首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Changes in synaptic efficacy are believed to mediate the processes of learning and memory formation. Accumulating evidence implicates cell adhesion molecules in activity-dependent synaptic modifications associated with long-term potentiation (LTP); however, there is no precedence for the selective role of this molecule class in long-term depression (LTD). The mechanisms that modulate these processes still remain unclear. RESULTS: We report a novel role for glycosylphosphatidyl inositol (GPI)-anchored contactin in hippocampal CA1 synaptic plasticity. Contactin selectively supports paired-pulse facilitation (PPF) and NMDA (N-methyl-D-aspartate) receptor-dependent LTD but is not required for synaptic morphology, basal transmission, or LTP. Molecular analyses indicate that contactin is essential for the membrane and synaptic targeting of the contactin-associated protein (Caspr/paranodin) and for the proper distribution of a presumptive ligand, receptor protein tyrosine phosphatase beta (RPTPbeta)/phosphacan. CONCLUSIONS: These results indicate that contactin plays a selective role in synaptic plasticity and identify PPF and LTD, but not LTP, as contactin-dependent processes. Engagement of the contactin-Caspr complex with RPTPbeta may thus regulate cell-cell interactions contributing to specific synaptic plasticity forms.  相似文献   

2.
Donald Hebb chose visual learning in primary visual cortex (V1) of the rodent to exemplify his theories of how the brain stores information through long-lasting homosynaptic plasticity. Here, we revisit V1 to consider roles for bidirectional ‘Hebbian’ plasticity in the modification of vision through experience. First, we discuss the consequences of monocular deprivation (MD) in the mouse, which have been studied by many laboratories over many years, and the evidence that synaptic depression of excitatory input from the thalamus is a primary contributor to the loss of visual cortical responsiveness to stimuli viewed through the deprived eye. Second, we describe a less studied, but no less interesting form of plasticity in the visual cortex known as stimulus-selective response potentiation (SRP). SRP results in increases in the response of V1 to a visual stimulus through repeated viewing and bears all the hallmarks of perceptual learning. We describe evidence implicating an important role for potentiation of thalamo-cortical synapses in SRP. In addition, we present new data indicating that there are some features of this form of plasticity that cannot be fully accounted for by such feed-forward Hebbian plasticity, suggesting contributions from intra-cortical circuit components.  相似文献   

3.
4.
Rapid progress has been made towards understanding the synaptic physiology of excitatory amino acid transmission in the hippocampus. By comparison, the function of opioid peptides localized to some of the same pathways which use glutamate for fast excitation is poorly understood. Here I consider new evidence specifically implicating opioid peptides in long-term potentiation (LTP) induced by high-frequency stimulation of pathways which combine glutamate and opioid neurotransmission. This form of LTP is unique in that it depends on activation of opioid receptors, and unlike many excitatory systems in brain, it does not require activation of the (NMDA) type of glutamate receptor. Thus one of the main functions of opioids in the hippocampus may be to regulate activity-dependent changes in synaptic strength and neuronal excitability. At another level, “opioid” LTP may provide basic insights into peptidergic transmission and its functional interactions with classical neurotransmitters in the brain.  相似文献   

5.
High frequency stimulation of fiber systems in the mammalian hippocampus produces a semipermanent increase in synaptic efficacy. This effect, long-term potentiation (LTP), has been of considerable interest as a potential substrate of memory due to its rapid onset and extreme persistence. Experiments are described that indicate that the locus of LTP is confined to the synaptic complex of the fibers stimulated; further, Ca2+ is shown to be essential for the initiation of LTP and may play a role in triggering this increase in synaptic efficiency. Data from biochemical analyses of LTP indicate that a 40,000 dalton synaptic membrane protein shows a highly reliable change in its endogenous phosphorylation following high frequency hippocampal stimulation. Phosphorylase kinase, a Ca2+ sensitive enzyme, is shown to specifically catalyse the phosphorylation of this 40,000 dalton protein. The data are discussed in terms of a working model in which the Ca2+ dependent phosphorylation of the 40,000 dalton protein produced by high frequency stimulation is a biochemical intermediate in the production of LTP.  相似文献   

