首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were carried out using simulated den cages to delineate specific characteristics of phase delaying in circadian photoentrainment of a nocturnal rodent, the flying squirrel. The principal experiments entailed presentation of one to five consecutive 15-min white-light pulses per activity cycle at activity onset to animals free-running in darkness, in order to determine the immediate and final phase-shifting effect. Auxiliary experiments recorded entrainment patterns on light-dark (LD) schedules in the den cages. Phase response curves (PRCs) based on 15-min white-light pulses in standard wheel cages were also constructed for these animals as background information for interpreting the phase-delaying experiments. Exposure of a den animal to light by light sampling at the time of initial arousal from the rest state at circadian time (CT) 12, either by an LD schedule or by a 15-min light pulse, resulted in a return to the nest box for a short rest period. The phase delay occurring after a single light exposure at activity onset was equal to the induced rest, thus suggesting an immediate phase shift. The maximum delay was about 1 1/2 hr/cycle, with the amount of delay related to the number of light exposures. During the photoentrained state on an LD schedule, the activity rhythm of a den-housed animal was essentially free-running on the days following a phase delay. The data are used to expand current models for photoentrainment of circadian activity rhythms in nocturnal rodents.  相似文献   

2.
Summary Pulses of darkness can phase-shift the circadian activity rhythms of hamsters,Mesocricetus auratus, kept in constant light. Dark pulses under these conditions alter photic input to the circadian system, but they also commonly trigger wheel-running activity. This paper investigates the contribution of running activity to the phase-shifting effects of dark pulses. A first experiment showed that running activity by itself can phaseshift rhythms in constant light. Hamsters were induced to run by being confined to a novel wheel for 3–5 h. When this was done at circadian times (CT) 0, 6, and 9, the mean steady-state phase-shifts were 0.6 h, 3.5 h, and 2.3 h, respectively. The latter two values are at least as large as those previously obtained with dark pulses of similar durations and circadian phases. A second experiment showed that restricting the activity of hamsters during 3-h dark pulses at CT 9 reduces the amplitude of the phase-shifts. Unrestrained animals phase-advanced by 1.1 h, but this shift was halved in animals whose wheel was locked, and completely abolished in animals confined to nest boxes during the dark pulse. Activity restriction in itself (without dark pulses) had only minimal phase-delaying effects on free-running rhythms when given between ca. CT 10 and CT 13. These results support the idea that, in hamsters at least, dark pulses affect the circadian system mostly by altering behavioural states rather than by altering photic input to the internal clock.Abbreviations CT circadian time - DD constant darkness - LD light-dark - LL constant light - PRC phase response curve - period of rhythm  相似文献   

3.
Summary The circadian period of the freerunning activity rhythm in the cockroach is systematically altered by high frequency light-dark cycles (HF-LD) according to the ratio of light to dark within each cycle. With a standard 10 min cycle time, brief (e.g., 0.5 min) exposure to light each cycle causes the free-running period to shorten significantly in comparison to its steady-state value in constant darkness. As the ratio of light to dark in HF-LD is increased, the period of the rhythm is progressively lengthened. These findings are discussed in terms of the general proposition that light, applied throughout the circadian cycle, predictably modifies periodicity according to the asymmetrical shape of the circadian phase response curve.Abbreviations LD light-dark cycles in which cycle length is in hours - HF-LD light-dark cycles in which cycle length is in min; period of the activity rhythm; change in period of the activity rhythm - PRC phase response curve - LL constant light  相似文献   

