首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An antiserum raised to the ferric enterobactin receptor protein of Escherichia coli, isolated from SDS-polyacrylamide gels, contained high-titre antibodies to the lipopolysaccharide (LPS) of E. coli O111. This antiserum was used to show that proteins dissected from polyacrylamide gels can be contaminated with comigrating LPS at levels below those detectable by very sensitive silver staining methods. Using this antiserum it was also shown that the procedures used to extract proteins from polyacrylamide gels can alter the molecular structure and, consequently, the antigenic properties of the contaminating LPS.  相似文献   

2.
The ability of Haemophilus influenzae, H. parainfluenzae and H. paraphrophilus to utilize iron complexes, iron-proteins and exogenous microbial siderophores was evaluated. In a plate bioassay, all three species used not only ferric nitrate but also the iron chelates ferric citrate, ferric nitrilotriacetate and ferric 2,3-dihydroxybenzoate. Each Haemophilus species examined also used haemin, haemoglobin and haem-albumin as iron sources although only H. influenzae could acquire iron from transferrin or from haemoglobin complexed with haptoglobin. None of the haemophili obtained iron from ferritin or lactoferrin or from the microbial siderophores aerobactin or desferrioxamine B. However, the phenolate siderophore enterobactin supplied iron to both H. parainfluenzae and H. paraphrophilus, and DNA isolated from both organisms hybridized with a DNA probe prepared from the Escherichia coli ferric enterobactin receptor gene fepA. In addition, a monospecific polyclonal antiserum raised against the E. coli 81 kDa ferric enterobactin receptor (FepA) recognized an iron-repressible outer membrane protein (OMP) in H. parainfluenzae of between 80 and 82 kDa (depending on the strain). This anti-FepA serum did not cross-react with any of the OMPs of H. paraphrophilus or H. influenzae. The OMPs of each Haemophilus species were also probed with antisera raised against the 74 kDa Cir or 74 kDa IutA (aerobactin receptor) proteins of E. coli. Apart from one H. parainfluenzae strain (NCTC 10665), in which an OMP of about 80 kDa cross-reacted with the anti-IutA sera, no cross-reactivity was observed between Cir, IutA and the OMPs of H. influenzae, H. parainfluenzae or H. paraphrophilus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Pseudomonas aeruginosa K407, a mutant lacking a high-affinity 80,000-molecular-weight ferric enterobactin receptor protein (80K protein), exhibited poor growth (small colonies) on iron-deficient succinate minimal medium containing ethylenediamine-di(o-hydroxyphenylacetic acid) (EDDHA) and enterobactin. The gene encoding the ferric enterobactin receptor was cloned by complementation of this growth defect. The complementing DNA was subsequently localized to a 7.1-kilobase-pair (kb) SstI-HindIII fragment which was able to restore synthesis of the 80K protein in strain K407 and also to direct the synthesis of high levels of a protein of the same molecular weight in the outer membranes of Escherichia coli fepA strains MT912 and IR20. Moreover, the fragment complemented the fepA mutation in MT912, restoring both growth in EDDHA-containing medium and enterobactin-dependent uptake of 55Fe3+. Expression of the P. aeruginosa receptor in E. coli IR20 was shown to be regulated by both iron and enterobactin. The complementing DNA was further localized to a 5.3-kb SphI-SstI fragment which was then subjected to deletion analysis to obtain the smallest fragment capable of directing the synthesis of the 80K protein in the outer membrane of strain K407. A 3.2-kb DNA fragment that restored production of the receptor in strain K407 was subsequently isolated. The fragment also directed synthesis of the protein in E. coli MT912 but at levels much lower than those previously observed. Nucleotide sequencing of the fragment revealed an open reading frame (designated pfeA for Pseudomonas ferric enterobactin) of 2,241 bp capable of encoding a 746-amino-acid protein with a molecular weight of 80,967. The PfeA protein showed more than 60% homology to the E. coli FepA protein. Consistent with this, the two proteins showed significant immunological cross-reactivity.  相似文献   