6.
7.
Calcium signals in long-term potentiation and long-term depression   总被引:6,自引:0,他引:6  
We describe postsynaptic Ca2+ signals that subserve induction of two forms of neuronal plasticity, long-term potentiation (LTP) and long-term depression (LTD), in rat hippocampal neurons. The common induction protocol for LTP, a 1-s, 50-Hz tetanus, generates Ca2+ increases of about 50-Hz in dendritic spines of CA1 neurons. These very large increases, measured using a low affinity indicator (Mg fura 5), were found only in the spines and tertiary dendrites, and were dependent upon influx through N-methyl-D-aspartate (NMDA) gated channels. High affinity Ca2+ indicators (e.g., fura 2) are unable to demonstrate these events. In acute slices, neighboring dendritic branches often showed very different responses to a tetanus, and in some instances, neighboring spines on the same dendrite responded differently. LTD in mature CA1 neurons was induced by a low frequency stimulus protocol (2 Hz, 900 pulses), in the presence of GABA- and NMDA-receptor blockers. This LTD protocol produced dendritic Ca2+ increases of <1 microM. Duration of the Ca2+ increase was approximately 30 s and was due to voltage-gated Ca2+ influx. Finally, the ability of synaptically addressed Ca2+ stores to release Ca2+ was studied in CA3 neurons and was found to require immediate preloading and high intensity presynaptic stimulation, conditions unlike normal LTP-LTD protocols.  相似文献   

8.
9.
A study was made of the synaptic actin ultrastructural localization in the hippocampal slices at long-lasting potentiation of area CA, using myosin subfragment-1 labeling. A specific qualitative ultrastructural sign of the potentiated hippocampal synapses was revealed for the first time - the formation in spines of rodlike bundles of actin filaments resembling the cilia. They penetrate the spine stalks to pass through the spine core towards the postsynaptic densities of active zones. The thinner bridges link the filament bundles with the actin cytoskeleton meshwork, with spine apparatus cisterns and with postsynaptic membranes of the active zones. Besides the increasing density of the presynaptic actin meshwork was shown. The changes in the actin cytoskeleton being taken into consideration, its contractile properties account for some morphofunctional features of the potentiated synapses known before and predict previously unknown ones.  相似文献   

10.
The analysis of recent data indicates that a few enzymes that have been recognized as "apoptotic" so far may be involved in important cellular processes not related to cell death in the brain. For example, it can be demonstrated that caspase-3, an "apoptotic" enzyme that is active in neurons is necessary for normal neuroplasticity. Here we discuss the involvement of caspase-3 in long-term potentiation phenomenon. Proteins that are key players of molecular mechanisms of long-term potentiation induction and maintenance are also caspase-3 substrates. A concept on a new mechanism of synaptic plasticity modulation involving caspase-3 has been formulated postulating a specific role of caspase-3 in normal brain functioning.  相似文献   

11.
A computational model of long-term potentiation (LTP) and long-term depression (LTD) in the hippocampus is presented. The model assumes the existence of retrograde signals, is in good agreement with several experimental data on LTP, LTD, and their pharmacological manipulations, and shows how a simple kinetic scheme can capture the essential characteristics of the processes involved in LTP and LTD. We propose that LTP and LTD could be two different but conceptually similar processes, induced by the same class of retrograde signals, and maintained by two distinct mechanisms. An interpretation of a number of experiments in terms of the molecular processes involved in LTP and LTD induction and maintenance, and the roles of a retrograde signal are presented and discussed.  相似文献   

