首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A detailed electronic structure of the Mn4Ca cluster is required before two key questions for understanding the mechanism of photosynthetic water oxidation can be addressed. They are whether all four oxidizing equivalents necessary to oxidize water to O2 accumulate on the four Mn ions of the oxygen-evolving complex, or do some ligand-centered oxidations take place before the formation and release of O2 during the S3 → [S4] → S0 transition, and what are the oxidation state assignments for the Mn during S-state advancement. X-ray absorption and emission spectroscopy of Mn, including the newly introduced resonant inelastic X-ray scattering spectroscopy have been used to address these questions. The present state of understanding of the electronic structure and oxidation state changes of the Mn4Ca cluster in all the S-states, particularly in the S2 to S3 transition, derived from these techniques is described in this review.  相似文献   

2.
The kinetics of flash-induced electron transport were investigated in oxygen-evolving Photosystem II preparations, depleted of the 23 and 17 kDa polypeptides by washing with 2 M NaCl. After dark-adaptation and addition of the electron acceptor 2,5-dichloro-p-benzoquinone, in such preparations approx. 75% of the reaction centers still exhibited a period 4 oscillation in the absorbance changes of the oxygen-evolving complex at 350 nm. In comparison to the control preparations, three main effects of NaCl-washing could be observed: the half-time of the oxygen-evolving reaction was slowed down to about 5 ms, the misses and double hits parameters of the period 4 oscillation had changed, and the two-electron gating mechanism of the acceptor side could not be detected anymore. EPR-measurements on the oxidized secondary donor Z+ confirmed the slower kinetics of the oxygen-releasing reaction. These phenomena could not be restored by readdition of the released polypeptides nor by the addition of CaCl2, and are ascribed to deleterious action of the highly concentrated NaCl. Otherwise, the functional coupling of Photosystem II and the oxygen-evolving complex was intact in the majority of the reaction centers. Repetitive flash measurements, however, revealed P+Q recombination and a slow Z+ decay in a considerable fraction of the centers. The flash-number dependency of the recombination indicated that this reaction only appeared after prolonged illumination, and disappeared again after the addition of 20 mM CaCl2. These results are interpreted as a light-induced release of strongly bound Ca2+ in the salt-washed preparations, resulting in uncoupling of the oxygen-evolving system and the Photosystem II reaction center, which can be reversed by the addition of a relatively high concentration of Ca2+.  相似文献   

3.
Being a proven photocatalyst, nano-anatase is capable of undergoing electron transfer reactions under light. In previous studies we had proven that nano-anatase improved photosynthesis and greatly promoted spinach growth. The mechanisms by which nano-anatase promotes energy transfer and the conversion efficiency of the process are still not clearly understood. In the present paper, we report the results obtained with the photosystem II (PSII) isolated from spinach and treated by nano-anatase TiO2 and studied the effect of nano-anatase TiO2 on energy transfer in PSII by spectroscopy and on oxygen evolution. The results showed that nano-anatase TiO2 treatment at a suitable concentration could significantly change PSII microenvironment and increase absorbance for visible light, improve energy transfer among amino acids within PSII protein complex, and accelerate energy transport from tyrosine residue to chlorophyll a. The photochemical activity of PSII (fluorescence quantum yield) and its oxygen-evolving rate were enhanced by nano-anatase TiO2. This is viewed as evidence that nano-anatase TiO2 can promote energy transfer and oxygen evolution in PSII of spinach.  相似文献   

4.
The mechanism by which Cl activates the oxygen-evolving complex (OEC) of Photosystem II (PS II) in spinach was studied by 35Cl-NMR spectroscopy and steady-state measurements of oxygen evolution. Measurements of the excess 35Cl-NMR linewidth in dark-adapted, Cl-depleted thylakoid and Photosystem II membranes show an overall hyperbolic decrease which is interrupted by sharp increases in linewidth (linewidth maxima) at approx. 0.3 mM, 0.75 mM, 3.25 mM (2.0 mM in PS II membranes), and 7.0 mM Cl. The rate of the Hill reaction (H2O → 2,6-dichlorophenolindophenol) at low light intensities (5% of saturation) as a function of [Cl] in thylakoids shows three intermediary plateaus in the concentration range between 0.1 and 10 mM Cl indicating kinetic cooperativity with respect to Cl. The presence of linewidth maxima in the 35Cl-NMR binding curve indicates that Cl addition exposes four types of Cl binding site that were previously inaccessible to exchange with Cl in the bulk solution. These results are best explained by proposing that Cl binds to four sequestered (salt-bridged) domains within the oxygen-evolving complex. Binding of Cl is facilitated by the presence of H+ and vice versa. The pH dependence of the excess 35Cl-NMR linewidth at 0.75 mM Cl shows that Cl binding has a maximum at pH 6.0 and two smaller maxima at pH 5.4 and 6.5 which may suggest that as many as three groups (perhaps histidine) with pKa values in the region may control the binding.  相似文献   