4.
Haem iron-transport system in enterohaemorrhagic Escherichia coli O157:H7   总被引:9,自引:5,他引:4  
In this study, we identified the iron-transport systems of Escherichia coli O157:H7 strain EDL933. This strain synthesized and transported enterobactin and had a ferric citrate transport system but lacked the ability to produce or use aerobactin. It used haem and haemoglobin, but not transferrin or lactoferrin, as iron sources. We cloned the gene encoding an iron-regulated haem-transport protein and showed that this E. coli haem-utilization gene ( chuA ) encoded a 69 kDa outer membrane protein that was synthesized in response to iron limitation. Expression of this protein in a laboratory strain of E. coli was sufficient for utilization of haem or haemoglobin as iron sources. Mutation of the chromosomal chuA and tonB genes in E. coli O157:H7 demonstrated that the utilization of haemin and haemoglobin was ChuA- and TonB-dependent. Nucleotide sequence analysis of chuA revealed features characteristic of TonB-dependentFur-regulated, outer membrane iron-transport proteins. It was highly homologous to the shuA gene of Shigella dysenteriae and less closely related to hemR of Yersinia enterocolitica and hmuR of Yersinia pestis . A conserved Fur box was identified upstream of the chuA gene, and regulation by Fur was confirmed.  相似文献   

5.
6.
Under iron-restricted conditions, Vibrio parahaemolyticus produces a siderophore, vibrioferrin, accompanying expression of two major outer membrane proteins of 78 and 83 kDa. Autoradiographic analysis of nondenaturing polyacrylamide gel electrophoregrams of outer membrane preparations previously incubated with [55Fe]ferric vibrioferrin revealed a single radiolabeled band, in which the 78-kDa protein was detected predominantly by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The antiserum against the purified 78-kDa protein partially inhibited Fe-VF binding to isolated OMPs. The 78-kDa protein was cleaved by the treatment of whole cells with proteinase K, indicating that a portion of this protein is exposed on the surface of the outer membrane. The treated cells lost most of their iron uptake activity mediated by vibrioferrin. These results suggest that the ferric vibrioferrin-binding protein of 78 kDa may function as the receptor for ferric vibrioferrin involved in the initial step of vibrioferrin-mediated iron uptake. Immunoblot analysis using the antiserum against the 78-kDa protein demonstrated that the molecular mass and antigenic properties of the protein were highly conserved among V. parahaemolyticus strains examined. The antiserum also recognized an iron-repressible outer membrane protein of 78 kDa from iron-restricted V. alginolyticus strains, some of which appeared to produce vibrioferrin.  相似文献   

7.
Under iron limitation, the plant pathogen Erwinia chrysanthemi produces the catechol-type siderophore chrysobactin, which acts as a virulence factor. It can also use enterobactin as a xenosiderophore. We began this work by sequencing the 5'-upstream region of the fct-cbsCEBA operon, which encodes the ferric chrysobactin receptor and proteins involved in synthesis of the catechol moiety. We identified a new iron-regulated gene (cbsH) transcribed divergently relative to the fct gene, the translated sequence of which is 45.6% identical to that of Escherichia coli ferric enterobactin esterase. Insertions within this gene interrupt the chrysobactin biosynthetic pathway by exerting a polar effect on a downstream gene with some sequence identity to the E. coli enterobactin synthase gene. These mutations had no effect on the ability of the bacterium to obtain iron from enterobactin, showing that a functional cbsH gene is not required for iron removal from ferric enterobactin in E. chrysanthemi. The cbsH-negative mutants were less able to utilize ferric chrysobactin, and this effect was not caused by a defect in transport per se. In a nonpolar cbsH-negative mutant, chrysobactin accumulated intracellularly. These defects were rescued by the cbsH gene supplied on a plasmid. The amino acid sequence of the CbsH protein revealed characteristics of the S9 prolyl oligopeptidase family. Ferric chrysobactin hydrolysis was detected in cell extracts from a cbsH-positive strain that was inhibited by diisopropyl fluorophosphate. These data are consistent with the fact that chrysobactin is a d-lysyl-l-serine derivative. M?ssbauer spectroscopy of whole cells at various states of (57)Fe-labeled chrysobactin uptake showed that this enzyme is not required for iron removal from chrysobactin in vivo. The CbsH protein may therefore be regarded as a peptidase that prevents the bacterial cells from being intracellularly iron-depleted by chrysobactin.  相似文献   

