首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Barbi M  Reale L 《Bio Systems》2005,79(1-3):61-66
In this paper, two stochastic versions of the LIF neural model are considered: one with the noise signal applied to the firing threshold, the other having it added to the input current. Then, adopting a discontinuous stepwise noise whose innovations are uncorrelated and gaussian distributed, the behaviours of the two models pertaining to the stochastic resonance (SR) are analysed and compared. Furthermore, it is shown that introducing a suitable time correlation into the noise signal brings us from the first model to the second one.  相似文献   

2.
In stochastic resonance (SR), the presence of noise helps a nonlinear system amplify a weak (sub-threshold) signal. Chaotic resonance (CR) is a phenomenon similar to SR but without stochastic noise, which has been observed in neural systems. However, no study to date has investigated and compared the characteristics and performance of the signal responses of a spiking neural system in some chaotic states in CR. In this paper, we focus on the Izhikevich neuron model, which can reproduce major spike patterns that have been experimentally observed. We examine and classify the chaotic characteristics of this model by using Lyapunov exponents with a saltation matrix and Poincaré section methods in order to address the measurement challenge posed by the state-dependent jump in the resetting process. We found the existence of two distinctive states, a chaotic state involving primarily turbulent movement and an intermittent chaotic state. In order to assess the signal responses of CR in these classified states, we introduced an extended Izhikevich neuron model by considering weak periodic signals, and defined the cycle histogram of neuron spikes as well as the corresponding mutual correlation and information. Through computer simulations, we confirmed that both chaotic states in CR can sensitively respond to weak signals. Moreover, we found that the intermittent chaotic state exhibited a prompter response than the chaotic state with primarily turbulent movement.  相似文献   

3.

Background  

In a mammalian auditory system, when intrinsic noise is added to a subthreshold signal, not only can the resulting noisy signal be detected, but also the information carried by the signal can be completely recovered. Such a phenomenon is called stochastic resonance (SR). Current analysis of SR commonly employs the energies of the subthreshold signal and intrinsic noise. However, it is difficult to explain SR when the energy addition of the signal and noise is not enough to lift the subthreshold signal over the threshold. Therefore, information modulation has been hypothesized to play a role in some forms of SR in sensory systems. Information modulation, however, seems an unlikely mechanism for mammalian audition, since it requires significant a priori knowledge of the characteristics of the signal.  相似文献   

4.
Signal detection theory,detectability and stochastic resonance effects   总被引:4,自引:0,他引:4  
 Stochastic resonance is a phenomenon in which the performance of certain non-linear detectors can be enhanced by the addition of appropriate levels of random noise. Signal detection theory offers a powerful tool for analysing this type of system, through an ability to separate detection processes into reception and classification, with the former generally being linear and the latter always non-linear. Through appropriate measures of signal detectability it is possible to decide whether a local improvement in detection via stochastic resonance occurs due to the non-linear effects of the classification process. In this case, improvement of detection through the addition of noise can never improve detection beyond that of a corresponding adaptive system. Signal detection and stochastic resonance is investigated in several integrate-and-fire neuron models. It is demonstrated that the stochastic resonance observed in spiking models is caused by non-linear properties of the spike-generation process itself. The true detectability of the signal, as seen by the receiver part of the spiking neuron (the integrator part), decreases monotonically with input noise level for all signal and noise intensities. Received: 3 April 2001 / Accepted in revised form: 8 March 2002  相似文献   

5.
The aim of this paper is to explore the phenomenon of aperiodic stochastic resonance in neural systems with colored noise. For nonlinear dynamical systems driven by Gaussian colored noise, we prove that the stochastic sample trajectory can converge to the corresponding deterministic trajectory as noise intensity tends to zero in mean square, under global and local Lipschitz conditions, respectively. Then, following forbidden interval theorem we predict the phenomenon of aperiodic stochastic resonance in bistable and excitable neural systems. Two neuron models are further used to verify the theoretical prediction. Moreover, we disclose the phenomenon of aperiodic stochastic resonance induced by correlation time and this finding suggests that adjusting noise correlation might be a biologically more plausible mechanism in neural signal processing.  相似文献   