4.
Under controlled laboratory conditions, the locomotor activity rhythms of four species of wrasses (Suezichthys gracilis, Thalassoma cupido, Labroides dimidiatus andCirrhilabrus temminckii) were individually examined using an actograph with infra-red photo-electric switches in a dark room at temperatures of 21.3–24.3°C, for 7 to 14 days. The locomotor activity ofS. gracilis occurred mostly during the light period under a light-dark cycle regimen (LD 12:12; 06:00-18:00 light, 18:00-06:00 dark). The locomotor activity commenced at the beginning of the light period and continued until a little before the beginning of dark period. The diel activity rhythm of this species synchronizes with LD. Under constant illumination (LL) this species shows distinct free-running activity rhythms varying in length from 23 hrs. 39 min. to 23 hrs. 47 min. Therefore,S. gracilis appears to have a circadian rhythm under LL. However, in constant darkness (DD), the activity of this species was greatly suppressed. All the fish showed no activity rhythms in DD conditions. After DD, the fish showed the diel activity rhythm with the resumption of LD, but this activity began shortly after the beginning of light period. The fish required several days to synchronize with the activity in the light period. Therefore,S. gracilis appeared to continue the circadian rhythm under DD. InT. cupido, the locomotor activity commenced somewhat earlier than the beginning of the light period and continued until the beginning of the dark period under LD. The diel activity rhythm of this species synchronizes with LD. Under LL, four of the five specimens of this species tested showed free-running activity rhythms for the first 5 days or longer varying in length from 22 hrs. 54 min. to 23 hrs. 39 min. Although the activity of this species was suppressed under DD, two of five fish showed free-running activity rhythms throughout the experimental period. The lengths of such free-running periods were from 23 hrs. 38 min. to 23 hrs. 50 min. under DD. Therefore, it was ascertained thatT. cupido has a circadian rhythm. InL. dimidiatus, the locomotor activity rhythm under LD resembled that observed inT. cupido. The diel activity rhythm of this species synchronizes with LD. Under LL, four of seven of this species showed free-running activity rhythms throughout the experimental period. The lengths of such free-running periods were from 23 hrs. 07 min. to 25 hrs. 48 min. Although the activity of this species was suppressed under DD, three of five fish showed free-running activity rhythms throughout the experimental period. The lengths of such free-running periods were from 23 hrs. 36 min. to 23 hrs. 41 min. under DD. Therefore, it was ascertained thatL. dimidiatus has a circadian rhythm. Almost all locomotor activity of C.temminckii occurred during the light period under LD. The diel activity rhythm of this species coincides with LD. Under LL, two of four of this species showed free-running activity rhythms throughout the experimental period. The lengths of such free-running periods were from 23 hrs. 32 min. to 23 hrs. 45 min. Although the activity of this species was suppressed under DD, one of the four fish showed free-running activity rhythms throughout the experimental period. The length of the free-running period was 23 hrs. 21 min. under DD. Therefore,C. temminckii appeared to have a circadian rhythm. According to field observations,S. gracilis burrows and lies in the sandy bottom whileT. cupido, L. dimidiatus, andC. temminckii hide and rest in spaces among piles of boulders or in crevices of rocks during the night. It seems that the differences in nocturnal behavior among the four species of wrasses mentioned above are closely related to the intensity of endogenous factors in their locomotor activity rhythms.  相似文献   

5.
Summary Hamsters maintained under constant illumination were exposed to 2- or 6-h pulses of darkness at various phases of their circadian activity rhythms. When presented around the time of activity onset, the pulses resulted in phase advances, and when presented toward the end of daily activity, they resulted in phase delays. Since others have shown that light pulses presented at the same phases in constant darkness cause phase shifts in the opposite directions, these results indicate that phase response curves for light and dark pulses are mirror images.Dark pulses also caused phase-dependent changes, both transient and long-lasting, in the period of the free-running rhythms, and a few pulses were immediately followed by splitting of the activity rhythms into two components. Such effects may reflect a differential responsiveness of two coupled oscillators to dark pulses.Abbreviations CT circadian time - DD constant dark - LD lightdark - LL constant light - PRC phase response curve - SD subjective day - SN subjective night - period of a circadian rhythm Supported by grants from the NSERC of Canada to B. Rusak and to G.V. Goddard. We are grateful to Dr. Goddard for his support and encouragement  相似文献   