5.
Stoichiometry of membrane components associated with Photosystem II was determined in a highly active O2-evolving Photosystem II preparation isolated from spinach chloroplasts by the treatment with digitonin and Triton X-100. From the analysis with sodium dodecyl sulfate polyacrylamide gel electrophoresis and Triton X-114 phase partitioning, the preparation was shown to contain the reaction center protein (43 kDa), the light-harvesting chlorophyll-protein complex (the main band, 27 kDa), the herbicide-binding protein (32 kDa) and cytochrome b-559 (10 kDa) as hydrophobic proteins, and three proteins (33, 24 and 18 kDa) which probably constitute the O2-evolution enzyme complex as hydrophilic proteins. These proteins were associated stoichiometrically with the Photosystem II reaction center: one Photosystem II reaction center, approx. 200 chlorophyll, one high-potential form of cytochrome b-559, one low-potential form of cytochrome b-559, one 33 kDa protein, one (to two) 24 kDa protein and one (to two) 18 kDa protein. Measurement of fluorescence induction showed the presence of three electron equivalents in the electron acceptor pool on the reducing side of Photosystem II in our preparation. Three molecules of plastoquinone A were detected per 200 chlorophyll molecules with high-performance liquid chromatography. The Photosystem II preparation contained four managanese atoms per 200 chlorophyll molecules.  相似文献   

6.
Interaction of the water oxidising manganese complex of photosystem II with the aqueous environment has been investigated using electron paramagnetic resonance spectroscopy and electron spin echo envelope modulation spectroscopy to detect interaction of [2H]methanol with the complex in the S2 state. The experiments show that the classical S2 multiline signal is associated with a manganese environment which is not exposed to the aqueous medium. An electron paramagnetic resonance spectroscopy signal, also induced by 200 K illumination, showing 2H modulation by methanol in the medium and a modified multiline electron paramagnetic resonance spectroscopy signal formed in parallel to it, are suggested to be associated with a second manganese environment exposed to the medium.  相似文献   

7.
This paper reports computational studies of substrate water binding to the oxygen-evolving centre (OEC) of photosystem II (PSII), completely ligated by amino acid residues, water, hydroxide and chloride. The calculations are based on quantum mechanics/molecular mechanics hybrid models of the OEC of PSII, recently developed in conjunction with the X-ray crystal structure of PSII from the cyanobacterium Thermosynechococcus elongatus. The model OEC involves a cuboidal Mn3CaO4Mn metal cluster with three closely associated manganese ions linked to a single mu4-oxo-ligated Mn ion, often called the 'dangling manganese'. Two water molecules bound to calcium and the dangling manganese are postulated to be substrate molecules, responsible for dioxygen formation. It is found that the energy barriers for the Mn(4)-bound water agree nicely with those of model complexes. However, the barriers for Ca-bound waters are substantially larger. Water binding is not simply correlated to the formal oxidation states of the metal centres but rather to their corresponding electrostatic potential atomic charges as modulated by charge-transfer interactions. The calculations of structural rearrangements during water exchange provide support for the experimental finding that the exchange rates with bulk 18 O-labelled water should be smaller for water molecules coordinated to calcium than for water molecules attached to the dangling manganese. The models also predict that the S1-->S2 transition should produce opposite effects on the two water-exchange rates.  相似文献   