6.
Noise has already been shown to play a constructive role in neuronal processing and reliability, according to stochastic resonance (SR). Here another issue is addressed, concerning noise role in the detectability of an exogenous signal, here representing an electromagnetic (EM) field. A Hodgkin–Huxley like neuronal model describing a myelinated nerve fiber is proposed and validated, excited with a suprathreshold stimulation. EM field is introduced as an additive voltage input and its detectability in neuronal response is evaluated in terms of the output signal-to-noise ratio. Noise intensities maximizing spiking activity coherence with the exogenous EM signal are clearly shown, indicating a stochastic resonant behavior, strictly connected to the model frequency sensitivity. In this study SR exhibits a window of occurrence in the values of field frequency and intensity, which is a kind of effect long reported in bioelectromagnetic experimental studies. The spatial distribution of the modeled structure also allows to investigate possible effects on action potentials saltatory propagation, which results to be reliable and robust over the presence of an exogenous EM field and biological noise. The proposed approach can be seen as assessing biophysical bases of medical applications funded on electric and magnetic stimulation where the role of noise as a cooperative factor has recently gained growing attention. This work investigates the role of noise as a cooperative factor for the detection of an exogenous electromagnetic field in a compartimental model of a myelinated nerve fiber. The occurrence of stochastic resonance is discussed in relation to neuronal frequency sensitivity.  相似文献   

7.
Thalamic neurons exhibit subthreshold resonance when stimulated with small sine wave signals of varying frequency and stochastic resonance when noise is added to these signals. We study a stochastic Hindmarsh-Rose model using Monte-Carlo simulations to investigate how noise, in conjunction with subthreshold resonance, leads to a preferred frequency in the firing pattern. The resulting stochastic resonance (SR) exhibits a preferred firing frequency that is approximately exponential in its dependence on the noise amplitude. In similar experiments, frequency dependent SR is found in the reliability of detection of alpha-function inputs under noise, which are more realistic inputs for neurons. A mathematical analysis of the equations reveals that the frequency preference arises from the dynamics of the slow variable. Noise can then transfer the resonance over the firing threshold because of the proximity of the fast subsystem to a Hopf bifurcation point. Our results may have implications for the behavior of thalamic neurons in a network, with noise switching the membrane potential between different resonance modes.  相似文献   

8.
The idea of stochastic resonance (SR) is extended to two-parameter dynamical systems based on the Oregonator model of the Belousov-Zhabotinsky (BZ) reaction. The first case presents the photosensitivity of the reaction, and light flux and a flow rate are the two control parameters. The second case presents the effect of temperature on the oscillatory behaviors, and temperature and a flow rate are the control parameters. Stochastic resonance is demonstrated in the first case in which a signal and noise are applied to the different inputs, respectively. The scenario and novel aspects of SR in two-parameter systems are discussed, and the possibility of the analogous SR in biological systems is also pointed out.  相似文献   

9.
1 IntroductionStochasticresonanceisthe phenomenonthatanonzeronoiseleveloptimizesthesystemperformanceinnon linearfield .Especially ,ithelpstodetectandtransferthesmallsignalinalargenoisybackground .Inthenondynamicalsystemorthethresholddetectionsys tem ,thethresholdcrossingisatypicalnon linearphe nomenonandcanresultinastochasticresonance[1] .Asingleneuronwiththresholdbehaviorcanberegardedasasimplethresholddetector ;hencethestochasticres onancephenomenaofneuronhavenaturallybeenstud ied[2 ,3] .Re…  相似文献   

10.
双层Hodgkin-Huxley神经元网络中的随机共振   总被引:1,自引:0,他引:1  
随机共振是一种非零噪声优化系统响应的现象。运用信噪比的评价方式,研究单个Hodgkin-Huxley神经元及其所构建的双层神经元网络中的随机共振,来模拟生物感觉系统中检测微弱信号的随机共振现象。结果表明,单个神经元在阈值下存在噪声优化系统检测性能的随机共振现象,但是最优的噪声强度却随外部信号性质的改变而变化;双层神经元网络不但可以在固定的噪声强度上对一定幅度范围内的阈下信号进行优化检测,而且噪声的存在并没有降低网络对阈上信号的检测能力。  相似文献   

