首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Escherichia coli RrmJ (FtsJ) heat shock protein functions as an rRNA methyltransferase that modifies position U2552 of 23S rRNA in intact 50S ribosomal subunits. An in-frame deletion of the rrmJ (ftsJ) gene leads to severe growth disadvantages under all temperatures tested and causes significant accumulation of ribosomal subunits at the expense of functional 70S ribosomes. To investigate whether overexpression of other E. coli genes can restore the severe growth defect observed in rrmJ null mutants, we constructed an overexpression library from the rrmJ deletion strain and cloned and identified the E. coli genes that were capable of rescuing the rrmJ mutant phenotype. Our intention was to identify other methylases whose specificities overlapped enough with that of RrmJ to allow complementation when overexpressed. To our great surprise, no methylases were found by this method; rather, two small GTPases, Obg (YhbZ) and EngA, when overexpressed in the rrmJ deletion strains, were found to restore the otherwise severely impaired ribosome assembly process and/or stability of 70S ribosomes. 50S ribosomal subunits prepared from these overexpressing strains were shown to still serve as in vitro substrates for purified RrmJ, indicating that the 23S rRNA likely was still lacking the highly conserved Um2552 modification. The apparent lack of this modification, however, no longer caused ribosome defects or a growth disadvantage. Massive overexpression of another related small GTPase, Era, failed to rescue the growth defects of an rrmJ strain. These findings suggest a hitherto unexpected connection between rRNA methylation and GTPase function, specifically that of the two small GTPases Obg and EngA.  相似文献   

2.
The 23S rRNA methyltransferase RrmJ (FtsJ) is responsible for the 2'-O methylation of the universally conserved U2552 in the A loop of 23S rRNA. This 23S rRNA modification appears to be critical for ribosome stability, because the absence of functional RrmJ causes the cellular accumulation of the individual ribosomal subunits at the expense of the functional 70S ribosomes. To gain insight into the mechanism of substrate recognition for RrmJ, we performed extensive site-directed mutagenesis of the residues conserved in RrmJ and characterized the mutant proteins both in vivo and in vitro. We identified a positively charged, highly conserved ridge in RrmJ that appears to play a significant role in 23S rRNA binding and methylation. We provide a structural model of how the A loop of the 23S rRNA binds to RrmJ. Based on these modeling studies and the structure of the 50S ribosome, we propose a two-step model where the A loop undocks from the tightly packed 50S ribosomal subunit, allowing RrmJ to gain access to the substrate nucleotide U2552, and where U2552 undergoes base flipping, allowing the enzyme to methylate the 2'-O position of the ribose.  相似文献   

3.
In yeast, guide snoRNAs have been assigned to 51 of the 55 rRNA ribose methylation sites. LSU-Um2918 is one of the four remaining positions. This residue is highly conserved and located in the peptidyl transferase center of the ribosome. The equivalent position on the E. coli 23S rRNA is methylated by FtsJ/RrmJ which has three yeast homologs: Spb1, involved in biogenesis of LSU; Trm7, a tRNA methyltransferase; and Mrm2, a mitochondrial 21S rRNA methyltransferase. We demonstrate that a point mutation in the Ado-Met binding site of Spb1p affects cell growth but does not abolish methylation of U2918. When this mutation is combined with disruption of snR52 (a snoRNA C/D), cell growth is severely impaired and U2918 is no longer methylated. In vitro, Spb1p is able to methylate U2918 on 60S subunits. Our results reveal the importance of this methylation for which two mechanisms coexist: a site-specific methyltransferase (Spb1p) and a snoRNA-dependent mechanism.  相似文献   