6.
Since consistent data on endogenous circadian rhythms of Mongolian gerbils are not available, the main aim of our study was to identify suitable conditions to receive stable and reproducible free-running rhythms of activity under different light intensities. Another objective was to determine the role of social cues as an exogenous zeitgeber in the absence of a light-dark (LD) cycle. We performed two long-term sets of experiments with adult male gerbils kept in climatic chambers under various photoperiods of at least 30 days each. In all cases, the time of lights on in the chambers differed from the daily starting hour of work in the animal house. Always, two animals per chamber were kept separately in cages with a running wheel while their activity was monitored continuously. During the first set, only three of eight animals developed intra- and interindividual variable free-running rhythms. The activity patterns seemed to be influenced by human activities outside, indicating high sensitivity to external factors. Subsequently, we damped the chambers and the room and restricted access to the room. In the following noise-reduced set, all gerbils developed comparable free-running rhythms of activity. We determined the mean of the free-running period τ, the activity-rest relationship α/θ and the amount of running wheel activity per day: τ = 23.7h ± 0.08h under low light (5 lux) and 25.5h ± 0.19h under high light intensities (450 lux); α/θ = 0.53 ± 0.08 under 5 lux and 0.34 ± 0.04 under 450 lux. The amount of daily activity was 12 times as high under 5 lux as under 450 lux. There was no indication that the two animals in one chamber socially synchronized each other. In conclusion, the pronounced rhythm changes in accordance with Aschoff's theory support the view that gerbils are mainly nocturnal animals. (Chronobiology International, 17(2), 137–145, 2000)  相似文献   

7.
Summary The role of melatonin plasma titers in the control of free-running circadian rhythms was investigated in European starlings,Sturnus vulgaris, held in continuous dim light. Simultaneous recordings of plasma melatonin, perch-hopping and feeding activity revealed synchronous circadian variations in all three functions with high melatonin titers during resting and low titers during activity periods. Implanting birds with melatonin silastic capsules resulted in a 100-fold increase in plasma concentrations and an abolition of the endogenous melatonin rhythm. Feeding rhythms persisted during this treatment, although the activity time () was lengthened and the circadian period () shortened. Similar changes were found in perchhopping activity, but in some birds, this activity was more or less suppressed. These data demonstrate that although melatonin plasma titers freerun synchronously with other circadian parameters, fluctuations in peripheral melatonin are not essential for the expression of circadian activity.  相似文献   

8.
M Zatz 《Federation proceedings》1979,38(12):2596-2601
Photoentrainment of circadian rhythms in mammals is mediated by the retinohypothalamic projection to the suprachiasmatic nucleus of the hypothalamus. It should therefore be possible to mimic or block the effects of light on the circadian pacemaker with appropriate pharmacological agents. Such agents and their effects should be useful in identifying the neurotransmitters involved in photoentrainment and their mechanisms of action on the circadian pacemaker. The effects of light on the circadian rhythm in rat pineal serotonin N-acetyltransferase activity are described. Carbachol, a cholinergic agonist, was found to mimic the effects of light on this rhythm, including the acute reduction of nocturnal activity and phase-shifting of the free-running rhythm. These results raise the possibility that acetylcholine is involved in the photoentrainment of mammalian circadian rhythms.  相似文献   

9.
Feedback lighting provides illumination primarily during the subjective night (i.e., the photosensitive portion of the circadian cycle) in response to a given behavior. This technique has previously been used to test the nonparametric model of entrainment in nocturnal rodents. In three species (Rattus norvegicus, Mesocricetus auratus, and Mus musculus), the free-running period of the locomotor activity rhythm was similar whether the animals were exposed to continuous light or discrete light pulses occurring essentially only during the subjective night (i.e., feedback lighting). In the current experiments, feedback lighting was presented to squirrel monkeys so that light fell predominantly during the subjective night. Feedback lighting was linked to the drinking behavior in this diurnal primate so that when the animal drank, the lights went out. Despite the seemingly adverse predicament, the monkeys maintained regular circadian drinking rhythms. Furthermore, just as the period of the free-running activity rhythms of nocturnal rodents exposed to continuous light or feedback lighting were similar, the period of the drinking rhythms of the squirrel monkeys in continuous light and feedback lighting were comparable (25.6 +/- 0.1 and 25.9 +/- 0.1 hours, respectively), despite a substantial decrease in the total amount of light exposure associated with feedback lighting. The free-running period of monkeys exposed to continuous dark (24.5 +/- 0.1 hours) was significantly shorter than either of the two lighting conditions (P < 0.001). The results presented for the drinking rhythm were confirmed by examination of the temperature and activity rhythms. Therefore, discrete light pulses given predominately during the subjective night are capable of simulating the effects of continuous light on the free-running period of the circadian rhythms of a diurnal primate. The response of squirrel monkeys to feedback lighting thus lends further support for the model and suggests that the major entrainment mechanisms are similar in nocturnal rodents and diurnal primates.  相似文献   