8.
Serratia marcescens New CDC O14:H12 contains major outer membrane proteins of 43.5 kDal, 42 kDal (the porins) and 38 kDal (the OmpA protein) which can be separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Immunoblotting of whole cell or outer membrane preparations using antiserum raised against the whole cells revealed similar complex patterns of antigens. The OmpA protein was the major immunogen, although six other outer membrane proteins were also detected; the porins reacted only weakly with antibodies in this system. Immunoabsorption of antisera with whole cells showed that only the O antigenic chains of lipopolysaccharide and the H (flagella) antigens were accessible to antibody on the cell surface. Failure to detect the OmpA protein and other envelope antigens in this way suggests that their antigenic sites are not able to react with antibodies and are possibly masked by the O antigen.  相似文献   

9.
The specificity of the outer membrane protein receptor for ferric enterobactin transport in Escherichia coli and the mechanism of enterobactin-mediated transport of ferric ions across the outer membrane have been studied. Transport kinetic and inhibition studies with ferric enterobactin and synthetic structural analogs have mapped the parts of the molecule important for receptor binding. The ferric complex of the synthetic structural analog of enterobactin, 1,3,5-N,N',N'-tris-(2,3-dihydroxybenzoyl)triaminomethylbenzene (MECAM), was transported with the same maximum velocity as was ferric enterobactin. A double-label transport assay with [59Fe, 3H]MECAM showed that the ligand and the metal are transported across the outer membrane at an identical rate. Under the growth conditions used, large fractions of the transported complexes were available for exchange across the outer membrane when a large excess of extracellular complex was added to the cell suspension; at least 60% of the internalized [59Fe]enterobactin exchanged with extracellular [55Fe]enterobactin. Internalized [59Fe, 3H]MECAM was released from the cell as the intact complex when either unlabeled Fe-MECAM or Fe-enterobactin was added extracellularly. The results suggest a mechanism of active transport of unmodified coordination complex across the outer membrane with possible accumulation in the periplasm.  相似文献   

10.
11.
The ferric enterobactin receptor protein, FepA, was isolated and purified from the outer membranes of a genetically transformed strain of Escherichia coli (UT5600/pBB2) using anion-exchange chromatography, chromatofocusing and gel filtration. The purified protein was found to crystallize from 25 mM sodium phosphate buffer in the presence of 0.8% beta-D-octylglucoside under a range of conditions. The protein formed mostly small rods and needle-shaped crystals in the hanging drop method.  相似文献   

12.
The periplasmic protein FepB of Escherichia coli is a component of the ferric enterobactin transport system. We overexpressed and purified the binding protein 23-fold from periplasmic extracts by ammonium sulfate precipitation and chromatographic methods, with a yield of 20%, to a final specific activity of 15,500 pmol of ferric enterobactin bound/mg. Periplasmic fluid from cells overexpressing the binding protein adsorbed catecholate ferric siderophores with high affinity: in a gel filtration chromatography assay the K(d) of the ferric enterobactin-FepB binding reaction was approximately 135 nM. Intrinsic fluorescence measurements of binding by the purified protein, which were more accurate, showed higher affinity for both ferric enterobactin (K(d) = 30 nM) and ferric enantioenterobactin (K(d) = 15 nM), the left-handed stereoisomer of the natural E. coli siderophore. Purified FepB also adsorbed the apo-siderophore, enterobactin, with comparable affinity (K(d) = 60 nM) but did not bind ferric agrobactin. Polyclonal rabbit antisera and mouse monoclonal antibodies raised against nearly homogeneous preparations of FepB specifically recognized it in solid-phase immunoassays. These sera enabled the measurement of the FepB concentration in vivo when expressed from the chromosome (4,000 copies/cell) or from multicopy plasmids (>100,000 copies/cell). Overexpression of the binding protein did not enhance the overall affinity or rate of ferric enterobactin transport, supporting the conclusion that the rate-limiting step of ferric siderophore uptake through the cell envelope is passage through the outer membrane.  相似文献   

