyclase. Purified subunit A or just peptide AI is active by itself and this activity is not inhibited by ganglioside or by antisera to subunit B. In intact cells the activity is low and shows the characteristic lag phase but in lysed cells the subunit (or the whole toxin) is much more active and there is no lag phase. This suggests that the lag phase represents the time that subunit A takes to cross the cell membrane and get to its target. 8. Several cofactors are needed for toxin activity in lysed cells: NAD+, ATP, sulphydryl compounds and another unidentified cytoplasmic component. The activity of the cyclase is altered in a complex way generally rather similarly to the action of hormones such as adrenalin, but it is difficult to draw any general conclusions. 9. There are two chief theories of how cholera toxin acts. The first is that subunit A (or just peptide AI) enters the cell and there catalyses some reaction leading to activation of the cyclase. The cleavage of NAD+ into nicotinamide and adenosine diphosphoribose could be such a reaction; it is catalysed by high concentrations of cholera toxin. 10. The other theory is that part of the toxin binds directly to the adenylate cyclase or to some other molecule that can then interact with the cyclase, perhaps after the lateral movement of the toxin-ganglioside complex in the cell surface. This binding may be related to the known action of guanyl nucleotides on the cell surface. 11. The entry of peptide AI into the cell and its transport through the membrane is mediated by the binding of subunits B to the cell surface, perhaps just because the binding increases the local concentration of subunit A, or perhaps following specific conformational changes in the subunits and the formation of a tunnel of B subunits through the membrane. An experiment showing that the toxin remains active when the subunits are covalently bonded together suggests that peptide AI does not separate completely from the rest of the molecule. 12. There are several other proteins that resemble cholera toxin in structure and function. For example, glycoprotein hormones such as thyrotrophin also activate adenylate cyclase and have an apparently similar subunit structure with one type of subunit that binds to a ganglioside. There may also be analogies between the amino-acid sequences of toxin and hormones. 13. The enterotoxin made by some strains of Escherichia coli produces a similar diarrhoea to that of cholera. Several different toxic proteins have been prepared but they all seem to activate adenylate cyclase in the same sort of way as cholera toxin does and also to cross-react immunologically with it. The E. coli toxin also reacts with ganglioside G, but the reaction is weak and probably physiologically insignificant. Salmonella typhimurium secretes a similar toxin. 14. Tetanus toxin also reacts with a ganglioside receptor. This protein has two polypeptide chains of which only one reacts with the ganglioside; but the molecular activity is not yet known. 15. Diphtheria toxin has an A fragment that is directly responsible for the toxicity (by catalysing an NAD+ cleavage reaction leading to the total inhibition of protein synthesis) and a B fragment that gets the A fragment into the cells. This structure of active and binding components therefore seems to be common to many toxins. 16. The ability to produce toxin may confer some selective advantage on V. cholerae. The toxin may originate from accidental incorporation of DNA from an eukaryotic host, or alternatively from some material involved with the cyclic AMP metabolism of the bacterium.  相似文献   

16.
MALKA HALPERN 《Molecular ecology》2010,19(19):4108-4112
Quorum sensing is the phenomenon, whereby bacteria use signal molecules to communicate with each other. For example, to establish a successful infection, pathogenic bacteria become virulent only when they reach a certain local concentration in their host. Bassler and others have highlighted the surprising observation that quorum sensing seems to repress Vibrio cholerae virulence factor expression (e.g. cholera toxin), in contrast to what has been observed for virulence gene expression in other bacteria. Here, I present a novel insight that may clarify the way V. cholerae quorum‐sensing signals regulate its genes. Chironomids (Diptera; Chironomidae), which occur worldwide and are frequently the insect found most abundantly in fresh water bodies, are natural reservoirs of V. cholerae. Quorum‐sensing signals in V. cholerae up‐regulate the production of an extracellular enzyme, haemagglutinin protease (HAP), which degrades chironomid egg masses and prevents the eggs from hatching. HAP, therefore, is a virulence factor against chironomids. Indeed, in a survey carried out over the course of a year, V. cholerae and chironomids showed a pattern that mirrored the dynamics of predator‐prey populations. Globally, the numbers of chironomids are much larger than those of humans, so quorum‐sensing signals of V. cholerae and HAP gene regulation should be understood with regard to their role in chironomids rather than humans. Further research is needed to understand the role of cholera toxin in the environmental existence of V. cholerae.  相似文献   

17.
The solution dynamics of the oligosaccharide moiety of ganglioside GM1 have been determined by use of a combination of 1H rotating frame Overhauser effect measurements and restrained molecular dynamics simulations, It is found that the Galβ1-3 and NeuNAc moieties which are primarily recognized by cholera toxin both exhibit considerable torsional flexibility about their respective glycosidic linkages. A comparison with the bound state conformation of the ganglioside in association with cholera toxin B-pentamer, shows that a low energy conformation of the oligosaccharide, which closely approximates the globel minimum, is selected upon binding.  相似文献   

18.
A radioassay for the rapid determination of GM1, ganglioside concentration in small volumes of CSF from individual patients is described. The assay utilizes the high-affinity interaction between cholera enterotoxin and GM1 ganglioside. The lower detection limit of GM1 ganglioside by this radioassay under the described incubation conditions is 2.5 ng/ml. The radioassay-determined lumbar CSF GM1 ganglioside concentrations in a small group of patients with diverse neurologic disorders are presented. The radioassay GM1 ganglioside concentration is in good agreement with the GM1 ganglioside concentration determined, in one patient, by the tlc-densitometry technique.  相似文献   

19.
Sialidase activity was determined for three different neuroblastoma clonal lines derived from the A/J strain mouse C1300 neuroblastoma line. For each cell line, the endogenous and exogenous activities were less than 1 nmol sialic acid released/mg protein/90 min and 50 min reaction time, respectively. The C1300 tumor had similarly low levels of sialidase activity. The sialidase activity associated with the neuroblastomas is less than that associated with synaptosomes. Each cell line had a distinctly different ganglioside pattern varying in complexity from GM3 to GD1a. Treatment of the cells withVibrio cholerae sialidase under isosmotic conditions showed that cell-surface sialyl residues were susceptible to sialidase activity, with some of the susceptible residues coming from the ganglioside constituents. Of the total number ofV. cholerae sialidase-releasable sialyl residues, 50–60% were released by the neuroblastoma sialidase acting on endogenous substrate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号