4.
Methylation of the N1 position of nucleotide G745 in hairpin 35 of Escherichia coli 23 S ribosomal RNA (rRNA) is mediated by the methyltransferase enzyme RrmA. Lack of G745 methylation results in reduced rates of protein synthesis and growth. Addition of recombinant plasmid-encoded rrmA to an rrmA-deficient strain remedies these defects. Recombinant RrmA was purified and shown to retain its activity and specificity for 23 S rRNA in vitro. The recombinant enzyme was used to define the structures in the rRNA that are necessary for the methyltransferase reaction. Progressive truncation of the rRNA substrate shows that structures in stem-loops 33, 34 and 35 are required for methylation by RrmA. Multiple contacts between nucleotides in these stem-loops and RrmA were confirmed in footprinting experiments. No other RrmA contact was evident elsewhere in the rRNA. The RrmA contact sites on the rRNA are inaccessible in ribosomal particles and, consistent with this, 50 S subunits or 70 S ribosomes are not substrates for RrmA methylation. RrmA resembles the homologous methyltransferase TlrB (specific for nucleotide G748) as well as the Erm methyltransferases (nucleotide A2058), in that all these enzymes methylate their target nucleotides only in the free RNA. After assembly of the 50 S subunit, nucleotides G745, G748 and A2058 come to lie in close proximity lining the peptide exit channel at the site where macrolide, lincosamide and streptogramin B antibiotics bind.  相似文献   

5.
6.
The small ribosome subunit of Escherichia coli contains 10 base-methylated sites distributed in important functional regions. At present, seven enzymes responsible for methylation of eight bases are known, but most of them have not been well characterized. One of these enzymes, RsmE, was recently identified and shown to specifically methylate U1498. Here we describe the enzymatic properties and substrate specificity of RsmE. The enzyme forms dimers in solution and is most active in the presence of 10-15 mM Mg(2+) and 100 mM NH(4)Cl at pH 7-9; however, in the presence of spermidine, Mg(2+) is not required for activity. While small ribosome subunits obtained from an RsmE deletion strain can be methylated by purified RsmE, neither 70S ribosomes nor 50S subunits are active. Likewise, 16S rRNA obtained from the mutant strain, synthetic 16S rRNA, and 3' minor domain RNA are all very poor or inactive as substrates. 30S particles partially depleted of proteins by treatment with high concentrations of LiCl or in vitro reconstituted intermediate particles also show little or no methyl acceptor activity. Based on these data, we conclude that RsmE requires a highly structured ribonucleoprotein particle as a substrate for methylation, and that methylation events in the 3' minor domain of 16S rRNA probably occur late during 30S ribosome assembly.  相似文献   

7.
The rRNAs of Escherichia coli contain four 2'- O- methylated nucleotides. Similar to other bacterial species and in contrast with Archaea and Eukaryota, the E. coli rRNA modifications are catalysed by specific methyltransferases that find their nucleotide targets without being guided by small complementary RNAs. We show here that the ygdE gene encodes the methyltransferase that catalyses 2'- O- methylation at nucleotide C2498 in the peptidyl transferase loop of E. coli 23S rRNA. Analyses of rRNAs using MALDI mass spectrometry showed that inactivation of the ygdE gene leads to loss of methylation at nucleotide C2498. The loss of ygdE function causes a slight reduction in bacterial fitness. Methylation at C2498 was restored by complementing the knock-out strain with a recombinant copy of ygdE . The recombinant YgdE methyltransferase modifies C2498 in naked 23S rRNA, but not in assembled 50S subunits or ribosomes. Nucleotide C2498 is situated within a highly conserved and heavily modified rRNA sequence, and YgdE's activity is influenced by other modification enzymes that target this region. Phylogenetically, YgdE is placed in the cluster of orthologous groups COG2933 together with S -adenosylmethionine-dependent, Rossmann-fold methyltransferases such as the archaeal and eukaryotic RNA-guided fibrillarins. The ygdE gene has been redesignated rlmM for r RNA l arge subunit m ethyltransferase M .  相似文献   

8.
9.
Mitochondria of the yeast Saccharomyces cerevisiae assemble their ribosomes from ribosomal proteins, encoded by the nuclear genome (with one exception), and rRNAs of 15S and 21S, encoded by the mitochondrial genome. Unlike cytoplasmic rRNA, which is highly modified, mitochondrial rRNA contains only three modified nucleotides: a pseudouridine (Psi(2918)) and two 2'-O-methylated riboses (Gm(2270) and Um(2791)) located at the peptidyl transferase centre of 21S rRNA. We demonstrate here that the yeast nuclear genome encodes a mitochondrial protein, named Mrm2, which is required for methylating U(2791) of 21S rRNA, both in vivo and in vitro. Deletion of the MRM2 gene causes thermosensitive respiration and leads to rapid loss of mitochondrial DNA. We propose that Mrm2p belongs to a new class of three eukaryotic RNA-modifying enzymes and is the orthologue of FtsJ/RrmJ, which methylates a nucleotide of the peptidyl transferase centre of Escherichia coli 23S rRNA that is homologous to U(2791) of 21S rRNA. Our data suggest that this universally conserved modified nucleotide plays an important function in vivo, possibly by inducing conformational rearrangement of the peptidyl transferase centre.  相似文献   