12.
Natural patterns of activity and long-term synaptic plasticity   总被引:12,自引:0,他引:12  
Long-term potentiation (LTP) of synaptic transmission is traditionally elicited by massively synchronous, high-frequency inputs, which rarely occur naturally. Recent in vitro experiments have revealed that both LTP and long-term depression (LTD) can arise by appropriately pairing weak synaptic inputs with action potentials in the postsynaptic cell. This discovery has generated new insights into the conditions under which synaptic modification may occur in pyramidal neurons in vivo. First, it has been shown that the temporal order of the synaptic input and the postsynaptic spike within a narrow temporal window determines whether LTP or LTD is elicited, according to a temporally asymmetric Hebbian learning rule. Second, backpropagating action potentials are able to serve as a global signal for synaptic plasticity in a neuron compared with local associative interactions between synaptic inputs on dendrites. Third, a specific temporal pattern of activity--postsynaptic bursting--accompanies synaptic potentiation in adults.  相似文献   

13.
Huang CS  Shi SH  Ule J  Ruggiu M  Barker LA  Darnell RB  Jan YN  Jan LY 《Cell》2005,123(1):105-118
Synaptic plasticity, the cellular correlate for learning and memory, involves signaling cascades in the dendritic spine. Extensive studies have shown that long-term potentiation (LTP) of the excitatory postsynaptic current (EPSC) through glutamate receptors is induced by activation of N-methyl-D-asparate receptor (NMDA-R)--the coincidence detector--and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Here we report that the same signaling pathway in the postsynaptic CA1 pyramidal neuron also causes LTP of the slow inhibitory postsynaptic current (sIPSC) mediated by metabotropic GABA(B) receptors (GABA(B)-Rs) and G protein-activated inwardly rectifying K(+) (GIRK) channels, both residing in dendritic spines as well as shafts. Indicative of intriguing differences in the regulatory mechanisms for excitatory and inhibitory synaptic plasticity, LTP of sIPSC but not EPSC was abolished in mice lacking Nova-2, a neuronal-specific RNA binding protein that is an autoimmune target in paraneoplastic opsoclonus myoclonus ataxia (POMA) patients with latent cancer, reduced inhibitory control of movements, and dementia.  相似文献   

14.
A review. The data concerning the structural changes that accompany long-term potentiation (LTP) of synaptic transmission are analyzed. A bulk of morphological studies is aimed at searching for quantitative and qualitative structural LTP signs and elucidating the involvement of cytoskeleton in their formation. The role of cytoskeletal protein actin in synaptic structural and functional modification is discussed. On the basis of experimental evidence obtained by the authors a proposal is made that actin is involved into the LTP not only as a contractile protein but as a cable which strengthen the electrotonic properties of the synapses.  相似文献   

15.
16.
Neurons are able to express long-lasting and activity-dependent modulations of their synapses. This plastic property supports memory and conveys an extraordinary adaptive value, because it allows an individual to learn from, and respond to, changes in the environment. Molecular and physiological changes at the cellular level as well as network interactions are required in order to encode a pattern of synaptic activity into a long-term memory. While the cellular mechanisms linking synaptic plasticity to memory have been intensively studied, those regulating network interactions have received less attention. Combining high-resolution fMRI and in vivo electrophysiology in rats, we have previously reported a functional remodelling of long-range hippocampal networks induced by long-term potentiation (LTP) of synaptic plasticity in the perforant pathway. Here, we present new results demonstrating an increased bilateral coupling in the hippocampus specifically supported by the mossy cell commissural/associational pathway in response to LTP. This fMRI-measured increase in bilateral connectivity is accompanied by potentiation of the corresponding polysynaptically evoked commissural potential in the contralateral dentate gyrus and depression of the inactive convergent commissural pathway to the ipsilateral dentate. We review these and previous findings in the broader context of memory consolidation.  相似文献   

17.
神经元长时程突触可塑性是学习和记忆的基础,神经元长时程突触可塑性的维持依赖于基因的转录和蛋白质合成.然而,这些转录产物和新合成的蛋白质是如何从胞体运输到突触点,还不甚清楚.近年来的研究显示,当长时程突触可塑性发生时,被激活的突触能通过建立突触标记(synaptic tag)来识别、捕捉和利用其所需要的基因产物,以维持突触可塑性的长时程变化.这一过程或现象被称为突触标识(synaptic tagging).本文就近年来突触标识的研究进展作一概述.  相似文献   