11.
Stochastic resonance in psychophysics and in animal behavior   总被引:4,自引:0,他引:4  
 A recent analysis of the energy detector model in sensory psychophysics concluded that stochastic resonance does not occur in a measure of signal detectability (d′), but can occur in a percent-correct measure of performance as an epiphenomenon of nonoptimal criterion placement [Tougaard (2000) Biol Cybern 83: 471–480]. When generalized to signal detection in sensory systems in general, this conclusion is a serious challenge to the idea that stochastic resonance could play a significant role in sensory processing in humans and other animals. It also seems to be inconsistent with recent demonstrations of stochastic resonance in sensory systems of both nonhuman animals and humans using measures of system performance such as signal-to-noise ratio of power spectral densities and percent-correct detections in a two-interval forced-choice paradigm, both closely related to d′. In this paper we address this apparent dilemma by discussing several models of how stochastic resonance can arise in signal detection systems, including especially those that implement a “soft threshold” at the input transform stage. One example involves redefining d′ for energy increments in terms of parameters of the spike-count distribution of FitzHugh–Nagumo neurons. Another involves a Poisson spike generator that receives an exponentially transformed noisy periodic signal. In this case it can be shown that the signal-to-noise ratio of the power spectral density at the signal frequency, which exhibits stochastic resonance, is proportional to d′. Finally, a variant of d′ is shown to exhibit stochastic resonance when calculated directly from the distributions of power spectral densities at the signal frequency resulting from transformation of noise alone and a noisy signal by a sufficiently steep nonlinear response function. All of these examples, and others from the literature, imply that stochastic resonance is more than an epiphenomenon, although significant limitations to the extent to which adding noise can aid detection do exist. Received: 22 January 2001 / Accepted in revised form: 8 March 2002  相似文献   

12.
Based on the theory of stochastic resonance, the signal to noise ratio (SNR) of HPLC/UV chromatographic signal of roxithromycin is enhanced by cooperation of signal, noise and nonlinear system. A simple new method for the determination of low concentration of roxithromycin in beagle dog plasma is presented. Using signal enhancement by stochastic resonance, this method extends the limit of quantitation from the reported 0.5 to 0.1 microg/ml. During validation of the new method, HPLC/MS was used as a comparison technique. The results indicate that the recovery and low concentrations of roxithromycin in beagle dog plasma were equivalent between the two methods (P>0.05). Stochastic resonance may be a promising tool for improving detection limits in trace analysis.  相似文献   

13.
1IntroductionItiswellknownthatnervecellsworkinnoisyenvironment,andnoisesourcesrangingfrominternalthermalnoisetoexternalperturbation.Onepuzzlingproblemishowdonervecellsaccommodatenoiseincodingandtransforminginformation,recentresearchshowsthatnoisemayp…  相似文献   

14.
The spike trains generated by a neuron model are studied by the methods of nonlinear time series analysis. The results show that the spike trains are chaotic. To investigate effect of noise on transmission of chaotic spike trains, this chaotic spike trains are used as a discrete subthreshold input signal to the integrate-and-fire neuronal model and the FitzHugh-Nagumo(FHN) neuronal model working in noisy environment. The mutual information between the input spike trains and the output spike trains is calculated, the result shows that the transformation of information encoded by the chaotic spike trains is optimized by some level of noise, and stochastic resonance(SR) measured by mutual information is a property available for neurons to transmit chaotic spike trains.  相似文献   

15.
Stochastic resonance emergence from a minimalistic behavioral rule   总被引:1,自引:0,他引:1  
Stochastic resonance (SR) is a phenomenon occurring in nonlinear systems by which the ability to process information, for instance the detection of weak signals is statistically enhanced by a non-zero level of noise. SR effects have been observed in a great variety of systems, comprising electronic circuits, optical devices, chemical reactions and neurons. In this paper we report the SR phenomena occurring in the execution of an extremely simple behavioral rule inspired from bacteria chemotaxis. The phenomena are quantitatively analyzed by using Markov chain models and Monte Carlo simulations.  相似文献   