8.
Chymotrypsin eliminated nine amino acid residues at the amino-terminal side of the extrinsic 23-kDa protein of the oxygen-evolving Photosystem II complex of spinach. The resultant 22-kDa fragment was able to bind to the Photosystem II complex but with lowered binding affinity. However, once the 22-kDa fragment bound to the complex, it retained most functions of the 23-kDa protein; the fragment provided a binding site for the extrinsic 18-kDa protein, preserved a tight trap for Ca2+ in the complex, and shifted the optimum Cl concentration for oxygen evolution from 30 to 10 mM, although it was less effective in sustaining oxygen evolution at Cl concentrations below 10 mM. These observations suggest that the elimination of nine amino acid residues at the amino-terminal region of the 23-kDa protein does not significantly alter the conformation of the protein, except for partial modification of its binding site and its interaction with Cl.  相似文献   

9.
Since the end of the 1950s hydrogencarbonate (‘bicarbonate’) is discussed as a possible cofactor of photosynthetic water-splitting, and in a recent X-ray crystallography model of photosystem II (PSII) it was displayed as a ligand of the Mn4OxCa cluster. Employing membrane-inlet mass spectrometry (MIMS) and isotope labelling we confirm the release of less than one (≈ 0.3) HCO3 per PSII upon addition of formate. The same amount of HCO3 release is observed upon formate addition to Mn-depleted PSII samples. This suggests that formate does not replace HCO3 from the donor side, but only from the non-heme iron at the acceptor side of PSII. The absence of a firmly bound HCO3 is corroborated by showing that a reductive destruction of the Mn4OxCa cluster inside the MIMS cell by NH2OH addition does not lead to any CO2/HCO3 release. We note that even after an essentially complete HCO3/CO2 removal from the sample medium by extensive degassing in the MIMS cell the PSII samples retain ≥ 75% of their initial flash-induced O2-evolving capacity. We therefore conclude that HCO3 has only ‘indirect’ effects on water-splitting in PSII, possibly by being part of a proton relay network and/or by participating in assembly and stabilization of the water-oxidizing complex.  相似文献   

10.
Removal of 23 and 17 kDa water-soluble polypeptides from PS II membranes causes a marked decrease in oxygen-evolution activity, exposes the oxidizing side of PS II to exogenous reductants (Ghanotakis, D.F., Babcock, G.T. and Yocum, C.F. (1984) Biochim. Biophys. Acta 765, 388–398) and alters a high-affinity binding site for Ca2+ in the oxygen-evolving complex (Ghanotakis, D.F., Topper, J.N., Babcock, G.T. and Yocum, C.F. (1984) FEBS Lett. 170, 169–173). We have examined further the state of the functional Mn complex in PS II membranes from which the 17 and 23 kDa species have been removed by high-salt treatment. These membranes contain a structurally altered Mn complex which is sensitive to destruction by low concentrations of NH2OH which cannot, in native PS II membranes, cause extraction of functional Mn. In addition to NH2OH, a wide range of other small (H2O2, NH2NH2, Fe2+) and bulky (benzidine, hydroquinone) electron donors extract Mn (up to 80%) from the polypeptide-depleted PS II preparations. This extraction is due to reduction of the functional Mn complex since light, which would generate higher oxidation states within the Mn complex, prevents Mn release by reductants. Release of Mn by reductants does not extract the 33 kDa water-soluble protein implicated in Mn binding to the oxidizing side of PS II, although the protein can be partially or totally extracted from Mn-depleted preparations by exposure to high ionic strength or to high (0.8 M) concentrations of Tris. We view our results as evidence for a shield around the Mn complex of the oxygen-evolving complex comprised of the 33 kDa polypeptide along with the 23 and 17 kDa proteins and tightly bound Ca2+.  相似文献   

11.
Mercury (Hg2+), a sulfhydryl group reactant, wasused to probe structure-function relationships in photosystem II (PSII). In the present work, we investigated the impact of mercury on the polypeptide composition of PSII submembrane preparations. Electrophoretic analysis revealed that the incubation of the membranes in the presence of mercury produces the depletion of a polypeptide of molecular weight of 33 kDa. This polypeptide corresponds to the extrinsic protein EP33 of the oxygen evolving complex removed following urea treatment. However, the two closely related extrinsic polypeptides of 16 and 23 kDa, usually removed concomitantly after urea treatment, remained unaffected after the mercury treatment. These data demonstrated the existence of an intrinsic binding site for EP23. The molecular mode of action of mercury in the oxygen evolving complex of PSII is discussed.  相似文献   