10.
Bacteria tune the function of their ribosomes by methylating specific rRNA nucleotides. Nucleotide G745 in Escherichia coli 23S rRNA is methylated by the methyltransferase enzyme RrmA, whereas in Streptomyces fradiae, the neighbouring nucleotide G748 is methylated by the enzyme TlrB. Both nucleotides line the peptide exit channel of the ribosome at the binding site of macrolide, lincosamide and streptogramin B antibiotics. Resistance to the macrolide tylosin, which is produced by S. fradiae, is conferred by methylation of G748. RrmA and TlrB are homologues (29% identical), and a database search against all presently available sequences revealed a further two dozen homologues from a wide variety of Bacteria. No homologues were found among the Archaea or Eukarya. The bacterial sequences adhere to the species phylogeny and segregate into two groups, in which the Gram-negative sequences align with RrmA and the Gram-positives with TlrB. Consistently, in more than 20 species tested, the distribution of methylation in the Gram-negative rRNAs (methylated at G745) and the Gram-positives (methylated at G748) perfectly matches the bacterial phylogeny. Cloning and expression of representative methyltransferase genes showed that this specificity of methylation is determined solely by the methyltransferase enzyme and is independent of the origin of the rRNA substrate. This is the first case in which the position of an RNA methylation defines a sharp division between the Gram-negative and Gram-positive bacteria. Given the specificities and distribution of these methyltransferases, we propose a change in the nomenclature of RrmA to RlmAI (rRNA large subunit methyltransferase) and of TlrB to RlmAII.  相似文献   

11.
Ribosomal protein methylase has been purified from Escherichia coli strain Q13 using methyl-deficient 50S subunits as substrates. The purified enzyme (or enzyme complex) which is devoid of rRNA methylating activity is quite stable and has a pH optimum around 8.0. The Km for S-adenosyl-L-methionine is 3.2 muM. The molecular weight of the enzyme is 3.1 X 10(4); minor methylating activity was also detected for protein peaks with molecular weights of 1.7 X 10(4) and 5.6 X 10(4). Protein L11 is the major protein methylated by the purified enzyme. Product analysis revealed the presence of N epislon-trimethyllysine, a methylated neutral amino acid(s) previously observed in protein L11 and N epislon-monomethyllysine. Free ribosomal proteins were much better substrates for the methylation, indicating that methylation of 50S ribosomal proteins can occur before the complete assembly of the 50S ribosomal subunit.  相似文献   

12.
Nine of ten methylated nucleotides of Escherichia coli 16 S rRNA are conserved in Mycobacterium tuberculosis. All the 10 different methyltransferases are known in E. coli, whereas only TlyA and GidB have been identified in mycobacteria. Here we have identified Rv2966c of M. tuberculosis as an ortholog of RsmD protein of E. coli. We have shown that rv2966c can complement rsmD-deleted E. coli cells. Recombinant Rv2966c can use 30 S ribosomes purified from rsmD-deleted E. coli as substrate and methylate G966 of 16 S rRNA in vitro. Structure determination of the protein shows the protein to be a two-domain structure with a short hairpin domain at the N terminus and a C-terminal domain with the S-adenosylmethionine-MT-fold. We show that the N-terminal hairpin is a minimalist functional domain that helps Rv2966c in target recognition. Deletion of the N-terminal domain prevents binding to nucleic acid substrates, and the truncated protein fails to carry out the m(2)G966 methylation on 16 S rRNA. The N-terminal domain also binds DNA efficiently, a property that may be utilized under specific conditions of cellular growth.  相似文献   