16.
Detergent extracts of canine pancreas rough microsomal membranes were depleted of either the signal recognition particle receptor (SR), which mediates the signal recognition particle (SRP)-dependent targeting of the ribosome/nascent chain complex to the membrane, or the signal sequence receptor (SSR), which has been proposed to function as a membrane bound receptor for the newly targeted nascent chain and/or as a component of a multi-protein translocation complex responsible for transfer of the nascent chain across the membrane. Depletion of the two components was performed by chromatography of detergent extracts on immunoaffinity supports. Detergent extracts lacking either SR or SSR were reconstituted and assayed for activity with respect to SR dependent elongation arrest release, nascent chain targeting, ribosome binding, secretory precursor translocation, and membrane protein integration. Depletion of SR resulted in the loss of elongation arrest release activity, nascent chain targeting, secretory protein translocation, and membrane protein integration, although ribosome binding was unaffected. Full activity was restored by addition of immunoaffinity purified SR before reconstitution of the detergent extract. Surprisingly, depletion of SSR was without effect on any of the assayed activities, indicating that SSR is either not required for translocation or is one of a family of functionally redundant components.  相似文献   

17.
Stochastic resonance in the speed of memory retrieval   总被引:4,自引:0,他引:4  
The stochastic resonance (SR) phenomenon in human cognition (memory retrieval speed for arithmetical multiplication rules) is addressed in a behavioral and neurocomputational study. The results of an experiment in which performance was monitored for various magnitudes of acoustic noise are presented. The average response time was found to be minimal for some optimal noise level. Moreover, it was shown that the optimal noise level and the magnitude of the SR effect depend on the difficulty of the task. A computational framework based on leaky accumulators that integrate noisy information and provide the output upon reaching a threshold criterion is used to illustrate the observed phenomena.  相似文献   

18.
The most important but still unresolved problem in bioelectromagnetics is the interaction of weak electromagnetic fields (EMFs) with living cells. Thermal and other types of noise pose restrictions in cell detection of weak signals. As a consequence, some extant experimental results that indicate low-intensity field effects cannot be accounted for, and this renders the results themselves questionable. One way out of this dead end is to search for possible mechanisms of signal amplification. In this paper, we discuss a general mechanism in which a weak signal is amplified by system noise itself. This mechanism was discovered several years ago in physics and is known, in its simplest form, as a stochastic resonance. It was shown that signal amplification may exceed a factor of 1000, which renders existing estimations of EMF thresholds highly speculative. The applicability of the stochastic resonance concept to cells is discussed particularly with respect to the possible role of the cell membrane in the amplification process. © 1994 Wiley-Liss, Inc.  相似文献   

19.
Barbi M  Chillemi S  Garbo AD  Reale L 《Bio Systems》2003,71(1-2):23-28
In this report, the LIF neural model driven by underthreshold sinusoidal signals but with a gaussian-distributed noise on the threshold, is approximated by suitably defining an instantaneous firing (or escape) rate, which depends only on the momentary value of the voltage variable. This allows us to obtain, by analytically solving the relevant equations, the main statistical functions describing the "firing activity"; namely, the probability density function of firing phases and that of interspike intervals. From these functions two quantities can be derived, whose dependence on the noise intensity allows the Stochastic Resonance (SR) to be demonstrated. Besides the "regular" SR, the analysed system was found to produce, either for low frequencies and large amplitudes of modulation or for high modulation frequencies, resonance curves displaying two peaks. This bimodal feature of the resonance curves is accounted for on the basis of phase locked firing patterns.  相似文献   

20.
Stochastic resonance (SR) has been shown to enhance the signal-to-noise ratio and detection of low level signals in neurons. It is not yet clear how this effect of SR plays an important role in the information processing of neural networks. The objective of this article is to test the hypothesis that information transmission can be enhanced with SR when sub-threshold signals are applied to distal positions of the dendrites of hippocampal CA1 neuron models. In the computer simulation, random sub-threshold signals were presented repeatedly to a distal position of the main apical branch, while the homogeneous Poisson shot noise was applied as a background noise to the mid-point of a basal dendrite in the CA1 neuron model consisting of the soma with one sodium, one calcium, and five potassium channels. From spike firing times recorded at the soma, the mutual information and information rate of the spike trains were estimated. The simulation results obtained showed a typical resonance curve of SR, and that as the activity (intensity) of sub-threshold signals increased, the maximum value of the information rate tended to increased and eventually SR disappeared. It is concluded that SR can play a key role in enhancing the information transmission of sub-threshold stimuli applied to distal positions on the dendritic trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号