12.
Carbohydrate processing enzymes are of biocatalytic interest. Glycoside hydrolases and the recently discovered lytic polysaccharide monooxygenase for their use in biomass degradation to obtain biofuels or valued chemical entities. Glycosyltransferases or engineered glycosidases and phosphorylases for the synthesis of carbohydrates and glycosylated products. Quantum mechanics-molecular mechanics (QM/MM) methods are highly contributing to establish their different chemical reaction mechanisms. Other computational methods are also used to study enzyme conformational changes, ligand pathways, and processivity, e.g. for processive glycosidases like cellobiohydrolases. There is still a long road to travel to fully understand the role of conformational dynamics in enzyme activity and also to disclose the variety of reaction mechanisms these enzymes employ. Additionally, computational tools for enzyme engineering are beginning to be applied to evaluate substrate specificity or aid in the design of new biocatalysts with increased thermostability or tailored activity, a growing field where molecular modeling is finding its way.  相似文献   

13.
14.
Masami Kusunoki 《BBA》2007,1767(6):484-492
The molecular mechanism of the water oxidation reaction in photosystem II (PSII) of green plants remains a great mystery in life science. This reaction is known to take place in the oxygen evolving complex (OEC) incorporating four manganese, one calcium and one chloride cofactors, that is light-driven to cycle four intermediates, designated S0 through S4, to produce four protons, five electrons and lastly one molecular oxygen, for indispensable resources in biosphere. Recent advancements of X-ray crystallography models established the existence of a catalytic Mn4Ca cluster ligated by seven protein amino acids, but its functional structure is not yet resolved. The 18O exchange rates of two substrate water molecules were recently measured for four Si-state samples (i = 0-3) leading to 34O2 and 36O2 formations, revealing asymmetric substrate binding sites significantly depending on the Si-state. In this paper, we present a chemically complete model for the Mn4Ca cluster and its surrounding enzyme field, which we found out from some possible models by using the hybrid density functional theoretic geometry optimization method to confirm good agreements with the 3.0 Å resolution PSII model [B. Loll, J. Kern, W. Saenger, A. Zouni , J. Biesiadka, Nature 438 (2005) 1040-1044] and the S-state dependence of 18O exchange rates [W. Hillier and T. Wydrzynski, Phys. Chem. Chem. Phys. 6 (2004) 4882-4889]. Furthermore, we have verified that two substrate water molecules are bound to asymmetric cis-positions on the terminal Mn ion being triply bridged (μ-oxo, μ-carboxylato, and a hydrogen bond) to the Mn3CaO3(OH) core, by developing a generalized theory of 18O exchange kinetics in OEC to obtain an experimental evidence for the cross exchange pathway from the slow to the fast exchange process. Some important experimental data will be discussed in terms of this model and its possible tautomers, to suggest that a cofactor, Cl ion, may be bound to CP43-Arg357 nearby Ca2+ ion and that D1-His337 may be used to trap a released proton only in the S2-state.  相似文献   

15.
An O2-evolving Photosystem II subchloroplast preparation was obtained from spinach chloroplasts, using low concentrations of digitonin and Triton X-100. The preparation showed an O2 evolution activity equivalent to 20% of the uncoupled rate of fresh broken chloroplasts, but had no significant Photosystem-I-dependent O2 uptake activity. The preparation showed a chlorophyll ab ratio of 1.9 and a P-700chlorophyll ratio of 12400. Absorption spectra at room temperature and fluorescence emission spectra of chlorophyll at 77 K suggested a significant decrease in Photosystem I antenna chlorophylls in the O2-evolving Photosystem II preparation.  相似文献   

16.
We have analyzed the electronic structure and chemical bonding for molecular adducts of the Ag(II)F2 molecule with various aza Lewis bases including ammonia, nitriles, secondary amines, and their derivatives exhibiting various degrees of fluorination. Density functional theory calculations indicate that a progressive shift occurs of the spin density from the Ag center towards the coordinating nitrogen atoms of aza ligands, as the ligation energy increases. Chemistry of Ag(II) might be extended with little effort beyond the known aza connections, to include nitriles, perfluorinated nitriles and perfluorinated amines. Figure Properties of a variety of novel adducts of the AgF2 molecule with two aza bases (L), possible precursors of the AgF2L2 extended solids, were assessed by the DFT calculations Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. This work is dedicated to memory of Wojciech Ochmański, unforgettable person, good-hearted man, whose craftsmanship in work was second-to-none.  相似文献   