10.
Zusammenfassung In 2 Versuchsserien wurden Kohlmeisen(Parus major) und japanische Möwchen(Lonchura striata var.domestica) einzeln und schallisoliert gehalten. In der ersten Versuchsserie, in der alle Vögel einen dunklen Schlafkasten hatten, wurde der Einfluß der Beleuchtungsstärke auf die Periode () der Hüpfaktivität und auf das Verhältnis von Aktivitätszeit zu Ruhezeit ( : -Verhältnis) untersucht. Sowhol Kohlmeisen als auch japanische Möwchen folgen der Regel, daß mit wachsender Beleuchtungsstärke die Periode kürzer und das : -Verhältnis größer wird.In der 2. Serie wurde der Einfluß Ruhe im dunklen Schlafkasten auf die Periodenlänge und auf das : -Verhältnis untersucht. Es wurden die Messungen aus Bedingung 1 (der Vogel hat einen dunklen Schlafkasten zur Verfügung) mit den Messungen aus Bedingung 2 (der Vogel hat keinen oder einen hellen Schlafkasten zur Verfügung) verglichen. Das Ergebnis bei Kohlmeisen entspricht den Befunden bei konstantem Licht verschiedener Intensität. Unter Bedingung 1 ist länger und das : -Verhältnis kleiner als in Bedingung 2. Das Ausmaß der Änderung von nach Fortnahme des dunklen Kastens ist unabhängig von der Periodenlänge in Bedingung 1. Das Ausmaß der änderung von : ist unabhängig von a : in Bedingung 1, jedoch schwach negativ korreliert mit der Periodenlänge in Bedingung 1.Bei japanischen Möwchen entsprechen die Ergebnisse dieser Versuchsserie nicht der Regel für tagaktive Vögel. Mit Benützen des dunklen Schlafkastens ist kürzer als ohne den Schlafkasten. Ohne den Schlafkasten ist etwa 24 Std. Das : -Verhältnis ist in Bedingung 1 unter bestimmten Voraussetzungen kleiner als in Bedingung 2. Das Ausmaß der Änderung von nach Fortnahme des Kastens ist mit der dazugehörigen Periode in Bedingung 1 hochsignifikant korreliert (Regressionskoeffizient b=-1.01, Korrelationskoeffizient r=0.89). Ebenfalls ist das Ausmaß der Änderung von : nach Fortnahme des Kastens mit : aus Bedingung 1 korreliert; es scheint, als würde ein bevorzugtes : -Verhältnis von etwa 2.0 eingeregelt.Die Ergebnisse werden im Hinblick auf 4 Punkte diskutiert: 1) Das circadiane System arbeitet innerhalb eines engen Bereiches von - und : -Werten optimal. 2) Der Optimalbereich wird bevorzugt unter ungünstigen Bedingungen angestrebt. 3) Der Entzug des dunklen Schlafkastens belastet japanische Möwchen mehr als Kohlmeisen. 4) Bei japanischen Möwchen wird in Bedingung 1 durch fortplfanzungsphysiologischen Einfluß verkürzt.
Circadian activity rhythms of birds with and without a dark nest box
Summary Perch-hopping activity of Great tits(Parus major) and Bengales finches(Lonchura striata domestica), housed individually in soundproof boxes, was studied in two series of experiments. In the first series all birds had access to a dark nest box, in which they retired during their subjective night. In this experiment the effect of light intensity on the freerunning circadian activity rhythm was investigated. Both Great tits and Bengalese finches obey the circadian rule by responding to an increase in light intensity with shortening the circadian period () and with an increase of the ratio of activity time and rest time ( : ).In the second series of experiments the influence of sleeping in the dark nest box on both circadian period and : -ratio was studied. The results of two experimental conditions — without and with access to a dark nest box — were compared. In the Great tits, the results are in agreement with the effect of light intensity: when a dark nestbox is available, is longer and the : -ratio is smaller than in the absence of a nest box. The magnitude of the change in free-running period after removal of the nest box is independent of the original value of ; the amount of change : -ratio is likewise independent of the original : -ratio, but is weakly correlated to the original .InLonchura striata var. domestica, removal of the dark nest box leads to a lenghtening of the free-running period to about 24 hours; the : -ratio is smaller in the presence of a dark nestbox, if certain other conditions are fulfilled. The magnitude of the change in after removal of the nest box is highly correlated to the original free-running period (r=-0.89) in such a way that, without nest box, the period approaches a value of 24 hours. Also, the amount of change in : -ratio due to nest box removal is negatively correlated to the original : -ratio. A probably preferred : -ratio of 2.0 is adopted.These results are discussed in the view of 4 points: 1) The circadian system operates at its optimum within a narrow range of - and : -values. 2) This optimal range is especially adopted when conditions become adverse. 3) Removal of the dark nest box results in a more stressful situation for Bengalese finches than for Great tits. 4) In the Bengalese finches, is shortened in the presence of a nest box due to effects on reproductive physiology.