13.
FetA, formerly designated FrpB, an iron-regulated, 76-kDa neisserial outer membrane protein, shows sequence homology to the TonB-dependent family of receptors that transport iron into gram-negative bacteria. Although FetA is commonly expressed by most neisserial strains and is a potential vaccine candidate for both Neisseria gonorrhoeae and Neisseria meningitidis, its function in cell physiology was previously undefined. We now report that FetA functions as an enterobactin receptor. N. gonorrhoeae FA1090 utilized ferric enterobactin as the sole iron source when supplied with ferric enterobactin at approximately 10 microM, but growth stimulation was abolished when an omega (Omega) cassette was inserted within fetA or when tonB was insertionally interrupted. FA1090 FetA specifically bound 59Fe-enterobactin, with a Kd of approximately 5 microM. Monoclonal antibodies raised against the Escherichia coli enterobactin receptor, FepA, recognized FetA in Western blots, and amino acid sequence comparisons revealed that residues previously implicated in ferric enterobactin binding by FepA were partially conserved in FetA. An open reading frame downstream of fetA, designated fetB, predicted a protein with sequence similarity to the family of periplasmic binding proteins necessary for transporting siderophores through the periplasmic space of gram-negative bacteria. An Omega insertion within fetB abolished ferric enterobactin utilization without causing a loss of ferric enterobactin binding. These data show that FetA is a functional homolog of FepA that binds ferric enterobactin and may be part of a system responsible for transporting the siderophore into the cell.  相似文献   

14.
The Escherichia coli ferric enterobactin esterase gene (fes) was cloned into the vector pGEM3Z under the control of the T7 gene 10 promoter and overexpressed to approximately 15% of the total cellular protein. The ferric enterobactin esterase (Fes) enzyme was purified as a 43-kDa monomer by gel filtration chromatography. Purified Fes preparations were examined for esterase activity on enterobactin and its metal complexes and for iron reduction from ferric complexes of enterobactin and 1,3,5-tris(N,N',N"-2,3-dihydroxybenzoyl)aminomethylbenzene (MECAM), a structural analog lacking ester linkages. Fes effectively catalyzed the hydrolysis of both enterobactin and its ferric complex, exhibiting a 4-fold greater activity on the free ligand. It also cleaved the aluminum (III) complex at a rate similar to the ferric complex, suggesting that ester hydrolysis of the ligand backbone is independent of any reductive process associated with the bound metal. Ferrous iron was released from the enterobactin complex at a rate similar to ligand cleavage indicating that hydrolysis and iron reduction are tightly associated. However, no detectable release of ferrous iron from the MECAM complex implies that, with these in vitro preparations, metal reduction depends upon, and is subsequent to, the esterase activity of Fes. These observations are discussed in relation to studies which show that such enterobactin analogs can supply growth-promoting iron concentrations to E. coli.  相似文献   

15.
Iron restriction was induced in Escherichia coli O 111, E. coli O 164 and E. coli C by growing the organisms in trypticase soy broth containing ovotransferrin, desferal, EDDA (ethylenediamine-dihydroxyphenylacetic acid) or alpha,alpha'-dipyridyl. There were marked qualitative and quantitative differences in the iron regulated outer membrane proteins expressed in the presence of the various iron chelators. Differences in the kinetics of growth were also noted. E. coli C was devoid of a ferric enterobactin iron uptake system.  相似文献   

16.
An outer membrane preparation from cells of Escherichia coli K-12 grown in low iron medium was found to retain ferric enterobactin binding activity following solubilization in a Tris-HCl, Na2EDTA buffer containing Triton X-100. Activity was measured by means of a DEAE-cellulose column which separated free and receptor bound ferric enterobactin. The binding activity was greatly reduced in preparations obtained from cells grown in iron rich media or from cells of a colicin B resistant mutant grown in either high or low iron media. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis enabled correlation of this lack of activity to a single band missing in the outer membrane profile of the colicin B mutant. Evidence was obtained for in vitro competition between ferric enterobactin and colicin B for the extracted receptor. The binding specificity of the extracted receptor was examined by competition between ferric enterobactin and several iron chelates including a carbocyclic analogue of enterobactin, cis-1,5,9-tris(2,3-dihydroxybenzamido)cyclododecane. The ferric form of the latter compound supported growth of siderophore auxotrophs, apparently without hydrolysis to dihydroxybenzoic acid and resynthesis into enterobactin. These data may require revision of the accepted mechanism of enterobactin mediated iron utilization.  相似文献   