17.
A.W. Rutherford  G. Renger  H. Koike  Y. Inoue 《BBA》1984,767(3):548-556
The thermoluminescence band observed in chloroplasts after flash excitation at ambient temperatures has recently been identified as being due to recombination of the electron on the semiquinone form of the secondary plastoquinone acceptor, QB, with positive charges on the oxygen-evolving enzyme, S2 and S3 (Rutherford, A.W., Crofts, A.R. and Inoue, Y. (1982) Biochim. Biophys. Acta 682, 457–465). Further investigation of this thermoluminescence confirms this assignment and provides information on the function of PS II. The following data are reported: (1) Washing of chloroplasts with ferricyanide lowers the concentration of QB in the dark and predictable changes in the extent of the thermoluminescence band are observed. (2) The thermoluminescence intensity arising from S2QB is approximately one half of that arising from S3QB. (3) Preflash treatment followed by dark adaptation results in changes in the intensity of the thermoluminescence band recorded after a series of flashes. These changes can be explained according to the above assignments for the origin of the thermoluminescence and if QB provides an important source of deactivating electrons for the S states. Computer simulations of the preflash data are reported using the above assumptions. Previously unexplained data already in the literature (Läufer, A. and Inoue, Y. (1980) Photobiochem. Photobiophys. 1, 339–346) can be satisfactorily explained and are simulated using the above assumptions. (4) Lowering the pH to pH 5.5 results in a shift of the S2QB thermoluminescence band to higher temperatures while that arising from S3QB does not shift. This effect is interpreted as indicating that QB is protonated and the S2 to S3 reaction involves deprotonation while the S1 to S2 reaction does not.  相似文献   

18.
The COOH-termini of the 32 kDa D1 and 44 kDa CPa-2 were determined by protein sequencing of peptides from trypsinized photosystem II core complexes. COOH-terminal fragments were isolated by affinity chromatography using anhydrotrypsin-agarose. One peptide had a sequence corresponding to the segment from Asn at position 335 to Ala at position 344 of the sequence deduced from the psbA gene coding for D1. Nine amino acids may be cleaved from the COOH-terminus of pre-D1 during maturation. In contrast, CPa-2 was not modified at its COOH-terminus.  相似文献   

19.
Complex I is responsible for most of the mitochondrial H2O2 release, low during the oxidation of the NAD linked substrates and high during succinate oxidation, via reverse electron flow. This H2O2 production appear physiological since it occurs at submillimolar concentrations of succinate also in the presence of NAD substrates in heart (present work) and rat brain mitochondria (Zoccarato et al., Biochem J, 406:125–129, 2007). Long chain fatty acyl-CoAs, but not fatty acids, act as strong inhibitors of succinate dependent H2O2 release. The inhibitory effect of acyl-CoAs is independent of their oxidation, being relieved by carnitine and unaffected or potentiated by malonyl-CoA. The inhibition appears to depend on the unbound form since the acyl-CoA effect decreases at BSA concentrations higher than 2 mg/ml; it is not dependent on ΔpH or Δp and could depend on the inhibition of reverse electron transfer at complex I, since palmitoyl-CoA inhibits the succinate dependent NAD(P) or acetoacetate reduction.  相似文献   

20.
《FEBS letters》1989,250(2):459-463
Absorption, fluorescence, and CD spectral properties of the isolated D1/D2/cytochrome b-559 photosystem II reaction center complex were examined in stabilized reaction center material at 77 K. Spectral properties were dependent on the presence or absence of 0.05% Triton X-100 in the RC suspension medium, on the redox state of pheophytin, and on the state of inactivation of the complex. The specific spectral properties of the PS II RC complex in the red suggest that the primary donor is not a bacterial-type special pair and could be a monomer. Furthermore, the spectral properties in the PS II RC may be the result of excitonic interactions among all the porphyrin molecules in the complex. Interactions between β-carotene and porphyrins indicate a significant role for β-carotene in the PS II RC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号