Herrn Prof. Dr. JürgenAschoff zum 60. Geburtstag gewidemt.  相似文献   

11.
We examined the effects of pinealectomy and blinding (bilateral ocular enucleation) on the circadian locomotor activity rhythm in the Japanese newt, Cynops pyrrhogaster. The pinealectomized newts were entrained to a light-dark cycle of 12 h light and 12 h darkness. After transfer to constant darkness they showed residual rhythmicity for at least several days which was gradually disrupted in prolonged constant darkness. Blinded newts were also entrained to a 12 h light/12 h dark cycle. In subsequent constant darkness they showed free-running rhythms of locomotor activity. However, the freerunning periods noticeably increased compared with those observed in the previous period of constant darkness before blinding. In blinded newts entrained to the light/dark cycle the activity rhythms were gradually disrupted after pinealectomy even in the presence of the light/dark cycle. These results suggest that both the pineal and the eyes are involved in the newt's circadian system, and also suggest that the pineal of the newt acts as an extraretinal photoreceptor which mediates the entrainment of the locomotor activity rhythm.Abbreviations circadian period - DD constant darkness - LD cycle, light-dark cycle - LD 12:12 light-dark cycle of 12 h light and 12 h darkness  相似文献   

12.
Summary Djungarian hamsters (Phodopus sungorus), were exposed to constant light with increasing intensities (20, 60, 350 lux), and wheel running activity was recorded. With increasing light intensity the percentage of hamsters showing a split in their daily activity pattern increased and the free running period was lengthened for both the unsplit and the split state. The fact that the free running period of both states depended on the light intensity together with the observation that the highest incidence of acircadian activity occurred under 350 lux, provoked the idea that the emergence of splitting or acircadian rhythmicity is a direct consequence of the light induced lengthening of the free running period. However, analysis of the data failed to support the idea that emergence of a split or acircadian activity is a threshold phenomenon with respect to the free running period.Due to differences in circadian function some Djungarian hamsters do not exhibit photoinduction following short day exposure. In these individuals splitting also occurred but required exposure to a higher light intensity than in photo-responsive hamsters. This observation is in accordance with the idea that the two phenotypes differ in the interaction of the two component oscillators underlying circadian rhythmicity.Abbreviations LD long day photoperiod - LL constant light - SD short day photoperiod - free running period  相似文献   

13.
Summary Circadian rhythms of locomotor activity of two species of finches,Fringilla coelebs andCarduelis chloris, and four rodent species,Mesocricetus auratus, Glis glis, Eutamias sibiricus andFunambulus sp., were studied under the influence of 1212 h light-dark (LD) cycles with different levels of illumination during L and D. The LD intensity-ratio (Zeitgeber amplitude) was approximately constant at different mean levels of light intensity per cycle (Zeitgeber level). Theproportional effect of light, measured as the influence of mean light intensity per cycle (geometric mean) on the phase-angle differences between activity onset and light-on (in day-active species) or light-off (in night-active species) showed large interspecific variability. The variations—in extent and direction—were congruous with the effects of light on the free-running rhythms in the same species suggesting a functional relationship between effects of light on free-running and entrained circadian rhythms.  相似文献   