18.
Far from our initial view of d-amino acids as being limited to invertebrates, they are now considered active molecules at synapses of mammalian central and peripheral nervous systems, capable of modulating synaptic communication within neuronal networks. In particular, experimental data accumulated in the last few decades show that through the regulation of glutamatergic neurotransmission, d-serine influences the functional plasticity of cerebral circuitry throughout life. In addition, the modulation of NMDA-R-dependent signalling by d-aspartate has been demonstrated by pharmacological studies and after the targeted deletion of the d-aspartate-degrading enzyme. Considering the major contribution of the glutamatergic system to a wide range of neurological disorders such as schizophrenia, Alzheimer’s disease and amyotrophic lateral sclerosis, an improved understanding of the mechanisms of d-amino-acid-dependent neuromodulation will certainly offer new insights for the development of relevant strategies to treat these neurological diseases.  相似文献   

19.
In experiments performed on rat transversial slices of the rat dorsal hippocampus, we found that high-frequency tetanic stimulation of the mossy fibers (MF) and short-term action of 1 μM kainic acid on the slices resulted in long-term potentiation of the population spikes evoked inCA3 pyramidal neurons by single stimuli applied to the MF. The tetanus-and kainate-induced potentiations of synaptic transmission were accompanied by a decrease in the degree of paired facilitation at a 50-msec-long interstimulus interval; they were additive, prevented by 10 μM CNQX, a competitive antagonist of AMPA/kainate receptors, and insensitive to 100 μM ketamine, a noncompetitive antagonist of NMDA-glutamate receptors. Both types of potentiation were enhanced by 10 μM (1S, 3R)-ACPD, an agonist of metabotropic glutamate receptors, as well as by 1 μM pyracetam or 50 μM dichlothiazide, substances weakening AMPA/kainate receptor desensitization. The effects produced by high-frequency tetanic stimulation of the MF and by kainic acid were prevented by 50 μM polymixin B, a protein kinase C blocker, and weakened by 10 μM trifluoroperazine, a calmodulin inhibitor, or 1 μM pirenzepine, an M1 acetylcholine receptor blocking agent. In total, the above data suggest that the tetanus- and kainate-induced potentiations of transmission in the synapses formed by the MF and dendrites ofCA3 pyramidal neurons are due to the combined activation of pre-synaptic high-affinity kainate-preferring receptors, located in the membranes of the MF varicosities, and post-synaptic phosphoinositide metabolism-coupled metabotropic glutamate receptors and 1 and M1 acetylcholine receptors. This activation results in a significant increase in the activity of epsilon-form protein kinase C, phosphorylation of protein substrates involved in vesicular glutamate release from the MF varicosities, and long-term enhancement of presynaptic glutamate release.  相似文献   

20.
Short-term synaptic plasticity influences how presynaptic spike patterns control the firing of postsynaptic targets. Here we investigated whether specific mechanisms of short-term plasticity are regulated in a target-dependent manner by comparing synapses made by cerebellar granule cell parallel fibers onto Golgi cells (PF-->GC synapse) and Purkinje cells (PF-->PC synapse). Both synapses exhibited similar facilitation, suggesting that any differential short-term plasticity does not reflect differences in the initial release probability. PF-->PC synapses were highly sensitive to stimulus bursts, which could result in either depression of subsequent responses, mediated by endocannabinoid-dependent retrograde signaling, or enhancement of responses through posttetanic potentiation (PTP). In contrast, stimulus bursts had remarkably little effect on the strength of PF-->GC synapses. Unlike PCs, GCs were unable to regulate their PF synapses by releasing endocannabinoids. Moreover, PTP was reduced at the PF-->GC synapse compared to the PF-->PC synapse. Thus, the target-dependence of PF synapses arises from the differential expression of both retrograde signaling and PTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号