17.
Monoclonal antibodies (MAb) were raised to the Escherichia coli K-12 ferric enterobactin receptor, FepA, and used to identify regions of the polypeptide that are involved in interaction with its ligands ferric enterobactin and colicins B and D. A total of 11 distinct FepA epitopes were identified. The locations of these epitopes within the primary sequence of FepA were mapped by screening MAb against a library of FepA::PhoA fusion proteins, a FepA deletion mutant, and proteolytically modified FepA. These experiments localized the 11 epitopes to seven different regions within the FepA polypeptide, including residues 2 to 24, 27 to 37, 100 to 178, 204 to 227, 258 to 290, 290 to 339, and 382 to 400 of the mature protein. Cell surface-exposed epitopes of FepA were identified and discriminated by cytofluorimetry and by the ability of MAb that recognize them to block the interaction of FepA with its ligands. Seven surface epitopes were defined, including one each in regions 27 to 37, 204 to 227, and 258 to 290 and two each in regions 290 to 339 and 382 to 400. One of these, within region 290 to 339, was recognized by MAb in bacteria containing intact (rfa+) lipopolysaccharide (LPS); all other surface epitopes were susceptible to MAb binding only in a strain containing a truncated (rfaD) LPS core, suggesting that they are physically shielded by E. coli K-12 LPS core sugars. Antibody binding to FepA surface epitopes within region 290 to 339 or 382 to 400 inhibited killing by colicin B or D and the uptake of ferric enterobactin. In addition to the FepA-specific MAb, antibodies that recognized other outer membrane components, including Cir, OmpA, TonA, and LPS, were identified. Immunochemical and biochemical characterization of the surface structures of FepA and analysis of its hydrophobicity and amphilicity were used to generate a model of the ferric enterobactin receptor's transmembrane strands, surface peptides, and ligand-binding domains.  相似文献   

18.
The aerobactin iron-uptake system of plasmid ColV-K30, genetically isolated from other plasmid determinants by molecular cloning, was sufficient to restore full virulence in a mouse peritonitis model to a clinical Escherichia coli isolate, D551 (O78:H-), whose resident aerobactin-encoding ColV plasmid had been lost by curing. Antiserum was raised in rabbits against live E. coli K12 cells expressing the outer-membrane aerobactin receptor protein and absorbed with an isogenic strain lacking the receptor. This antiserum inhibited binding of aerobactin, cloacin DF13 and bacteriophage B74K to the native protein in whole E. coli K12 bacteria expressing the receptor, or in membranes prepared from such organisms. However, it did not react with the native receptor protein in several wild strains unless lipopolysaccharide was first removed by treatment with trichloroacetic acid, nor did it protect mice in experimental infections with strain D551. Antisera raised in rabbits against partially or fully denatured forms of the aerobactin receptor reacted only in assays involving denatured protein; they showed no inhibition of the biological activities of the native receptor.  相似文献   

19.
20.
The gene coding for ferric enterobactin binding protein from E. coli O157:H7 was amplifi ed. This gene was cloned and expressed as C-terminal His (6)-tagged protein. The SDS-PAGE analysis of the total protein revealed only two distinct bands, with molecular masses of 31kDa and 34kDa. The Ni-NTA chromatography purifi ed FepB and the osmotically shocked periplasmic fraction of IPTG induced cells showed only a single band of 31 kDa. Polyclonal mouse antibody was raised against the recombinant protein during 4 weeks after immunization. Western blot analysis of the recombinant FepB with mouse antiserum revealeda single band of 31 kDa. Identification and purification of FepB helped reveal its appropriate molecular mass. Polyclonal antibody raised against the recombinant protein reacted with bacterial FepB. The recombinant protein FepB could have a protective effect against E. coli O157:H7 and might be useful as an effective vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号