14.
Phase-response experiments using 1-h light pulses (LPs) of 1,100 lux applied under constant dim light of 0.3 lux were conducted with common marmosets, Callithrix j. jacchus, in order to obtain a complete phase-response curve established according to the common experimental procedure in a diurnal primate. Maximal phase delays of the free-running circadian activity rhythm (- 90 min) were induced by LPs delivered at circadian time (CT) 12; e.g., during the beginning of the marmosets' rest time, maximal advances (+ 25 min) were elicited by pulses administered during the late subjective night at CT 21. In contrast to rodents, neither regular transient cycles nor regular period responses resulted from LP applications at different phases. To check whether the underlying period length affects the phase response in primates as well, the marmosets' circadian timing system was entrained to 25 h by a lightrdark (LD) cycle of 12.5:12.5 h. The 1-h LPs were delivered during the first circadian cycle produced under constant dim light after the entraining LD periods. Here, LPs applied at CT 21 led to phase advances exceeding those measured during the steady-state free run. At CT 12, minor or no phase delays could be elicited. These findings show that the phase-shifting effect of LPs on the circadian system of marmosets is similar to that observed in other diurnal mammals. Some of the results indicate that in this diurnal primate, LP-induced phase shifts may be mediated in part by a light-induced increase in locomotor activity (arousal).  相似文献   

15.
The locomotor activity rhythm of the media workers of the ant species Camponotus compressus was monitored under constant conditions of the laboratory to understand the role of circadian clocks in social organization. The locomotor activity rhythm of most ants entrained to a 24 h light/dark (12:12 h; LD) cycle and free-ran under constant darkness (DD) with circadian periodicities. Under entrained conditions about 75% of media workers displayed nocturnal activity patterns, and the rest showed diurnal activity patterns. In free-running conditions these ants displayed three types of activity patterns (turn-around). The free-running period (τ) of the locomotor activity rhythm of some ants (10 out of 21) showed period lengthening, and those of a few (6 out of 21) showed period shortening, whereas the locomotor activity rhythm of the rest of the ants (5 out of 21) underwent large phase shifts. Interestingly, the pre-turn-around τ of those ants that showed nocturnal activity patterns during earlier LD entrainment was shorter than 24 h, which became greater than 24 h after 6–9 days of free-run in DD. On the other hand, the pre-turn-around τ of those ants, which exhibited diurnal patterns during earlier LD entrainment, was greater than 24 h, which became shorter than 24 h after 6–9 days of free-run in DD. The patterns of activity under LD cycles and the turn-around of activity patterns in DD regime suggest that these ants are shift workers in their respective colonies, and they probably use their circadian clocks for this purpose. Circadian plasticity thus appears to be a general strategy of the media workers of the ant species C. compressus to cope with the challenges arising due to their roles in the colony constantly exposed to a fluctuating environment.  相似文献   

16.
Circadian regulation of pineal melatonin content was studied in Syrian hamsters (Mesocricetus auratus), especially melatonin peak width and the temporal correlation to wheel-running activity. Melatonin was measured by radioimmunoassay in glands removed at different circadian times with respect to activity onset (= CT 12). Pineal melatonin peak width (h; for mean 125 pg/gland) and activity duration () were both 4–5 h longer after 12 or 27 weeks than after 5 or 6 days in continuous darkness (DD). Increased peak width was associated with a delay in the morning decline (M) of melatonin to baseline, correlated with a similar delay in wheel-running offset. In contrast, the evening rise (E) in melatonin occurred at approximately the same circadian phase regardless of the length of DD. Fifteen min light pulses produced similar phase-shifts in melatonin and activity. In a phase advance shift, M advanced at once, while E advanced only after several days of adjustment. Independent timing of shifts in the E and M components of the melatonin rhythm suggest that these events are controlled separately by at least two circadian oscillators whose mutual phase relationship determines melatonin peak width. This two-oscillator control of melatonin peak width is integral to the circadian mechanism of hamster photoperiodic time measurement.Abbreviations CT circadian time - DD continuous dark - L: D light: dark cycle - PMEL pineal melatonin - PRC phase response curve - RIA radioimmunoassay; , duration (h) of the active phase of the circadian wheel-running rhythm; , free-running period  相似文献   

17.
Summary Pinealectomy of White-throated Sparrows (Zonotrichia albicollis) free-running under constant conditions in dim light abolishes the circadian rhythm of nocturnal spring and fall migratory restlessness (Zugunruhe) as well as the rhythm of summer daytime locomotor activity (Pigs. 1 and 2). Rhythmicity persists in sham-operated birds. Pinealectomized birds are synchronized by a light cycle but their activity rhythm decays to arrhythmicity when they are released from entrainment into constant dim light. The pineal of the white-throat seems essential for the expression of circadian rhythms of both daytime activity and migratory restlessness. These findings support the hypothesis that the avian pineal is fundamentally involved in circadian organization.  相似文献   

18.