13.
An Escherichia coli open reading frame, ygcA, was identified as a putative 23 S ribosomal RNA 5-methyluridine methyltransferase (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762). We have cloned, expressed, and purified the 50-kDa protein encoded by ygcA. The purified enzyme catalyzed the AdoMet-dependent methylation of 23 S rRNA but did not act upon 16 S rRNA or tRNA. A high performance liquid chromatography-based nucleoside analysis identified the reaction product as 5-methyluridine. The enzyme specifically methylated U1939 as determined by a nuclease protection assay and by methylation assays using site-specific mutants of 23 S rRNA. A 40-nucleotide 23 S rRNA fragment (nucleotide 1930--1969) also served as an efficient substrate for the enzyme. The apparent K(m) values for the 40-mer RNA oligonucleotide and AdoMet were 3 and 26 microm, respectively, and the apparent k(cat) was 0.06 s(-1). The enzyme contains two equivalents of iron/monomer and has a sequence motif similar to a motif found in iron-sulfur proteins. We propose to name this gene rumA and accordingly name the protein product as RumA for RNA uridine methyltransferase.  相似文献   

14.
15.
16.
17.
The ribosomal RNA (rRNA) of Escherichia coli contains 24 methylated residues. A set of 22 methyltransferases responsible for modification of 23 residues has been described previously. Herein we report the identification of the yhiR gene as encoding the enzyme that modifies the 23S rRNA nucleotide A2030, the last methylated rRNA nucleotide whose modification enzyme was not known. YhiR prefers protein-free 23S rRNA to ribonucleoprotein particles containing only part of the 50S subunit proteins and does not methylate the assembled 50S subunit. We suggest renaming the yhiR gene to rlmJ according to the rRNA methyltransferase nomenclature. The phenotype of yhiR knockout gene is very mild under various growth conditions and at the stationary phase, except for a small growth advantage at anaerobic conditions. Only minor changes in the total E. coli proteome could be observed in a cell devoid of the 23S rRNA nucleotide A2030 methylation.  相似文献   

18.
19.
The rRNAs in Escherichia coli contain methylations at 24 nucleotides, which collectively are important for ribosome function. Three of these methylations are m5C modifications located at nucleotides C967 and C1407 in 16S rRNA and at nucleotide C1962 in 23S rRNA. Bacterial rRNA modifications generally require specific enzymes, and only one m5C rRNA methyltransferase, RsmB (formerly Fmu) that methylates nucleotide C967, has previously been identified. BLAST searches of the E.coli genome revealed a single gene, yebU, with sufficient similarity to rsmB to encode a putative m5C RNA methyltransferase. This suggested that the yebU gene product modifies C1407 and/or C1962. Here, we analysed the E.coli rRNAs by matrix assisted laser desorption/ionization mass spectrometry and show that inactivation of the yebU gene leads to loss of methylation at C1407 in 16 S rRNA, but does not interfere with methylation at C1962 in 23 S rRNA. Purified recombinant YebU protein retains its specificity for C1407 in vitro, and methylates 30 S subunits (but not naked 16 S rRNA or 70 S ribosomes) isolated from yebU knockout strains. Nucleotide C1407 is located at a functionally active region of the 30 S subunit interface close to the P site, and YebU-directed methylation of this nucleotide seems to be conserved in bacteria. The yebU knockout strains display slower growth and reduced fitness in competition with wild-type cells. We suggest that a more appropriate designation for yebU would be the rRNA small subunit methyltransferase gene rsmF, and that the nomenclature system be extended to include the rRNA methyltransferases that still await identification.  相似文献   

20.
M I Recht  S Douthwaite    J D Puglisi 《The EMBO journal》1999,18(11):3133-3138
The aminoglycosides, a group of structurally related antibiotics, bind to rRNA in the small subunit of the prokaryotic ribosome. Most aminoglycosides are inactive or weakly active against eukaryotic ribosomes. A major difference in the binding site for these antibiotics between prokaryotic and eukaryotic ribosomes is the identity of the nucleotide at position 1408 (Escherichia coli numbering), which is an adenosine in prokaryotic ribosomes and a guanosine in eukaryotic ribosomes. Expression in E.coli of plasmid-encoded 16S rRNA containing an A1408 to G substitution confers resistance to a subclass of the aminoglycoside antibiotics that contain a 6' amino group on ring I. Chemical footprinting experiments indicate that resistance arises from the lower affinity of the drug for the eukaryotic rRNA sequence. The 1408G ribosomes are resistant to the same subclass of aminoglycosides as previously observed both for eukaryotic ribosomes and bacterial ribosomes containing a methylation at the N1 position of A1408. The results indicate that the identity of the nucleotide at position 1408 is a major determinant of specificity of aminoglycoside action, and agree with prior structural studies of aminoglycoside-rRNA complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号