Background

Most biological functions are synchronized to the environmental light:dark cycle via a circadian timekeeping system. Bears exhibit shallow torpor combined with metabolic suppression during winter dormancy. We sought to confirm that free-running circadian rhythms of body temperature (Tb) and activity were expressed in torpid grizzly (brown) bears and that they were functionally responsive to environmental light. We also measured activity and ambient light exposures in denning wild bears to determine if rhythms were evident and what the photic conditions of their natural dens were. Lastly, we used cultured skin fibroblasts obtained from captive torpid bears to assess molecular clock operation in peripheral tissues. Circadian parameters were estimated using robust wavelet transforms and maximum entropy spectral analyses.

Results

Captive grizzly bears housed in constant darkness during winter dormancy expressed circadian rhythms of activity and Tb. The rhythm period of juvenile bears was significantly shorter than that of adult bears. However, the period of activity rhythms in adult captive bears was virtually identical to that of adult wild denning bears as was the strength of the activity rhythms. Similar to what has been found in other mammals, a single light exposure during the bear’s active period delayed subsequent activity onsets whereas these were advanced when light was applied during the bear’s inactive period. Lastly, in vitro studies confirmed the expression of molecular circadian rhythms with a period comparable to the bear’s own behavioral rhythms.

Conclusions

Based on these findings we conclude that the circadian system is functional in torpid bears and their peripheral tissues even when housed in constant darkness, is responsive to phase-shifting effects of light, and therefore, is a normal facet of torpid bear physiology.
  相似文献   

19.
When organisms are maintained under constant conditions of light and temperature, their endogenous circadian rhythms free run, manifesting their intrinsic period. The phases of these free-running rhythms can be shifted by stimuli of light, temperature, and drugs. The change from one free-running steady state to another following a perturbation often involves several transient cycles (cycles of free-running rhythm drifting slowly to catch up with the postperturbation steady state). Although the investigation of oscillator kinetics in circadian rhythms of both insects and mammals has revealed that the circadian pacemaker phase shifts instantaneously, the phenomenon of transient cycles has remained an enigma. We probed the phases of the transient cycles in the locomotor activity rhythm of the field mouse Mus booduga, evoked by a single light pulse (LP), using LPs at critically timed phases. The results of our experiments indicate that the transient cycles generated during transition from one steady state to another steady state do not represent the state of the circadian pacemaker (basic oscillator) controlling the locomotor activity rhythm in Mus booduga. (Chronobiology International, 17(2), 129–136, 2000)  相似文献   

20.
Endogenous circadian clocks are synchronized to the 24-h day by external zeitgebers such as daily light and temperature cycles. Bumblebee foragers show diurnal rhythms under daily light:dark cycles and short-period free-running circadian rhythms in constant light conditions in the laboratory. In contrast, during the continuous light conditions of the arctic summer, they show robust 24-h rhythms in their foraging patterns, meaning that some external zeitgeber must entrain their circadian clocks in the presence of constant light. Although the sun stays above the horizon for weeks during the arctic summer, the light quality, especially in the ultraviolet (UV) range, exhibits pronounced daily changes. Since the photoreceptors and photopigments that synchronize the circadian system of bees are not known, we tested if the circadian clocks of bumblebees (Bombus terrestris) can be entrained by daily cycles in UV light levels. Bumblebee colonies were set up in the laboratory and exposed to 12?h:12?h UV?+?:UV? cycles in otherwise continuous lighting conditions by placing UV filters on their foraging arenas for 12?h each day. The activity patterns of individual bees were recorded using fully automatic radiofrequency identification (RFID). We found that colonies manipulated in such a way showed synchronized 24-h rhythms, whereas simultaneously tested control colonies with no variation in UV light levels showed free-running rhythms instead. The results of our study show that bumblebee circadian rhythms can indeed be synchronized by daily cycles in ambient light spectral composition. (Author correspondence: )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号